Logic in R


Using R

R on gort

We will be using R via the RStudio server interface (web based),

  • Uniformity of software and dependencies

  • Additional resources

    • 32 cores, 256 GB ram

    • shared data


Connect via:
http://gort.stat.duke.edu:8787

(Almost) Everything is a Vector

Types of vectors

The fundamental building block of data / data structures in R are vectors (collections of related values, objects, other data structures, etc).


R has two fundamental vector classes:

  • Vectors (atomic vectors)

    • collections of values that are all of the same type (e.g. all logical values, all numbers, or all character strings).
  • Lists (generic vectors)

    • collections of any type of R object, even other lists (meaning they can have a hierarchical/treelike structure).

Atomic Vectors

R has six atomic vector types:

typeof mode storage.mode
logical logical logical
double numeric double
integer numeric integer
character character character
complex complex complex
raw raw raw


For now we’ll mainly worry about the first type, we’ll discuss the following three next time (final two almost never come up).

Conditionals

Logical (boolean) operations

Operator Operation Vectorized?
x | y or Yes
x & y and Yes
!x not Yes
x || y or No
x && y and No
xor(x,y) exclusive or Yes

Vectorized?

x = c(TRUE,FALSE,TRUE)
y = c(FALSE,TRUE,TRUE)
x | y
## [1] TRUE TRUE TRUE
x || y
## [1] TRUE
x & y
## [1] FALSE FALSE  TRUE
x && y
## [1] FALSE

Vectorized? (Length coercion)

x = c(TRUE,FALSE,TRUE)
y = c(TRUE)
z = c(FALSE,TRUE)
x | y
## [1] TRUE TRUE TRUE
x | z
## Warning in x | z: longer object length is not
## a multiple of shorter object length
## [1] TRUE TRUE TRUE
x & y
## [1]  TRUE FALSE  TRUE
x & z
## Warning in x & z: longer object length is not
## a multiple of shorter object length
## [1] FALSE FALSE FALSE

Comparisons

Operator Comparison Vectorized?
x < y less than Yes
x > y greater than Yes
x <= y less than or equal to Yes
x >= y greater than or equal to Yes
x != y not equal to Yes
x == y equal to Yes
x %in% y contains Yes (for x)

Comparisons

x = c("A","B","C")
z = c("A")
x == z
## [1]  TRUE FALSE FALSE
x != z
## [1] FALSE  TRUE  TRUE
x > z
## [1] FALSE  TRUE  TRUE
x %in% z
## [1]  TRUE FALSE FALSE
z %in% x
## [1] TRUE



Conditional Control Flow - if

Conditional execution of code blocks is achieved via if statements. Note that if statements are not vectorized.

x = c(3,4)

if (3 %in% x)
    print("Here!")
## [1] "Here!"
if (x >= 2)
    print("Now Here!")
## Warning in if (x >= 2) print("Now Here!"): the condition has length > 1 and
## only the first element will be used
## [1] "Now Here!"

Collapsing logicals

There are a couple of helper functions for collapsing a logical vector down to a single value: any, all

x = c(3,4)

any(x >= 2)
## [1] TRUE
all(x >= 2)
## [1] TRUE
!any(x >= 2)
## [1] FALSE
if (any(x >= 2))
    print("Now There!")
## [1] "Now There!"

Nesting Conditionals - if, else if, and else

x = 3
if (x < 0) {
   print("Negative")
} else if (x > 0) {
   print("Positive")
} else {
   print("Zero")
}
## [1] "Positive"
x = 0
if (x < 0) {
   print("Negative")
} else if (x > 0) {
   print("Positive")
} else {
   print("Zero")
}
## [1] "Zero"

Loops

for loops

Simplest, and most common type of loop in R - given a vector iterate through the elements and evaluate the code block for each.

for(x in 1:10)
{
  cat(x^2,"")
}
## 1 4 9 16 25 36 49 64 81 100
for(y in list(1:3, LETTERS[1:7], c(TRUE,FALSE)))
{
  cat(length(y),"")
}
## 3 7 2

Storing results

It is almost always better to create an object to store your results first, rather than growing the object as you go.

# Good
res = rep(NA,10)
for(x in 1:10)
{
  res[x] = x^2
}
res
##  [1]   1   4   9  16  25  36  49  64  81 100
# Bad
res = c()
for (x in 1:10)
{
  res = c(res,x^2)
}
res
##  [1]   1   4   9  16  25  36  49  64  81 100

Alternative loops - while

Repeat until the given condition is not met (i.e. results in FALSE)

i = 1
res = rep(NA,10)
while (i <= 10)
{
  res[i] = i^2
  i = i+1
}
res
##  [1]   1   4   9  16  25  36  49  64  81 100

Alternative loops - repeat

Repeat until break

i = 1
res = rep(NA,10)
repeat
{
  res[i] = i^2
  i = i+1
  if (i > 10)
    break
}
res
##  [1]   1   4   9  16  25  36  49  64  81 100

Special keywords - break and next

These are special actions that only work inside of a loop

  • break - ends the current (inner-most) loop
  • next - ends the current iteration
for(i in 1:10)
{
    if (i %% 2 == 0)
        break
    cat(i,"")
}
## 1
for(i in 1:10)
{
    if (i %% 2 == 0)
        next
    cat(i,"")
}
## 1 3 5 7 9

Back to for loops

Often we want to use a loop across the indexes of an object and not the elements themselves. There are several useful functions to help you do this: :, seq, seq_along, seq_len, etc.

l = list(1:3, LETTERS[1:7], c(TRUE,FALSE))
res = rep(NA, length(l))

for(x in seq_along(l))
{
  res[x] = length(l[[x]])
}

res
## [1] 3 7 2




1:length(l)
## [1] 1 2 3
seq_along(l)
## [1] 1 2 3
seq_len(length(l))
## [1] 1 2 3

Looping over element indices

Best Practice:

good = function(x)
{
  for(i in seq_along(x))
    cat(1,"")
}

Antipattern:

bad = function(x)
{
  for(i in 1:length(x))
    cat(1,"")
}
good(c(1,2,3))
## 1 1 1
good(c())



bad(c(1,2,3))
## 1 1 1
bad(c())
## 1 1

Some lessons learned

  • Everything we’ve shown so far can also be done using
    • subsetting ([]) or
    • functional approaches (*apply)


  • There are almost always multiple possible approaches,
    • the best initial solution is the one you can get working the quickest
    • once something is working you can worry about making it faster / more efficient.


Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.

Exercise 1

Below is the list of primes between 2 and 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

If you were given the vector x = c(3, 4, 12, 19, 23, 48, 50, 61, 63, 78), write out the R code necessary to print only the values of x that are not prime (without using subsetting or the %in% operator).

Your code should use nested loops to iterate through the vector of primes and x.

Functions

Function Basics

In R functions are objects, this means we can work with them like any other object in R.

f = function(x) x*x
list(f)
## [[1]]
## function (x) 
## x * x
typeof(f)
## [1] "closure"

Function Parts

The two parts of a function are the arguments (formals) and the code (body).

gcd = function(loc1, loc2)
{
  deg2rad = function(deg) return(deg*pi/180)

  lat1 = deg2rad( loc1[1] )
  lat2 = deg2rad( loc2[1] )
  long1 = deg2rad( loc1[2] )
  long2 = deg2rad( loc2[2] )

  R = 6371 # Earth mean radius in km
  d = acos(sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2) * cos(long2-long1)) * R

  return(d) # distance in km
}

formals(gcd)
## $loc1
## 
## 
## $loc2
body(gcd)
## {
##     deg2rad = function(deg) return(deg * pi/180)
##     lat1 = deg2rad(loc1[1])
##     lat2 = deg2rad(loc2[1])
##     long1 = deg2rad(loc1[2])
##     long2 = deg2rad(loc2[2])
##     R = 6371
##     d = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * 
##         cos(long2 - long1)) * R
##     return(d)
## }

los_angeles = c(34.052235, -118.243683)
durham = c(36.002453, -78.905869)

gcd(los_angeles, durham)
## [1] 3564.199
gcd durham to la

gcd durham to la

Return values

In the preceding slides we have seen two approaches for returning values: explicit and implicit return values. Stylistically, we will prefer the former.

Explicit - includes one or more return statements

f = function(x)
      return(x*x)


Implicit - value of the last statement is returned.

f = function(x)
      x*x

Returning multiple values

If we want a function to return more than one value we can group things using either vectors or lists.

f = function(x) list(x, x^2, x^3)
f(2)
## [[1]]
## [1] 2
## 
## [[2]]
## [1] 4
## 
## [[3]]
## [1] 8
f(2:3)
## [[1]]
## [1] 2 3
## 
## [[2]]
## [1] 4 9
## 
## [[3]]
## [1]  8 27

Argument names

When defining a function we are also implicitly defining names for the arguments, when calling the function we can use these names to

f = function(x,y,z) paste0("x=",x," y=",y," z=",z)
f(1,2,3)
## [1] "x=1 y=2 z=3"
f(z=1,x=2,y=3)
## [1] "x=2 y=3 z=1"
f(y=2,1,3)
## [1] "x=1 y=2 z=3"
f(y=2,1,x=3)
## [1] "x=3 y=2 z=1"
f(1,2,3,m=1)
## Error in f(1, 2, 3, m = 1): unused argument (m = 1)



Argument defaults

In R it is possible to give function arguments default values,

f = function(x=1,y=1,z=1) paste0("x=",x," y=",y," z=",z)
f()
## [1] "x=1 y=1 z=1"
f(2)
## [1] "x=2 y=1 z=1"
f(z=3)
## [1] "x=1 y=1 z=3"

Scoping

R has generous scoping rules, if it can’t find a variable in the functions body’s scope, it will look for it in the next higher scope, and so on.

y = 1
f = function(x)
{
  x+y
}
f(3)
## [1] 4
g = function(x)
{
  y=2
  x+y
}
g(3)
## [1] 5

Additionally, variables defined within a scope only persist for the duration of that scope, and do not overwrite variables at a higher scopes.

x = 1
y = 1
z = 1
f = function()
{
    y = 2
    g = function()
    {
      z = 3
      return(x + y + z)
    }
    return(g())
}
f()
## [1] 6
c(x,y,z)
## [1] 1 1 1

Lazy evaluation

Arguments to R functions are lazily evaluated - meaning they are not evaluated until they are used

f = function(x)
{
  cat("Hello world!\n")
  x
}

f(stop())
## Hello world!
## Error in f(stop()):

Everything is a function

`+`
## function (e1, e2)  .Primitive("+")
typeof(`+`)
## [1] "builtin"
x = 4:1
`+`(x,2)
## [1] 6 5 4 3

Getting Help

Prefixing any function name with a ? will open the related help file for that function.

?`+`
?sum

For functions not in the base package, you can generally see their implementation by entering the function name without parentheses (or using the body function).

lm
## function (formula, data, subset, weights, na.action, method = "qr", 
##     model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, 
##     contrasts = NULL, offset, ...) 
## {
##     ret.x <- x
##     ret.y <- y
##     cl <- match.call()
##     mf <- match.call(expand.dots = FALSE)
##     m <- match(c("formula", "data", "subset", "weights", "na.action", 
##         "offset"), names(mf), 0L)
##     mf <- mf[c(1L, m)]
##     mf$drop.unused.levels <- TRUE
##     mf[[1L]] <- quote(stats::model.frame)
##     mf <- eval(mf, parent.frame())
##     if (method == "model.frame") 
##         return(mf)
##     else if (method != "qr") 
##         warning(gettextf("method = '%s' is not supported. Using 'qr'", 
##             method), domain = NA)
##     mt <- attr(mf, "terms")
##     y <- model.response(mf, "numeric")
##     w <- as.vector(model.weights(mf))
##     if (!is.null(w) && !is.numeric(w)) 
##         stop("'weights' must be a numeric vector")
##     offset <- as.vector(model.offset(mf))
##     if (!is.null(offset)) {
##         if (length(offset) != NROW(y)) 
##             stop(gettextf("number of offsets is %d, should equal %d (number of observations)", 
##                 length(offset), NROW(y)), domain = NA)
##     }
##     if (is.empty.model(mt)) {
##         x <- NULL
##         z <- list(coefficients = if (is.matrix(y)) matrix(, 0, 
##             3) else numeric(), residuals = y, fitted.values = 0 * 
##             y, weights = w, rank = 0L, df.residual = if (!is.null(w)) sum(w != 
##             0) else if (is.matrix(y)) nrow(y) else length(y))
##         if (!is.null(offset)) {
##             z$fitted.values <- offset
##             z$residuals <- y - offset
##         }
##     }
##     else {
##         x <- model.matrix(mt, mf, contrasts)
##         z <- if (is.null(w)) 
##             lm.fit(x, y, offset = offset, singular.ok = singular.ok, 
##                 ...)
##         else lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok, 
##             ...)
##     }
##     class(z) <- c(if (is.matrix(y)) "mlm", "lm")
##     z$na.action <- attr(mf, "na.action")
##     z$offset <- offset
##     z$contrasts <- attr(x, "contrasts")
##     z$xlevels <- .getXlevels(mt, mf)
##     z$call <- cl
##     z$terms <- mt
##     if (model) 
##         z$model <- mf
##     if (ret.x) 
##         z$x <- x
##     if (ret.y) 
##         z$y <- y
##     if (!qr) 
##         z$qr <- NULL
##     z
## }
## <bytecode: 0x7ffc2a10e808>
## <environment: namespace:stats>

When to use functions

The goal of a function should be to encapsulate a small reusable piece of code.

  • Name should make it clear what the function does (think in terms of simple verbs).

  • Functionality should be simple enough to be quickly understood.

  • The smaller and more modular the code the easier it will be to reuse elsewhere.

  • Better to change code in one location than code everywhere.

Infix functions (operators)

We can define our own infix functions like + or *, the only requirement is that they must start and end with a %.

`%nand%` = function(x, y) !(x & y)
TRUE %nand% TRUE
## [1] FALSE
TRUE %nand% FALSE
## [1] TRUE
FALSE %nand% TRUE
## [1] TRUE
FALSE %nand% FALSE
## [1] TRUE

Exercise 2

What is the output of the following code? Explain why.

z = 1

f = function(x,y,z)
{
  z = x+y

  g = function(m=x,n=y)
  {
    m/z + n/z
  }

  z * g()
}

f(1,2,3)

Acknowledgments

Acknowledgments

Above materials are derived in part from the following sources: