Task | Timing |
---|---|
L1 cache reference | 0.5 ns |
L2 cache reference | 7 ns |
Main memory reference | 100 ns |
Read 1 MB sequentially from memory | 250,000 ns |
Disk seek | 10,000,000 ns |
Read 1 MB sequentially from network | 10,000,000 ns |
Read 1 MB sequentially from disk | 30,000,000 ns |
Lets imagine we have a 10 GB flat data file and that we want to select certain rows based on a given criteria. This requires a sequential read across the entire data set.
If we can store the file in memory:
If we have to access the file from disk:
This is just for reading data, if we make any modifications (writing) things are much worse.
Cost: Disk << Memory
Speed: Disk <<< Memory
So usually possible to grow our disk storage to accommodate our data. However, memory is usually the limiting resource, and if we can't fit everything into memory?
Create blocks - group rows based on similar attributes and read in multiple rows at a time. Optimal size will depend on the task and the properties of the disk.
Even with blocks, any kind of subsetting of rows requires a linear search, which requires \(\mathcal{O}(N)\) accesses where \(N\) is the number of blocks.
We can do much better if we are careful about how we structure our data, specifically sorting some or all of the columns.
Sorting is expensive, \(\mathcal{O}(N \log N)\), but it only needs to be done once.
After sorting, we can use a binary search for any subsetting tasks (\(\mathcal{O}(\log N)\)).
These sorted columns are known as indexes.
Indexes require additional storage, but usually small enough to be kept in memory while blocks stay on disk.
Age | Name |
---|---|
19 | Carol |
20 | Greg |
21 | Alice |
21 | Dave |
22 | Eve |
23 | Bob |
23 | Frank |
Lets search for records for people who are 22 or older.
This is just barely scratching the surface,
Efficiency gains are not just for disk, access is access
In general, trade off between storage and efficiency
Reality is a lot more complicated for everything mentioned so far, lots of very smart people have spent a lot of time thinking about and implementing tools
Different tasks with different requirements require different implementations and have different criteria for optimization
Structures Query Language is a special purpose language for interacting with (querying and modifying) these indexed tabular data structures.
ANSI Standard but with some dialect divergence
This functionality maps very closely (but not exactly) with the data manipulation verbs present in dplyr.
We will see this mapping in more detail in a bit.
library(dplyr) library(readr) library(lubridate) library(stringr) nyc = read_csv("/data/nyc_parking/NYParkingViolations.csv") ## |================================================================================| 100% 1713 MB ## ## Warning: 654437 parsing failures. ## row col expected actual ## 2647 Violation Legal Code an integer T ## 3792 Violation Legal Code an integer T ## 4001 Violation Legal Code an integer T ## 4002 Violation Legal Code an integer T ## 4003 Violation Legal Code an integer T ## .... .................... .......... ...... ## .See problems(...) for more details.
nyc ## Source: local data frame [9,100,278 x 43] ## ## Summons Number Plate ID Registration State Plate Type Issue Date Violation Code ## (dbl) (chr) (chr) (chr) (chr) (int) ## 1 1361929741 FCJ5493 NY PAS 12/18/1970 20 ## 2 1366962000 63540MC NY COM 02/02/1971 46 ## 3 1356906515 GFM1421 NY PAS 09/18/1971 40 ## 4 1342296217 FYM5117 NY SRF 09/18/1971 21 ## 5 1342296199 95V6675 TX PAS 09/18/1971 21 ## 6 1342296187 GCY4187 NY SRF 09/18/1971 21 ## 7 1337077380 18972BB NY 999 10/10/1971 14 ## 8 1364523796 WNJ4730 VA PAS 04/05/1973 14 ## 9 1359914924 68091JZ NY COM 07/22/1973 46 ## 10 1355498326 EWV4127 NY PAS 08/12/1973 21 ## .. ... ... ... ... ... ... ## Variables not shown: Vehicle Body Type (chr), Vehicle Make (chr), Issuing Agency (chr), Street ## Code1 (int), Street Code2 (int), Street Code3 (int), Vehicle Expiration Date (int), Violation ## Location (chr), Violation Precinct (int), Issuer Precinct (int), Issuer Code (int), Issuer ## Command (chr), Issuer Squad (chr), Violation Time (chr), Time First Observed (chr), Violation ## County (chr), Violation In Front Of Or Opposite (chr), House Number (chr), Street Name (chr), ## Intersecting Street (chr), Date First Observed (int), Law Section (int), Sub Division (chr), ## Violation Legal Code (int), Days Parking In Effect (chr), From Hours In Effect (chr), To Hours ## In Effect (chr), Vehicle Color (chr), Unregistered Vehicle? (int), Vehicle Year (int), Meter ## Number (chr), Feet From Curb (int), Violation Post Code (chr), Violation Description (chr), No ## Standing or Stopping Violation (chr), Hydrant Violation (chr), Double Parking Violation (chr)
(db = src_sqlite("/data/nyc_parking/NYParkingViolations.sqlite", create = TRUE)) ## src: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## tbls: nyc_sql = copy_to(db, nyc, temporary = FALSE) db ## src: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## tbls: nyc, sqlite_stat1 nyc_sql = tbl(db,"nyc") str(nyc_sql) ## List of 9 ## $ src :List of 3 ## ..$ con :Formal class 'SQLiteConnection' [package "RSQLite"] with 5 slots ## .. .. ..@ Id :<externalptr> ## .. .. ..@ dbname : chr "/data/nyc_parking/NYParkingViolations.sqlite" ## .. .. ..@ loadable.extensions: logi TRUE ## .. .. ..@ flags : int 6 ## .. .. ..@ vfs : chr "" ## ..$ path: chr "/data/nyc_parking/NYParkingViolations.sqlite" ## ..$ info:List of 2 ## .. ..$ serverVersion: chr "3.8.6" ## .. ..$ results : logi FALSE ## ..- attr(*, "class")= chr [1:3] "src_sqlite" "src_sql" "src" ## $ from :Classes 'ident', 'sql', 'character' chr "nyc" ## ...
nyc_sql ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## From: nyc [9,100,278 x 43] ## ## Summons Number Plate ID Registration State Plate Type Issue Date Violation Code ## (dbl) (chr) (chr) (chr) (chr) (int) ## 1 1361929741 FCJ5493 NY PAS 12/18/1970 20 ## 2 1366962000 63540MC NY COM 02/02/1971 46 ## 3 1356906515 GFM1421 NY PAS 09/18/1971 40 ## 4 1342296217 FYM5117 NY SRF 09/18/1971 21 ## 5 1342296199 95V6675 TX PAS 09/18/1971 21 ## 6 1342296187 GCY4187 NY SRF 09/18/1971 21 ## 7 1337077380 18972BB NY 999 10/10/1971 14 ## 8 1364523796 WNJ4730 VA PAS 04/05/1973 14 ## 9 1359914924 68091JZ NY COM 07/22/1973 46 ## 10 1355498326 EWV4127 NY PAS 08/12/1973 21 ## .. ... ... ... ... ... ... ## Variables not shown: Vehicle Body Type (chr), Vehicle Make (chr), Issuing Agency (chr), Street ## Code1 (int), Street Code2 (int), Street Code3 (int), Vehicle Expiration Date (int), Violation ## Location (chr), Violation Precinct (int), Issuer Precinct (int), Issuer Code (int), Issuer ## Command (chr), Issuer Squad (chr), Violation Time (chr), Time First Observed (chr), Violation ## County (chr), Violation In Front Of Or Opposite (chr), House Number (chr), Street Name (chr), ## Intersecting Street (chr), Date First Observed (int), Law Section (int), Sub Division (chr), ## Violation Legal Code (int), Days Parking In Effect (chr), From Hours In Effect (chr), To Hours ## In Effect (chr), Vehicle Color (chr), Unregistered Vehicle? (int), Vehicle Year (int), Meter ## Number (chr), Feet From Curb (int), Violation Post Code (chr), Violation Description (chr), No ## Standing or Stopping Violation (chr), Hydrant Violation (chr), Double Parking Violation (chr)
(addr = nyc_sql %>% select(`Issue Date`, `Issuing Agency`, `Violation Precinct`, `House Number`, `Street Name`) %>% filter(`Violation Precinct` >=1, `Violation Precinct` <= 34) ) ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## From: nyc [3,564,798 x 5] ## Filter: `Violation Precinct` >= 1, `Violation Precinct` <= 34 ## ## Issue Date Issuing Agency Violation Precinct House Number Street Name ## (chr) (chr) (int) (chr) (chr) ## 1 09/18/1971 X 33 4165 BROADWAY ## 2 07/22/1973 P 10 48 7 AVE ## 3 09/22/1973 P 14 205 W 39 ST ## 4 10/30/1973 K 1 NA SOUTH STREET ## 5 04/15/1977 X 17 545 1 AVE ## 6 01/01/2000 P 17 875 3RD AVE ## 7 01/06/2000 P 20 210 W 64 ST ## 8 01/07/2000 P 15 1375 6 AVE ## 9 01/07/2000 P 15 1375 6 AVE ## 10 01/08/2000 P 19 244 EAST 84 ## .. ... ... ... ... ...
class(addr) ## [1] "tbl_sqlite" "tbl_sql" "tbl" addr$query ## <Query> SELECT "Issue Date" AS "Issue Date", "Issuing Agency" AS "Issuing Agency", "Violation Precinct" AS "Violation ## Precinct", "House Number" AS "House Number", "Street Name" AS "Street Name" ## FROM "nyc" ## WHERE "Violation Precinct" >= 1.0 AND "Violation Precinct" <= 34.0 ## <SQLiteConnection>
addr %>% mutate(address = paste(`House Number`, `Street Name`)) ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## Error in sqliteSendQuery(con, statement, bind.data) : ## error in statement: no such function: PASTE addr %>% summarize(mean = mean(`Violation Precinct`, na.rm=TRUE)) ## Error: na.rm not needed in SQL: NULL are always dropped addr %>% summarize(mean = mean(`Violation Precinct`)) ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## From: <derived table> [?? x 1] ## ## mean ## (dbl) ## 1 16.0982 ## .. ...
addr %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## From: <derived table> [?? x 3] ## Grouped by: `Issuing Agency` ## ## Issuing Agency Violation Precinct n ## (chr) (int) (int) ## 1 A 1 13 ## 2 A 7 1 ## 3 A 10 24 ## 4 A 11 1 ## 5 A 14 47 ## 6 A 33 11 ## 7 B 10 1 ## 8 B 25 2 ## 9 C 5 73 ## 10 C 13 7 ## .. ... ... ...
addr %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) %>% .$query ## <Query> SELECT "Issuing Agency", "Violation Precinct", "n" ## FROM (SELECT "Issuing Agency", "Violation Precinct", COUNT() AS "n" ## FROM "nyc" ## WHERE "Violation Precinct" >= 1.0 AND "Violation Precinct" <= 34.0 ## GROUP BY "Issuing Agency", "Violation Precinct") AS "zzz4" ## <SQLiteConnection>
dplyr has a function, translate_sql
, that lets you experiment with how R functions are translated to SQL
translate_sql(x == 1 & (y < 2 | z > 3))
## <SQL> "x" = 1.0 AND ("y" < 2.0 OR "z" > 3.0)
translate_sql(x ^ 2 < 10)
## <SQL> POWER("x", 2.0) < 10.0
translate_sql(x %% 2 == 10)
## <SQL> "x" % 2.0 = 10.0
translate_sql(paste(x,y))
## <SQL> PASTE("x", "y")
translate_sql(mean(x))
## <SQL> avg("x") OVER ()
translate_sql(mean(x, na.rm=TRUE))
## Error in mean(x, na.rm = TRUE): unused argument (na.rm = TRUE)
In general, dplyr knows how to translate basic math, logical, and summary functions from R to SQL.
system.time( nyc %>% select(`Issue Date`, `Issuing Agency`, `Violation Precinct`, `House Number`, `Street Name`) %>% filter(`Violation Precinct` >=1, `Violation Precinct` <= 34) %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) ) ## user system elapsed ## 0.860 0.121 0.981 system.time( nyc_sql %>% select(`Issue Date`, `Issuing Agency`, `Violation Precinct`, `House Number`, `Street Name`) %>% filter(`Violation Precinct` >=1, `Violation Precinct` <= 34) %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) ) ## user system elapsed ## 0.039 0.001 0.038
nyc_sql
was 30x times faster than nyc
, but the former is disk based while the latter is in memory, why this discrepancy?
dplyr
uses lazy evaluation as much as possible, particularly when working with non-local backends.
When building a query, we don't want the entire table, often we want just enough to check if our query is working.
Since we would prefer to run one complex query over many simple queries, laziness allows for verbs to be strung together.
Therefore, by default dplyr
won't connect and query the database until absolutely necessary (e.g. show output),
and unless explicitly told to, will only query a handful of rows to give a sense of what the result will look like
nyc_sql %>% select(`Issue Date`, `Issuing Agency`, `Violation Precinct`, `House Number`, `Street Name`) %>% filter(`Violation Precinct` >=1, `Violation Precinct` <= 34) %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) ## Source: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations.sqlite] ## From: <derived table> [?? x 3] ## Grouped by: `Issuing Agency` ## ## Issuing Agency Violation Precinct n ## (chr) (int) (int) ## 1 A 1 13 ## 2 A 7 1 ## 3 A 10 24 ## 4 A 11 1 ## 5 A 14 47 ## 6 A 33 11 ## 7 B 10 1 ## 8 B 25 2 ## 9 C 5 73 ## 10 C 13 7 ## .. ... ... ...
To force a full query and return a complete tbl_df
object dplyr
uses the collect
function.
nyc_sql %>% select(`Issue Date`, `Issuing Agency`, `Violation Precinct`, `House Number`, `Street Name`) %>% filter(`Violation Precinct` >=1, `Violation Precinct` <= 34) %>% group_by(`Issuing Agency`, `Violation Precinct`) %>% summarize(n=n()) %>% collect() ## Source: local data frame [200 x 3] ## Groups: Issuing Agency [15] ## ## Issuing Agency Violation Precinct n ## (chr) (int) (int) ## 1 A 1 13 ## 2 A 7 1 ## 3 A 10 24 ## 4 A 11 1 ## 5 A 14 47 ## 6 A 33 11 ## 7 B 10 1 ## 8 B 25 2 ## 9 C 5 73 ## 10 C 13 7 ## .. ... ... ...
compute
and collapse
also force a full query but have slightly different behavior and return types.
(db_index = src_sqlite("/data/nyc_parking/NYParkingViolations_index.sqlite", create = TRUE)) ## src: sqlite 3.8.6 [/data/nyc_parking/NYParkingViolations_index.sqlite] ## tbls: nyc_index = copy_to(db_index, nyc, temporary = FALSE, index = list(`Violation Precinct`))
The indexed database takes up more disk space:
cr173@gort [~]$ ls -lh /data/nyc_parking/*.sqlite -rw-r--r-- 1 cr173 visitor 1.8G Mar 30 11:56 NYParkingViolations_index.sqlite -rw-r--r-- 1 cr173 visitor 1.7G Mar 30 11:28 NYParkingViolations.sqlite
system.time(nyc_sql %>% filter(`Violation Precinct` <= 34, `Violation Precinct` >= 1) %>% collect()) ## user system elapsed ## 30.630 3.279 34.009 system.time(nyc_index %>% filter(`Violation Precinct` <= 34, `Violation Precinct` >= 1) %>% collect()) ## user system elapsed ## 32.207 3.197 35.395
system.time(nyc_sql %>% group_by(`Violation Precinct`) %>% summarize(n=n()) %>% collect()) ## user system elapsed ## 21.184 2.829 24.007 system.time(nyc_index %>% group_by(`Violation Precinct`) %>% summarize(n=n()) %>% collect()) ## user system elapsed ## 1.288 0.102 1.389
Low level package for interfacing R with Database management systems (DBMS) that provides a common interface to achieve the following functionality:
Provides the implementation necessary to use DBI to interface with SQLite databases.
library(RSQLite) ## Loading required package: DBI con = dbConnect(RSQLite::SQLite(), ":memory:") str(con) ## Formal class 'SQLiteConnection' [package "RSQLite"] with 5 slots ## ..@ Id :<externalptr> ## ..@ dbname : chr ":memory:" ## ..@ loadable.extensions: logi TRUE ## ..@ flags : int 6 ## ..@ vfs : chr ""
employees = data.frame(name = c("Alice","Bob","Carol","Dave","Eve","Frank"), email = c("alice@company.com", "bob@company.com", "carol@company.com", "dave@company.com", "eve@company.com", "frank@comany.com"), salary = c(52000, 40000, 30000, 33000, 44000, 37000), dept = c("Accounting", "Accounting","Sales", "Accounting","Sales","Sales"), stringsAsFactors = FALSE)
dbWriteTable(con, "employees", employees) ## [1] TRUE dbListTables(con) ## [1] "employees"
dbWriteTable(con, "employs", employees) ## [1] TRUE dbListTables(con) ## [1] "employees" "employs" dbRemoveTable(con,"employs") ## [1] TRUE dbListTables(con) ## [1] "employees"
res = dbSendQuery(con, "SELECT * FROM employees") dbFetch(res) ## name email salary dept ## 1 Alice alice@company.com 52000 Accounting ## 2 Bob bob@company.com 40000 Accounting ## 3 Carol carol@company.com 30000 Sales ## 4 Dave dave@company.com 33000 Accounting ## 5 Eve eve@company.com 44000 Sales ## 6 Frank frank@comany.com 37000 Sales dbClearResult(res) ## [1] TRUE
dbDisconnect(con) ## [1] TRUE
The following is specific to SQLite
sqlite> .tables employees
sqlite> .schema employees CREATE TABLE employees ( "name" TEXT, "email" TEXT, "salary" REAL, "dept" TEXT );
sqlite> .indices employees
sqlite> SELECT * FROM employees; Alice|alice@company.com|52000.0|Accounting Bob|bob@company.com|40000.0|Accounting Carol|carol@company.com|30000.0|Sales Dave|dave@company.com|33000.0|Accounting Eve|eve@company.com|44000.0|Sales Frank|frank@comany.com|37000.0|Sales
We can make this table output a little nicer with some additonal SQLite options:
sqlite> .mode column sqlite> .headers on
sqlite> SELECT * FROM employees; name email salary dept ---------- ----------------- ---------- ---------- Alice alice@company.com 52000.0 Accounting Bob bob@company.com 40000.0 Accounting Carol carol@company.com 30000.0 Sales Dave dave@company.com 33000.0 Accounting Eve eve@company.com 44000.0 Sales Frank frank@comany.com 37000.0 Sales
We can subset for certain columns (and rename them) using SELECT
sqlite> SELECT name AS first_name, salary FROM employees; first_name salary ---------- ---------- Alice 52000.0 Bob 40000.0 Carol 30000.0 Dave 33000.0 Eve 44000.0 Frank 37000.0
We can sort our results by adding ORDER BY
to our SELECT
statement
sqlite> SELECT name AS first_name, salary FROM employees ORDER BY salary; first_name salary ---------- ---------- Carol 30000.0 Dave 33000.0 Frank 37000.0 Bob 40000.0 Eve 44000.0 Alice 52000.0
We can sort in the opposite order by adding DESC
SELECT name AS first_name, salary FROM employees ORDER BY salary DESC; first_name salary ---------- ---------- Alice 52000.0 Eve 44000.0 Bob 40000.0 Frank 37000.0 Dave 33000.0 Carol 30000.0
We can filter rows by adding WHERE
to our statements
sqlite> SELECT * FROM employees WHERE salary < 40000; name email salary dept ---------- ----------------- ---------- ---------- Carol carol@company.com 30000.0 Sales Dave dave@company.com 33000.0 Accounting Frank frank@comany.com 37000.0 Sales sqlite> SELECT * FROM employees WHERE salary < 40000 AND dept = "Sales"; name email salary dept ---------- ----------------- ---------- ---------- Carol carol@company.com 30000.0 Sales Frank frank@comany.com 37000.0 Sales
We can create groups for the purpose of summarizing using GROUP BY
. As with dplyr it is not terribly useful by itself.
sqlite> SELECT * FROM employees GROUP BY dept; name email salary dept ---------- ---------------- ---------- ---------- Dave dave@company.com 33000.0 Accounting Frank frank@comany.com 37000.0 Sales sqlite> SELECT dept, AVG(salary) AS mean_salary, COUNT(*) AS n FROM employees GROUP BY dept; dept mean_salary n ---------- ---------------- ---------- Accounting 41666.6666666667 3 Sales 37000.0 3
We can limit the number of rows we get by using LIMIT
.
sqlite> SELECT * FROM employees LIMIT 3; name email salary dept ---------- ----------------- ---------- ---------- Alice alice@company.com 52000.0 Accounting Bob bob@company.com 40000.0 Accounting Carol carol@company.com 30000.0 Sales sqlite> SELECT * FROM employees ORDER BY name DESC LIMIT 3; name email salary dept ---------- ---------------- ---------- ---------- Frank frank@comany.com 37000.0 Sales Eve eve@company.com 44000.0 Sales Dave dave@company.com 33000.0 Accounting
sqlite> .mode csv sqlite> .import phone.csv phone sqlite> .tables employees phone sqlite> .mode column sqlite> SELECT * FROM phone; name phone ---------- ------------ Bob 919 555-1111 Carol 919 555-2222 Eve 919 555-3333 Frank 919 555-4444
By default SQLite uses a CROSS JOIN
which is not terribly useful
sqlite> SELECT * FROM employees JOIN phone; name email salary dept name phone ---------- ----------------- ---------- ---------- ---------- ------------ Alice alice@company.com 52000.0 Accounting Bob 919 555-1111 Alice alice@company.com 52000.0 Accounting Carol 919 555-2222 Alice alice@company.com 52000.0 Accounting Eve 919 555-3333 Alice alice@company.com 52000.0 Accounting Frank 919 555-4444 Bob bob@company.com 40000.0 Accounting Bob 919 555-1111 Bob bob@company.com 40000.0 Accounting Carol 919 555-2222 Bob bob@company.com 40000.0 Accounting Eve 919 555-3333 Bob bob@company.com 40000.0 Accounting Frank 919 555-4444 Carol carol@company.com 30000.0 Sales Bob 919 555-1111 Carol carol@company.com 30000.0 Sales Carol 919 555-2222 Carol carol@company.com 30000.0 Sales Eve 919 555-3333 Carol carol@company.com 30000.0 Sales Frank 919 555-4444 Dave dave@company.com 33000.0 Accounting Bob 919 555-1111 Dave dave@company.com 33000.0 Accounting Carol 919 555-2222 Dave dave@company.com 33000.0 Accounting Eve 919 555-3333 Dave dave@company.com 33000.0 Accounting Frank 919 555-4444 Eve eve@company.com 44000.0 Sales Bob 919 555-1111 Eve eve@company.com 44000.0 Sales Carol 919 555-2222 Eve eve@company.com 44000.0 Sales Eve 919 555-3333 Eve eve@company.com 44000.0 Sales Frank 919 555-4444 Frank frank@comany.com 37000.0 Sales Bob 919 555-1111 Frank frank@comany.com 37000.0 Sales Carol 919 555-2222 Frank frank@comany.com 37000.0 Sales Eve 919 555-3333 Frank frank@comany.com 37000.0 Sales Frank 919 555-4444
If you want SQLite to find the columns to merge on automatically then we prefix the join with NATURAL
.
sqlite> SELECT * FROM employees NATURAL JOIN phone; name email salary dept phone ---------- --------------- ---------- ---------- ------------ Bob bob@company.com 40000.0 Accounting 919 555-1111 Carol carol@company.c 30000.0 Sales 919 555-2222 Eve eve@company.com 44000.0 Sales 919 555-3333 Frank frank@comany.co 37000.0 Sales 919 555-4444
sqlite> SELECT * FROM employees JOIN phone ON employees.name = phone.name; name email salary dept name phone ---------- --------------- ---------- ---------- ---------- ------------ Bob bob@company.com 40000.0 Accounting Bob 919 555-1111 Carol carol@company.c 30000.0 Sales Carol 919 555-2222 Eve eve@company.com 44000.0 Sales Eve 919 555-3333 Frank frank@comany.co 37000.0 Sales Frank 919 555-4444
sqlite> SELECT * FROM employees NATURAL LEFT JOIN phone; name email salary dept phone ---------- ----------------- ---------- ---------- ---------- Alice alice@company.com 52000.0 Accounting Bob bob@company.com 40000.0 Accounting 919 555-11 Carol carol@company.com 30000.0 Sales 919 555-22 Dave dave@company.com 33000.0 Accounting Eve eve@company.com 44000.0 Sales 919 555-33 Frank frank@comany.com 37000.0 Sales 919 555-44
sqlite> SELECT * FROM employees LEFT JOIN phone ON employees.name = phone.name; name email salary dept name phone ---------- ----------------- ---------- ---------- ---------- ---------- Alice alice@company.com 52000.0 Accounting Bob bob@company.com 40000.0 Accounting Bob 919 555-11 Carol carol@company.com 30000.0 Sales Carol 919 555-22 Dave dave@company.com 33000.0 Accounting Eve eve@company.com 44000.0 Sales Eve 919 555-33 Frank frank@comany.com 37000.0 Sales Frank 919 555-44
Currently SQLite does not support RIGHT JOIN
or OUTER JOIN
.
sqlite> CREATE INDEX index_name ON employees (name); sqlite> .indices index_name sqlite> CREATE INDEX index_name_email ON employees (name,email); sqlite> .indices index_name index_name_email
We can nest tables within tables for the purpose of queries.
SELECT * FROM (SELECT * FROM employees NATURAL LEFT JOIN phone) WHERE phone IS NULL; name email salary dept phone ---------- ----------------- ---------- ---------- ---------- Alice alice@company.com 52000.0 Accounting Dave dave@company.com 33000.0 Accounting
sqlite> SELECT * FROM (SELECT * FROM employees NATURAL LEFT JOIN phone) WHERE phone IS NOT NULL; name email salary dept phone ---------- --------------- ---------- ---------- ------------ Bob bob@company.com 40000.0 Accounting 919 555-1111 Carol carol@company.c 30000.0 Sales 919 555-2222 Eve eve@company.com 44000.0 Sales 919 555-3333 Frank frank@comany.co 37000.0 Sales 919 555-4444
Lets try to create a table that has a new column - abv_avg
which contains how much more (or less) than the average, for their department, each person is paid.
Hint - This will require joining a subquery.
employees.sqlite
is available in /data/Sta523
on gort.
Above materials are derived in part from the following sources: