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ANOVA Aldrin in the Wolf River

Wolf River

The Wolf River in Tennessee flows past an abandoned site once used by the
pesticide industry for dumping wastes, including chlordane (pesticide),
aldrin, and dieldrin (both insecticides).

These highly toxic organic compounds can cause various cancers and birth
defects.

These compounds are denser than water and their molecules tend to become
stuck in sediment, and are more likely to be found in higher concentrations
near the bottom than near mid-depth.
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ANOVA Aldrin in the Wolf River

Wolf River - Data

Aldrin concentration (nanograms per liter) at three levels of depth.

aldrin depth
1 3.80 bottom
2 4.80 bottom
...

...
...

10 8.80 bottom
11 3.20 middepth
12 3.80 middepth

...
...

...
20 6.60 middepth
21 3.10 surface
22 3.60 surface

...
...

...
30 5.20 surface
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ANOVA Aldrin in the Wolf River

Exploratory analysis

Aldrin concentration (nanograms per liter) at three levels of depth.
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n mean sd

bottom 10 6.04 1.58
middepth 10 5.05 1.10
surface 10 4.20 0.66

overall 30 5.10 1.37
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ANOVA Aldrin in the Wolf River

Research question

Is there a difference between the mean aldrin concentrations among the
three levels?

To compare means of 2 groups we use a Z or a T statistic.

To compare means of 3 or more groups we use a new test called
ANOVA (analysis of variance) and a new test statistic, F.
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ANOVA Aldrin in the Wolf River

ANOVA

ANOVA is used to assess whether the mean of the outcome variable is
different for different levels of a categorical variable.

H0 : The mean outcome is the same across all categories,

µ1 = µ2 = · · · = µk ,

where µi represents the mean of the outcome for observations in
category i .

HA : At least one pair of means differ.

Note - this hypothesis test does not tell us if all the means are different or
only if one pair is different, more on how to do that later.
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ANOVA Aldrin in the Wolf River

Conditions

1 The observations should be independent within and between groups

If the data are a simple random sample from less than 10% of the
population, this condition is satisfied.
Carefully consider whether the data may be independent (e.g. no
pairing).
Always important, but sometimes difficult to check.

2 The observations within each group should be nearly normal.

Particularly important when the sample sizes are small.

How do we check for normality?

3 The variability across the groups should be about equal.

Particularly important when the sample sizes differ between groups.

How can we check this condition?
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ANOVA Checking conditions

(1) Independence

Does this condition appear to be satisfied for the Wolf River data?
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ANOVA Checking conditions

(2) Approximately normal

Does this condition appear to be satisfied?
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ANOVA Checking conditions

(3) Constant variance

Does this condition appear to be satisfied?

bottom
sd=1.58

middepth
sd=1.10

surface
sd=0.66
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In this case it is somewhat hard to tell since the means are different.
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ANOVA Checking conditions

(3) Constant variance - Residuals

One of the ways to think about each data point is as follows:

yij = µi + εij

where εij is called the residual (εij = yij − µi ).

bottom
sd=1.58
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ANOVA Comparison

z/t test vs. ANOVA - Purpose

z/t test

Compare means from two groups to
see whether they are so far apart
that the observed difference cannot
reasonably be attributed to sampling
variability.

H0 : µ1 = µ2

ANOVA

Compare the means from two or
more groups to see whether they are
so far apart that the observed
differences cannot all reasonably be
attributed to sampling variability.

H0 : µ1 = µ2 = · · · = µk
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ANOVA Comparison

z/t test vs. ANOVA - Method

z/t test

Compute a test statistic (a ratio).

z/t =
(x̄1 − x̄2)− (µ1 − µ2)

SE (x̄1 − x̄2)

ANOVA

Compute a test statistic (a ratio).

F =
variability btw. groups

variability w/in groups

Large test statistics lead to small p-values.

If the p-value is small enough H0 is rejected, and we conclude that
the population means are not equal.
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ANOVA Comparison

z/t test vs. ANOVA

With only two groups t-test and ANOVA are equivalent, but only if
we use a pooled standard variance in the denominator of the test
statistic.

With more than two groups, ANOVA compares the sample means to
an overall grand mean.
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ANOVA ANOVA and the F test

Test statistic

Does there appear to be a lot of variability within groups? How about
between groups?

F =
variability btw. groups

variability w/in groups

Sta 111 (Colin Rundel) Lec 19 June 11, 2014 15 / 64

ANOVA ANOVA and the F test

Test statistic (cont.)

F =
variability btw. groups

variability w/in groups
=

MSG

MSE

MSG is mean square between groups

dfG = k − 1

where k is number of groups

MSE is mean square error - variability in residuals

dfE = n − k

where n is number of observations.
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ANOVA ANOVA and the F test

F distribution and p-value

F =
variability btw. groups

variability w/in groups

In order to be able to reject H0, we need a small p-value, which
requires a large F statistic.

In order to obtain a large F statistic, variability between sample
means needs to be greater than variability within sample means.
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ANOVA ANOVA output, deconstructed

ANOVA output

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.13 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Degrees of freedom associated with ANOVA

groups: dfG = k − 1, where k is the number of groups

total: dfT = n − 1, where n is the total sample size

error: dfE = dfT − dfG

dfG = k − 1 = 3− 1 = 2

dfT = n − 1 = 30− 1 = 29

dfE = 29− 2 = 27
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.)

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.13 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Sum of squares between groups, SSG

Measures the variability between groups

SSG =
k∑

i=1

ni (x̄i − x̄)2

where ni is each group size, x̄i is the average for each group, x̄ is the overall (grand)
mean.

n mean
bottom 10 6.04
middepth 10 5.05
surface 10 4.2
overall 30 5.1

SSG =
(
10× (6.04− 5.1)2

)
+
(
10× (5.05− 5.1)2

)
+
(
10× (4.2− 5.1)2

)
=16.96
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.) - SST

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.13 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Sum of squares total, SST

Measures the variability between groups

SST =
n∑

i=1

(xi − x̄)2

where xi represent each observation in the dataset.

SST = (3.8− 5.1)2 + (4.8− 5.1)2 + (4.9− 5.1)2 + · · ·+ (5.2− 5.1)2

= (−1.3)2 + (−0.3)2 + (−0.2)2 + · · ·+ (0.1)2

= 1.69 + 0.09 + 0.04 + · · ·+ 0.01 = 54.29
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.) - SSE

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.13 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Sum of squares error, SSE

Measures the variability within groups:

SSE = SST − SSG =
k∑

i=1

ni∑
j=1

(xij − x̄i )
2

SSE = 54.29− 16.96 = 37.33
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.) - MS

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.13 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Mean square

Mean square is calculated as sum of squares divided by the degrees of free-
dom.

MSG = 16.96/2 = 8.48

MSE = 37.33/27 = 1.38
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.) - F

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.14 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

Test statistic, F value

As we discussed before, the F statistic is the ratio of the between group and
within group variability.

F =
MSG

MSE

F =
8.48

1.38
= 6.14
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ANOVA ANOVA output, deconstructed

ANOVA output (cont.) - P-value

Df Sum Sq Mean Sq F value Pr(>F)

(Group) depth 2 16.96 8.48 6.14 0.0063
(Error) Residuals 27 37.33 1.38

Total 29 54.29

P-value

The probability of at least as large a ratio between the “between group” and “within

group” variability, if in fact the means of all groups are equal. It’s calculated as the area

under the F curve, with degrees of freedom dfG and dfE , above the observed F statistic.

0 6.14

dfG =  2 ; dfE =  27
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ANOVA ANOVA output, deconstructed

Conclusion

If p-value is small (less than α), reject H0. The data provide
convincing evidence that at least one mean is different from (but we
can’t tell which one).

If p-value is large, fail to reject H0. The data do not provide
convincing evidence that at least one pair of means are different from
each other, the observed differences in sample means are attributable
to sampling variability (or chance).

What is the conclusion of the hypothesis test for Wolf river?
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ANOVA Multiple comparisons & Type 1 error rate

Which means differ?

We’ve concluded that at least one pair of means differ. The natural
question that follows is “which ones?”

We can do two sample t tests for differences in each possible pair of
groups.

Can you see any pitfalls with this approach?

When we run too many tests, the Type 1 Error rate increases.

This issue is resolved by using a modified significance level.
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ANOVA Multiple comparisons & Type 1 error rate

Multiple comparisons

The scenario of testing many pairs of groups is called multiple
comparisons.

If there are k groups, then there are K =
(k

2

)
= k(k−1)

2 possible pairs.

One common approach is the Bonferroni correction that uses a more
stringent significance level for each test:

α∗ = α/K

where K is the number of comparisons being considered.
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ANOVA Multiple comparisons & Type 1 error rate

Determining the modified α

In the aldrin data set depth has 3 levels: bottom, mid-depth, and surface.
If α = 0.05, what should be the modified significance level or two sample t
tests for determining which pairs of groups have significantly different
means?
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ANOVA Multiple comparisons & Type 1 error rate

Which means differ?

Based on the box plots below, which means would you expect to be
significantly different?

bottom
sd=1.58

middepth
sd=1.10

surface
sd=0.66

3

4

5

6

7

8

9 (a) bottom & surface

(b) bottom & mid-depth

(c) mid-depth & surface

(d) bottom & mid-depth;
mid-depth & surface

(e) bottom & mid-depth;
bottom & surface;
mid-depth & surface
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ANOVA Multiple comparisons & Type 1 error rate

Which means differ? (cont.)

If the ANOVA assumption of equal variability across groups is satisfied, we
can use the data from all groups to estimate variability:

Estimate any within-group standard deviation with
√
MSE , which is

spooled

Use the error degrees of freedom, n − k , for t-distributions

Difference in two means: after ANOVA

SE =

√
σ2

1

n1
+
σ2

2

n2
≈
√

MSE

n1
+

MSE

n2
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ANOVA Multiple comparisons & Type 1 error rate

Is there a difference between the average aldrin concentration at the
bottom and at mid depth?

Df Sum Sq Mean Sq F value Pr(>F)
depth 2 16.96 8.48 6.13 0.0063
Residuals 27 37.33 1.38
Total 29 54.29

n mean sd
bottom 10 6.04 1.58
middepth 10 5.05 1.10
surface 10 4.2 0.66
overall 30 5.1 1.37

TdfE =
(x̄b − x̄m)√
MSE
nb

+ MSE
nm

T27 =
(6.04 − 5.05)√

1.38
10

+ 1.38
10

=
0.99

0.53
= 1.87

0.05 < p − value < 0.10 (two-sided)

α? = 0.05/3 = 0.0167

Fail to reject H0, the data do not provide convincing evidence of a difference

between the average aldrin concentrations at bottom and mid depth.
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ANOVA Multiple comparisons & Type 1 error rate

Is there a difference between the average aldrin concentration at the
bottom and at surface?
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ANOVA Multiple comparisons & Type 1 error rate

Work Hours and Education Level

Previously we have seen data from the General Social Survey in order to
compare the average number of hours worked per week by US residents
with and without a college degree. However, this analysis didn’t take
advantage of the original data which contained more accurate information
on educational attainment (less than high school, high school, junior
college, Bachelor’s, and graduate school).

Using ANOVA, we can consider educational attainment levels for all 1,172
respondents at once instead of re-categorizing them into two groups. On
the following slide are the distributions of hours worked by educational
attainment and relevant summary statistics that will be helpful in carrying
out this analysis.
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ANOVA Multiple comparisons & Type 1 error rate

Work Hours and Education Level

Educational attainment
Less than HS HS Jr Coll Bachelor’s Graduate Total

Mean 38.67 39.6 41.39 42.55 40.85 40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
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ANOVA Multiple comparisons & Type 1 error rate

Work Hours and Education Level (ANOVA table)

Given what we know, fill in the unknowns in the ANOVA table below.

Df Sum Sq Mean Sq F value Pr(>F)

degree ??? ??? 501.54 ??? 0.0682

Residuals ??? 267,382 ???

Total ??? ???

Educational attainment
Less than HS HS Jr Coll Bachelor’s Graduate Total

Mean 38.67 39.6 41.39 42.55 40.85 40.45
SD 15.81 14.97 18.1 13.62 15.51 15.17
n 121 546 97 253 155 1,172
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ANOVA Multiple comparisons & Type 1 error rate

Example - Alfalfa

Researchers were interested in the effect that acid has on the growth rate
of alfalfa plants. They created three treatment groups in an experiment:
low acid, high acid, and control. The alfalfa plants were grown in a
Styrofoam cups arranged near a window and the height of the alfalfa
plants was measured after five days of growth. The experiment consisted
of 5 cups for each of the 3 treatments, for a total of 15 observations.

High Acid Low Acid Control
1.30 1.78 2.67
1.15 1.25 2.25
0.50 1.27 1.46
0.30 0.55 1.66
1.30 0.80 0.80

ȳi 0.910 1.130 1.768
n 5 5 5

µ = 1.269
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ANOVA Multiple comparisons & Type 1 error rate

Alfalfa Hypotheses

We would like to establish if the acid treatments are affecting the alfalfas
growth. Since we have a numerical response and categorical explanatory
variable we will use an ANOVA.

What should our hypotheses be?

H0: µH = µL = µC

HA: At least one mean is different
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ANOVA Multiple comparisons & Type 1 error rate

Treatment Effect

Last time we mentioned that it is possible to write down a model for each
data point

yij = µi + εij

where i ∈ {H, L,C} is the treatment and j ∈ {1, 2, 3, 4, 5} is the index of
the observation within that treatment.

We can rewrite this in terms of the grand mean µ as follows

yij = µ+ τi + εij

where τi = µi − µ is known as the treatment effect.

Thinking in terms of the treatment effect we can rewrite our null
hypothesis

H0: µH = µL = µC = µ ⇒ H0: τH = τL = τC = 0
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ANOVA Multiple comparisons & Type 1 error rate

Alfalfa ANOVA Table - Sum Sq

df Sum Sq Mean Sq F value Pr(>F)

Treatment 1.986
Residuals 3.893

Total 5.879

SST =
k∑

i=1

ni∑
j=1

(yij − µ)2

= (1.3− 1.269)2 + (1.15− 1.269)2 + · · ·+ (0.80− 1.269)2 = 5.879

SSG =
k∑

i=1

ni (µi − µ)2

= 5× (0.91− 1.269)2 + 5× (1.13− 1.269)2 + 5× (1.768− 1.269)2 = 1.986

SSE = SST − SSG = 3.893
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ANOVA Multiple comparisons & Type 1 error rate

Alfalfa ANOVA Table - DF

df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 1.986
Residuals 12 3.893

Total 14 5.879

dfT = n − 1 = 15− 1 = 14

dfG = k − 1 = 3− 1 = 2

dfE = n − k = 15− 3 = 12
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ANOVA Multiple comparisons & Type 1 error rate

Alfalfa ANOVA Table - Mean Sq, F, P-value

df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324

Total 14 5.879

MSG = SSG/dfG = 1.986/2 = 0.993

MSE = SSE/dfE = 3.907/12 = 0.324

F = MSG/MSE = 0.993/0.326 = 3.061

P-value = P(> F ) = 0.0843

Based on these results we fail to reject H0, and there is not sufficient
evidence to suggest that at least one of the mean growth values is
significantly different (or that at least one of the treatment effects is not
zero).
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Randomized Block Design Blocking

Random Sampling / Assignment

Random sampling removes nuisance factors/variables (things that affect your
outcome that you are not interested in).

Imagine we are interested in exploring whether increasing the dosage of a Statin
will reduce the risk of a heart attack. We randomly sample patients already on a
Statin and randomly assign them to either maintain their current dosage or
increase their dosage by 20%.

Possible that some of the patients in this sample may have had a previous
heart attack,

Significant risk factor for a future heart attack

Their presence may alter our outcome

Control for this effect by excluding them

However, random sampling / assignment ensure that in the long run these

nuisance factors show up with equal frequency in all treatment levels and as such

their effect(s) will cancel out.
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Randomized Block Design Blocking

Blocking

Why do we bother with controls then? Because they help reduce
noise/uncertainty in the data.

Types of Controls
Exclusion

Works if the number of patients with a previous heart attack is low
Can only exclude so many nuisance factors
Restricts generalizability

Blocking
Samples grouped into homogeneous blocks where the nuisance
factor(s) are held constant
Variation within the block should be less than the variation between
blocks
Previous heart attack block and a no previous heart attack block
Randomized treatment assignment within each block

“Block what you can; randomize what you cannot.”
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Randomized Block Design Blocked Alfalfa

Blocking and Alfalfa

In the description for the alfalfa acid rain experiment we are told that the
Styrofoam cups are arranged next to a window.

What are some potential nuisance factors that could have affected the
experiment’s outcome? Do any of them lend themselves to blocking?
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Randomized Block Design Blocked Alfalfa

Blocked Alfalfa

We will only consider the simplest case of randomized block design where
each block contains only one observation of each treatment.

High Acid Low Acid Control Block Mean
Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967

Trmt mean 0.910 1.130 1.768
n 5 5 5

µ = 1.269
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Randomized Block Design Blocked Alfalfa

Block Data Model

When employing blocks we can think of each data point as

yijk = µ+ τi + βj + εijk

where

τi is the treatment effect for treatment i

βj is the block effect of block j

εijk is the residual of observation k in block j with treatment i

this is very similar to the one-way anova model we saw previous with the
addition of the βjs.
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Randomized Block Design Blocked Alfalfa

Randomized Block ANOVA Table

With the introduction of the blocks there are now two hypotheses we
would like to evaluate:

H0(treatment) : τH = τL = τC = 0

H0(block) : β1 = β2 = β3 = β4 = β5 = 0

In order to test these hypotheses we will build on the ANOVA table we
have been using.

df Sum Sq Mean Sq F value Pr(>F)

Group dfG SSG MSG FG
Block dfB SSB MSB FB
Error dfE SSE MSE

Total dfT SST
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Randomized Block Design Blocked Alfalfa

Randomized Block ANOVA Table

df Sum Sq Mean Sq F value

Group k − 1
∑k

i=1 ni (µi• − µ)2 SSG/dfG MSG/MSE

Block b − 1
∑b

j=1 mj(µ•j − µ)2 SSB/dfB MSB/MSE

Error n − k − b + 1 SST − SSG − SSB SSE/dfE

Total n − 1
∑

i

∑
j

∑
k(yijk − µ)2

n - # observations

k - # groups

b - # blocks

ni - # observations in group i

mj - # observations in block j

µi• - group mean for group i

µ•j - block mean for group j
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Randomized Block Design Blocked Alfalfa

Randomized Block ANOVA Table - Alfalfa

We already know some of the values from our previous one-way ANOVA,
and it is easy to find the other df values.

df Sum Sq Mean Sq F value

Group 2 1.986 0.993 MSG/MSE

Block 4
∑b

j=1 mj(µ•j − µ)2 SSB/dfB MSB/MSE

Error 8 SST − SSG − SSB SSE/dfE

Total 14 5.879
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Randomized Block Design Blocked Alfalfa

Sum of Squares Blocks

SSB =
b∑

j=1

mj(µ•j − µ)2

High Acid Low Acid Control Block Mean
Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967

Trmt mean 0.910 1.130 1.768
n 5 5 5

µ = 1.269

SSB = 3 × (1.917 − 1.269)2 + 3 × (1.550 − 1.269)2

+ 3 × (1.077 − 1.269)2 + 3 × (0.837 − 1.269)2

+ 3 × (0.967 − 1.269)2

=1.260 + 0.237 + 0.111 + 0.560 + 0.274 = 2.441
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Randomized Block Design Blocked Alfalfa

Completing the table

df Sum Sq Mean Sq F value

Group 2 1.986 0.993 5.471

Block 4 2.441 0.6103 3.362

Error 8 1.452 0.1815

Total 14 5.879
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Randomized Block Design Blocked Alfalfa

Calculating P-values

The two F values that we have calculated can be used to evaluate the two
hypotheses we started with.

Treatment effect

H0 : τH = τL = τG , HA : At least one treatment effect is not zero

Block effect

H0 : β1 = β2 = . . . = β5, HA : At least one block effect is not zero

To calculate the P-value for each hypothesis we use FG and FB
respectively to find P(> F ) for an F distribution with the appropriate
degrees of freedom.
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Randomized Block Design Blocked Alfalfa

Treatment Effect

We have calculated that FG = 5.471, to find the P-value we need to the
probability of observing a value equal to or larger than this from an F
distribution with 2 and 8 degrees of freedom.

Using R we find that

pf(5.471, df1 = 2, df2 = 8, lower.tail = FALSE)

## [1] 0.03182

Therefore, P(> FG ) = 0.0318, which leads us to reject H0 - there is
sufficient evidence to suggest that at least one treatment effect is not 0.
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Randomized Block Design Blocked Alfalfa

Block Effect

Similarly, we have FB = 3.362 and to find the P-value we need to the
probability of observing a value equal to or larger than this from an F
distribution with 4 and 8 degrees of freedom.

Using R we find that

pf(3.362, df1 = 4, df2 = 8, lower.tail = FALSE)

## [1] 0.0679

Therefore, P(> FB) = 0.0679, which leads us to fail to reject H0 - there is
not sufficient evidence to suggest that at least one block effect is not 0.
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Randomized Block Design Blocked Alfalfa

How did blocking change our result?

One-way ANOVA

df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324

Total 14 5.879

Randomized Block ANOVA

df Sum Sq Mean Sq F value P(>F)

Group 2 1.986 0.993 5.471 0.0318
Block 4 2.441 0.6103 3.362 0.0679
Error 8 1.452 0.1815

Total 14 5.879

Blocking decreases dfE , which increases MSE (bad).
Blocking also decreases SSE , which decreases MSE (good).
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Two-way ANOVA Definition

From Randomized Block to Two-way ANOVA

All of the approaches we have just learned to handle blocking will also
apply in the case where we would like to assess the effect if a second factor
on our outcome variable.

Instead of examining treatment and block effects we instead examine two
treatment effects. None of the procedures or calculations change, only
what we call things.
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Two-way ANOVA Definition

Two-way ANOVA Model

When employing two-way ANOVA we can think of each data point as

yijk = µ+ τi + βj + εijk

where

τi is the effect of level i of factor 1

βj is the effect of level j of factor 2

εijk is the residual of observation k in block j with treatment i

this is exactly the same as the randomized block ANOVA model except the
βjs now refer to the effect of the second factor.
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Two-way ANOVA Example - Moths

Example - Spruce Moths

A scientist is interested in efficacy
of various lure types in attracting
Spruce moths to a trap. They are
also interested in the effect of
location of the trap on its efficacy
as well.

Data to the right reflects the
number of moths caught.

Factor 1 is the lure type (3 levels)
Factor 2 is the location (4 levels)
There are 5 observations per
condition

From Understandable Statistics, 7e

Scent Sugar Chemical
Top 28 35 32

19 22 29
32 33 16
15 21 18
13 17 20

Middle 39 36 37
12 38 40
42 44 18
25 27 28
21 22 36

Lower 44 42 35
21 17 39
38 31 41
32 29 31
29 37 34

Ground 17 18 22
12 27 25
23 15 14
19 29 16
14 16 1
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Two-way ANOVA Example - Moths

Mean caught by Treatment

Ground Lower Middle Top Lure Mean

Chemical 19.20 36.00 31.80 23.00 27.50
Scent 17.00 32.80 27.80 21.40 24.75
Sugar 21.00 31.20 33.40 25.60 27.80

Loc Mean 19.07 33.33 31.00 23.33 26.68
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Two-way ANOVA Example - Moths

Mean caught by Treatment
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Two-way ANOVA Example - Moths

Example - Spruce Moths - Hypotheses

Similar to the randomized block ANOVA, we have two hypothese to
evaluate (one for each factor).

Lure effect:

H0 : τCh = τSc = τSu, HA : at least one τ is not zero

Location effect:

H0 : βG = βL = βM = βT , HA : at least one β is not zero
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Two-way ANOVA Example - Moths

Example - Spruce Moths - ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)

Lure 0.3859
Location 1981.38 0.0000
Residuals

Total 5242.98

Conclusions:
Fail to reject H0(Lure), there is not sufficient evidence to suggest the
different lures have an effect.

Reject H0(Location), there is sufficient evidence to suggest the
locations have an effect.
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Two-way ANOVA Blocking vs Additional Factors

Difference between a blocking variable and a factor

We have just seen that computationally the two are treated the same
when conducting an ANOVA.

What then is the difference?

Factors are conditions we impose on the experimental units.

Blocking variables are characteristics that the experimental units
come with.
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Two-way ANOVA Blocking vs Additional Factors

Example - Lighting

A study is designed to test the effect of type of light on exam performance
of students. 180 students are randomly assigned to three classrooms: one
that is dimly lit, another with yellow lighting, and a third with white
fluorescent lighting and given the same exam.

What are the factor(s) and/or block(s) for this experiment? What type of
ANOVA would be appropriate?

The researcher also believes that light levels might have a different effect
on males and females, so wants to make sure both genders are represented
equally under the different light conditions.

After this modifications what are the factor(s) and/or block(s) for this
experiment? What type of ANOVA would be appropriate?
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