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Modeling numerical variables

Modeling numerical variables

So far we have worked with single numerical and categorical variables,
and explored relationships between numerical and categorical, and
two categorical variables.

Today we will discuss how to quantify the relationship between two
numerical variables, as well as modeling numerical response variables
using a numerical or categorical explanatory variable.

Next week we will learn to model numerical variables using many
explanatory variables at once.
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Modeling numerical variables

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in
all 50 US states and DC and the % of residents who live below the poverty
line (income below $23,050 for a family of 4 in 2012).
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Modeling numerical variables Correlation

Quantifying the relationship

Correlation describes the strength of the linear association between
two variables.

It takes values between -1 (perfect negative) and +1 (perfect
positive).

A value of 0 indicates no linear association.

We use ρ to indicate the population correlation coefficient, and R or r
to indicate the sample correlation coefficient.
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Modeling numerical variables Correlation

Correlation Examples

From http://en.wikipedia.org/wiki/Correlation
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Best fit line - least squares regression Eyeballing the line

Eyeballing the line

Which of the following appears to be the line that best fits the linear
relationship between % in poverty and % HS grad?
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Best fit line - least squares regression Residuals

Quantifying best fit
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Best fit line - least squares regression Residuals

Residuals

Residual

Residual is the difference between the observed and predicted y .

ei = yi − ŷi
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y

5.44

ŷ
y

−4.16

ŷ

DC

RI

% living in poverty in
DC is 5.44% more than
predicted.

% living in poverty in RI
is 4.16% less than
predicted.
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Best fit line - least squares regression Residuals

A measure for the best line

We want a line that has small residuals:
1 Option 1: Minimize the sum of magnitudes (absolute values) of

residuals
|e1|+ |e2|+ · · ·+ |en|

2 Option 2: Minimize the sum of squared residuals – least squares

e2
1 + e2

2 + · · ·+ e2
n

Why least squares?
1 Most commonly used
2 Easier to compute by hand and using software
3 In many applications, a residual twice as large as another is more than

twice as bad
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Best fit line - least squares regression Residuals

The least squares line

ŷ = β0 + β1x

��
����predicted y

�
�
��	

intercept

A
AAU
slope

HH
HHHj
explanatory variable

Notation:

Intercept:

Parameter: β0

Point estimate: b0

Slope:

Parameter: β1

Point estimate: b1
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Best fit line - least squares regression The least squares line

Given...
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% HS grad % in poverty
(x) (y)

mean x̄ = 86.01 ȳ = 11.35
sd sx = 3.73 sy = 3.1

correlation R = −0.75

Find b0 and b1 that minimize,∑
i

(ŷi − yi )
2 =

∑
i

(b0 + b1 xi − yi )
2
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Best fit line - least squares regression The least squares line

Slope

The slope value that minimizes the sum of square residuals is

b1 =

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2
=

Cov(X ,Y )

Var(X )
=

sy
sx
R

In context...

b1 =
3.1

3.73
×−0.75 = −0.62

Interpretation
For each % point increase in HS graduate rate, we would expect the %
living in poverty to decrease on average by 0.62% points.

Sta 111 (Colin Rundel) Lec 21 June 13, 2014 12 / 47



Best fit line - least squares regression The least squares line

Intercept

The intercept value that minimizes the sum of square residuals is

b0 =

∑
i yi − b1

∑
i xi

n
= ȳ − b1x̄

In context...
b0 = 11.35− (−0.62)× 86.01 = 64.68

Interpretation
States with no HS graduates are expected on average to have 64.68% of
residents living below the poverty line.
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Best fit line - least squares regression The least squares line

Regression line

ŷ = 64.68− 0.62 x
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Best fit line - least squares regression The least squares line

Interpretation of slope and intercept

Intercept: When x = 0, y is expected to equal the intercept.

Slope: For each unit increase in x , y is expected to increase/decrease
on average by the slope.
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Best fit line - least squares regression Prediction & extrapolation

Prediction

Using the linear model to predict the value of the response variable
for a given value of the explanatory variable is called prediction,
simply by plugging in the value of x in the linear model equation.
There will be some uncertainty associated with the predicted value -
we’ll talk about this in a little bit.
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Best fit line - least squares regression Prediction & extrapolation

Extrapolation

Applying a model estimate to values outside of the realm of the
original data is called extrapolation.

Sometimes the intercept might be an extrapolation.
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression R2

R2

The strength of the fit of a linear model is most commonly evaluated
using R2.

R2 is calculated as the square of the correlation coefficient.

It tells us what percent of variability in the response variable is
explained by the model.

The remainder of the variability is explained by variables not included
in the model.

Sometimes called the coefficient of determination.

For the model we’ve been working with, R2 = −0.622 = 0.38.

38% of the variability in the % of residents living in poverty
among the 51 states is explained by the model.
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Inference for linear regression Understanding regression output from software

Nature vs. nurture?

In 1966 Cyril Burt published a paper called “The genetic determination of

differences in intelligence: A study of monozygotic twins reared apart” The data

consist of IQ scores for [an assumed random sample of] 27 identical twins, one

raised by foster parents, the other by the biological parents.
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Inference for linear regression Understanding regression output from software

Regression Output

summary(lm(twins$Foster ~ twins$Biological))

## Call:

## lm(formula = twins$Foster ~ twins$Biological)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.3512 -5.7311 0.0574 4.3244 16.3531

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.20760 9.29990 0.990 0.332

## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 7.729 on 25 degrees of freedom

## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769

## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Inference for linear regression Conditions for inference

Conditions for inference

In order to perform inference, the following conditions must be met:

1 Linearity

2 Nearly normal residuals

3 Constant variability
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Inference for linear regression Conditions for inference

Conditions: (1) Linearity

The relationship between the explanatory and the response variable
should be linear.

Methods for fitting a model to non-linear relationships exist, but are
beyond the scope of this class.

Check using a scatterplot or a residual plot.
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Inference for linear regression Conditions for inference

Anatomy of a residuals plot
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∗ Rhode Island:

% HS grad = 81 % in poverty = 10.3

̂% in poverty = 64.68− 0.62 ∗ 81 = 14.46

eRI = % in poverty − ̂% in poverty

= 10.3− 14.46 = −4.16

� Washington, DC:

% HS grad = 86 % in poverty = 16.8

̂% in poverty = 64.68− 0.62 ∗ 86 = 11.36

eDC = % in poverty − ̂% in poverty

= 16.8− 11.36 = 5.44
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Inference for linear regression Conditions for inference

Conditions: (2) Nearly normal residuals

The residuals should be nearly normal.
This condition may not be satisfied when there are unusual
observations that don’t follow the trend of the rest of the data.
Checked using a histogram or normal probability plot of residuals.
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Inference for linear regression Conditions for inference

Conditions: (3) Constant variability
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The variability of points around
the least squares line should be
roughly constant.

This implies that the variability
of residuals around the 0 line
should be roughly constant as
well.

Also called homoscedasticity.

Check using a residuals plot.

Sta 111 (Colin Rundel) Lec 21 June 13, 2014 27 / 47

Inference for linear regression Conditions for inference

Checking conditions

What condition is this linear model violating?
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Inference for linear regression Conditions for inference

Checking conditions (II)

What condition is this linear model obviously violating?

x x

y
g$
re
si
du
al
s

x

y
g$
re
si
du
al
s

Sta 111 (Colin Rundel) Lec 21 June 13, 2014 29 / 47

Inference for linear regression HT for the slope

Back to Nature vs nurture
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R =  0.882

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000
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Inference for linear regression HT for the slope

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins
separated at birth, we would like to test if these data provide convincing
evidence that the IQ of the biological twin is a significant predictor of IQ
of the foster twin.

What are the appropriate hypotheses?

First consider what the null hypothesis should be, if there is no relationship
between the two variables what value of the slope would we expect to see?

H0: β1 = 0

HA: β1 6= 0
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Inference for linear regression HT for the slope

Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

We always use a t-test in inference for regression parameters.
Remember: Test statistic, T = point estimate−null value

SE

Point estimate = b1 is the observed slope.

SEb1 is the standard error associated with the slope.

Degrees of freedom associated with the slope is df = n − k, where n
is the sample size and k is the number of parameters being estimated
(k=2 here).
Remember: We lose 1 degree of freedom for each parameter we estimate, and in simple

linear regression we estimate 2 parameters, β0 and β1.
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Inference for linear regression HT for the slope

Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

sY = 16.082 sX = 15.735 R = 0.882

b1 =
sY
sX

R =
16.082

15.735
0.882 = 0.9014

SEb1 =

√
1

n−2

∑
(ŷi − yi )2∑

i (xi − x̄)2
= 0.0963

T =
0.9014− 0

0.0963
= 9.36

df = 27− 2 = 25

p − value = P(|T | > 9.36) < 0.01
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Inference for linear regression CI for the slope

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate ±ME and

the degrees of freedom associated with the slope in a simple linear regression is

n− 2. What is the correct 95% confidence interval for the slope parameter? Note

that the model is based on observations from 27 twins.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000
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Inference for linear regression CI for the slope

Recap

Inference for the slope for a SLR model (only one explanatory
variable):

Hypothesis test:

T =
b1 − null value

SEb1

df = n − 2

Confidence interval:
b1 ± t?df =n−2 × SEb1

The null value is often 0 since we are usually checking for any
relationship between the explanatory and the response variable.

The regression output gives b1, SEb1 , and two-tailed p-value for the
t-test for the slope where the null value is 0.

We rarely do inference on the intercept, so we’ll be focusing on the
estimates and inference for the slope.
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Inference for linear regression CI for the slope

Caution

Always be aware of the type of data you’re working with: random
sample, non-random sample, or population.

Statistical inference, and the resulting p-values, are meaningless when
you have population data.

If you have a sample that is non-random (biased), the results will be
unreliable.

The ultimate goal is to have independent observations – and you
know how to check for those by now.
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Confidence intervals and Prediction intervals Confidence intervals

Confidence intervals for average values

A confidence interval for the average (expected) value of y for a given x?,
is given by

ŷ ± t?n−2se

√
1

n
+

1

n − 1

(x? − x̄)2

s2
x

where se is the standard deviation of the residuals

se =

√∑
(yi − ŷi )2

n − 1

Note that when x? = x̄ this reduces to

ŷ ± t?n−2

se√
n
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Confidence intervals and Prediction intervals Confidence intervals

Example Calculation

Calculate a 95% confidence interval for the average IQ score of foster twins whose

biological twins have IQ scores of 100 points. Note that the average IQ score of

27 biological twins in the sample is 95.3 points, with a standard deviation is 15.74

points.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.20760 9.29990 0.990 0.332

bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
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ŷ = 9.2076 + 0.90144× 100 ≈ 99.35

df = n − 2 t? = 2.06

ME = 2.06× 7.729×
√

1

27
+

(100− 95.3)2

26× 15.742

≈ 3.2

CI = 99.35± 3.2

= (96.15, 102.55)
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Confidence intervals and Prediction intervals Confidence intervals

Distance from the mean

How would you expect the width of the 95% confidence interval for the
average IQ score of foster twins whose biological twins have IQ scores of
130 points (x? = 130) to compare to the previous confidence interval
(where x? = 100)?
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Confidence intervals and Prediction intervals Confidence intervals

How do the confidence intervals where x? = 100 and x? = 130 compare in
terms of their widths?

x? = 100

x? = 130

ME100 = 2.06× 7.729×

√
1

27
+

(100− 95.3)2

26× 15.742
= 3.2

ME130 = 2.06× 7.729×

√
1

27
+

(130− 95.3)2

26× 15.742
= 7.53
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Confidence intervals and Prediction intervals Confidence intervals

Recap

The width of the confidence interval for E (y) increases as x? moves away
from the center.

Conceptually: We are much more certain of our predictions at the
center of the data than at the edges (and our level of certainty
decreases even further when predicting outside the range of the data
– extrapolation).
Mathematically: As (x? − x̄)2 term increases, the margin of error of
the confidence interval increases as well.
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Confidence intervals and Prediction intervals Prediction intervals

Predicting a value, not an average

Earlier we learned how to calculate a confidence interval for average y ,
E (y), for a given x?.

Suppose that we are not interested in the average, but instead we want to
predict a future value of y for a given x?.

Would you expect there to be more uncertainty around an average or a
specific predicted value?
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Confidence intervals and Prediction intervals Prediction intervals

Prediction intervals

A prediction interval for y for a given x? is

ŷ ± t?n−2se

√
1 +

1

n
+

(x? − x̄)2

(n − 1)s2
x

where s is the standard deviation of the residuals.

The formula is very similar, except the variability is higher since there
is a 1 added in the formula.

Prediction level: If we repeat the study of obtaining a regression data
set many times, each time forming a XX% prediction interval at x?,
and wait to see what the future value of y is at x?, then roughly
XX% of the prediction intervals will contain the corresponding actual
value of y .
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Confidence intervals and Prediction intervals Recap - CI vs. PI

Confidence interval for E (y) vs. prediction interval for y
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y - differences

A prediction interval is similar in spirit to a confidence interval, except
that

the prediction interval is designed to cover a “moving target”,
the random future value of y
the confidence interval is designed to cover the “fixed target”,
the average (expected) value of y , E (y),

Although both are centered at ŷ , the prediction interval is wider than
the confidence interval, for a given x? and confidence level. This
makes sense, since

the prediction interval must take account of the tendency of y to
fluctuate from its mean value
the confidence interval simply needs to account for the uncertainty in
estimating the mean value.
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y - similarities

For a given data set, the error in estimating E (y) and ŷ grows as x?

moves away from x̄ . Thus, the further x? is from x̄ , the wider the
confidence and prediction intervals will be.

If any of the conditions underlying the model are violated, then the
confidence intervals and prediction intervals may be invalid as well.
This is why it’s so important to check the conditions by examining
the residuals, etc.
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