Lecture 20

Point referenced data (pt. 2)

Colin Rundel 11/14/2018

Loa Loa Example

Loa Loa


```
loaloa = tbl_df(PrevMap::loaloa) %>% setNames(., tolower(names(.))) %>%
  rename(elev=elevation)
```

loa	aloa	l								
## # A tibble: 197 x 11										
##		row \	/illcode	longitude	latitude	no_exam	<pre>no_inf</pre>	elev	mean9901	max990
##		<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl< td=""></dbl<>
##	1	1	214	8.04	5.74	162	Θ	108	0.439	0.6
##	2	2	215	8.00	5.68	167	1	99	0.426	0.7
##	3	3	118	8.91	5.35	88	5	783	0.491	0.7
##	4	4	219	8.10	5.92	62	5	104	0.432	0.6
##	5	5	212	8.18	5.10	167	3	109	0.415	0.8
##	6	6	116	8.93	5.36	66	3	909	0.436	0.8
##	7	7	16	11.4	4.88	163	11	503	0.502	0.7
##	8	8	217	8.07	5.90	83	Θ	103	0.373	0.6
##	9	9	112	9.02	5.59	30	4	751	0.481	0.8
##	10	10	104	9.31	6.00	57	4	268	0.487	0.8
##	# .	with	n 187 mor	re rows, ar	nd 2 more	variable	es: min9	9901 <	dbl>,	
##	#	stdev	901 <dbl< td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td></dbl<>	>						

Spatial Distribution

Normalized Difference Vegetation Index (NDVI)

Original paper - Diggle, et. al. (2007). *Spatial modelling and prediction of Loa loa risk: decision making under uncertainty*. Annals of Tropical Medicine and Parasitology, 101, 499-509.

- no_exam and no_inf Collected between 1991 and 2001 by NGOs (original paper mentions 168 villages and 21,938 observations)
- elev USGS gtopo30 (1km resolution)
- mean9901 to stdev9901 aggregated data from 1999 to 2001 from the Flemish Institute for Technological Research (1 km resolution)

$$\begin{split} \log\left(\frac{p(s)}{1-p(s)}\right) &= \alpha + f_1(\text{elev}(s)) \\ &\quad + f_2(\text{MAX.NDVI}(s)) \\ &\quad + f_3(\text{SD.NDVI}(s)) + w(s) \end{split}$$

where

$$\begin{split} w(s) &\sim \mathcal{N}(0, \Sigma) \\ \{\Sigma\}_{ij} &= \sigma^2 \, \exp(-d \, \phi) \end{split}$$

Diggle's EDA


```
loaloa = loaloa %>%
 mutate(
   elev_f = cut(elev, breaks=c(0,1000,1300,2000), dig.lab=5).
   \max f = cut(\max 9901, breaks = c(0, 0.8, 1))
loaloa %>% select(elev, elev f, max9901, max f)
## # A tibble: 197 x 4
## elev elev f max9901 max f
## <int> <fct> <dbl> <fct>
## 1 108 (0,1000] 0.69 (0,0.8]
## 2 99 (0,1000] 0.74 (0,0.8]
##
   3 783 (0,1000] 0.79 (0,0.8]
  4 104 (0,1000] 0.67 (0,0.8]
##
##
     109 (0.1000] 0.85 (0.8.1]
   5
##
  6 909 (0,1000] 0.8 (0,0.8]
## 7 503 (0,1000] 0.78 (0,0.8]
## 8 103 (0,1000] 0.69 (0,0.8]
   9 751 (0,1000] 0.8 (0,0.8]
##
## 10 268 (0.1000] 0.84 (0.8.1]
## # ... with 187 more rows
```

```
model.matrix(
 ~ elev:elev_f - 1,
  data = loaloa
) %>%
  as_data_frame()
## # A tibble: 197 x 3
##
     `elev:elev_f(0,1000]` `elev:elev_f(1000,1300]` `elev:elev_f(1300,2000]`
##
                      <dbl>
                                                 <dbl>
                                                                           <dbl>
## 1
                                                     0
## 2
                         99
##
   3
                         783
                                                                                0
## 4
                         104
                                                     0
## 5
                        109
                                                     0
## 6
                        909
                                                     0
                                                                                0
##
   7
                         503
                                                     0
##
   8
                        103
                                                                                0
                                                     0
##
    9
                        751
                                                     0
## 10
                                                     0
## # ... with 187 more rows
```

OOS Validation

loaloa_test = loaloa %>% sample_frac(0.20)
loaloa = anti_join(loaloa, loaloa_test, quiet=TRUE)

Model

```
g = glm(no inf/no exam ~ elev:elev f + max9901:max f + stdev9901.
       data=loaloa, family=binomial, weights=loaloa$no exam)
summary(g)
##
## Call:
## glm(formula = no_inf/no_exam ~ elev:elev_f + max9901:max_f +
      stdev9901, family = binomial, data = loaloa, weights = loaloa$no exam)
##
##
## Deviance Residuals:
##
      Min 1Q Median 3Q
                                       Max
## -6.9522 -2.5662 -0.4621 1.6720 10.1809
##
## Coefficients:
##
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.5735389 0.5333413 -16.075 < 2e-16 ***
## stdev9901
                11.9141737 1.3070028 9.116 < 2e-16 ***
## elev:elev_f(0,1000] 0.0015951 0.0001018 15.660 < 2e-16 ***</pre>
## elev:elev f(1000,1300] 0.0003343 0.0000953 3.507 0.000453 ***
## elev:elev f(1300,2000] -0.0016964 0.0002513 -6.750 1.48e-11 ***
## max9901:max_f(0,0.8] 5.2697375 0.6918702 7.617 2.60e-14 ***
## max9901:max f(0.8,1] 5.2632126 0.6362108 8.273 < 2e-16 ***</pre>
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3210.2 on 157 degrees of freedom
##
```

Predictions - Training

Data

GLM Prediction

Predictions - Testing

Data

GLM Prediction

Fit - Training

Fit - Testing

Spatial Structure?


```
spg = spBayes::spGLM(
  no inf/no exam ~ elev:elev f + max9901:max f + stdev9901,
  data=loaloa, family="binomial", weights=loaloa$no exam,
  coords=cbind(loaloa$longitude, loaloa$latitude),
  cov.model="exponential", n.samples=20000,
  starting=list(beta=rep(0,7), phi=3, sigma.sq=1, w=0),
  priors=list(phi.unif=c(0.1, 10), sigma.sq.ig=c(2, 2)),
  amcmc=list(n.batch=1000, batch.length=20, accept.rate=0.43))
save(spg, loaloa, file="loaloa.Rdata")
```

spg\$p.beta.theta.samples %>% post_summary() %>% knitr::kable(digits=5)

param	post_mean	post_med	post_lower	post_upper
(Intercept)	-7.62467	-7.10607	-15.33201	-1.56786
stdev9901	1.77896	-0.26705	-19.15846	24.59887
elev:elev_f(0,1000]	0.00010	0.00065	-0.00780	0.00316
elev:elev_f(1000,1300]	-0.00059	-0.00035	-0.00471	0.00176
elev:elev_f(1300,2000]	-0.01448	-0.01064	-0.04942	-0.00030
max9901:max_f(0,0.8]	0.08517	-0.78200	-6.96111	9.06059
max9901:max_f(0.8,1]	0.69926	-0.25813	-5.79400	9.08833
sigma.sq	0.45277	0.39071	0.14322	1.17856
phi	2.12385	1.44856	0.12026	8.46872

Prediction


```
spg_fix = spBayes::spGLM(
  no inf ~ elev:elev f + max9901:max f + stdev9901,
  data=loaloa, family="binomial", weights=loaloa$no exam,
  coords=cbind(loaloa$longitude, loaloa$latitude),
  cov.model="exponential", n.samples=20000,
  starting=list(beta=rep(0,7), phi=3, sigma.sq=1, w=0),
  priors=list(phi.unif=c(0.1, 10), sigma.sq.ig=c(2, 2)),
  amcmc=list(n.batch=1000, batch.length=20, accept.rate=0.43)
```

```
save(spg_fix, loaloa, file="loaloa_fix.Rdata")
```

param	post_mean	post_med	post_lower	post_upper
(Intercept)	-3.14223	-3.43877	-4.38140	-1.01108
stdev9901	1.88811	1.02957	-5.28818	9.04674
elev:elev_f(0,1000]	0.00036	0.00048	-0.00069	0.00114
elev:elev_f(1000,1300]	-0.00036	-0.00031	-0.00127	0.00039
elev:elev_f(1300,2000]	-0.00209	-0.00206	-0.00310	-0.00131
max9901:max_f(0,0.8]	0.74129	0.55728	-0.98971	2.78417
max9901:max_f(0.8,1]	1.15469	0.92740	-0.18829	2.89406
sigma.sq	1.26052	1.21204	0.32891	2.36502
phi	2.51439	2.38441	1.08064	4.86766

Fit - Training

Fit - Testing

Diggle's Predictive Surface

Exceedance Probability - Posterior Summary

Exceedance Probability Predictive Surface

FIG. 4. A probability contour map, indicating the probability that the prevalence of *Loa loa* microfilaraemia in each area exceeds 20%, over-laid with the prevalences observed in field studies.

Spatial Assignment of Migratory Birds

Using intrinsic markers (genetic and isotopic signals) for the purpose of inferring migratory connectivity.

- Existing methods are too coarse for most applications
- Large amounts of data are available (>150,000 feather samples from >500 species)
- Genetic assignment methods are based on Wasser, et al. (2004)
- Isotopic assignment methods are based on Wunder, et al. (2005)

Hermit Thrush (Catharus guttatus)

- 138 individuals
- 14 locations
- 6 loci
- 9-27 alleles / locus

Wilson's Warbler (Wilsonia pusilla)

- 163 individuals
- 8 locations
- 9 loci
- 15-31 alleles / locus

Sampling Locations

For the allele i, from locus l, at location k

$$\begin{split} \mathbf{y}_{\cdot lk} | \mathbf{\Theta} &\sim \mathcal{N} \left(\sum_{i} y_{ilk}, \, \mathbf{f}_{\cdot lk} \right) \\ f_{ilk} &= \frac{\exp(\Theta_{ilk})}{\sum_{i} \exp(\Theta_{ilk})} \end{split}$$

$$\begin{split} & \Theta_{il} | \boldsymbol{\alpha}, \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\mu}_{il}, \, \boldsymbol{\Sigma}) \\ & \left\{ \boldsymbol{\Sigma} \right\}_{ij} = \sigma^2 \, \exp \left(- \left(\{d\}_{ij} \, r \right)^{\psi} \right) + \sigma_n^2 \, \mathbf{1}_{i=j} \end{split}$$

Predictions by Allele (Locus 3)

Assignment model assuming Hardy-Weinberg equilibrium and allowing for genotyping (δ) and single amplification (γ) errors.

$$P(S_G | \mathbf{f}, k) = \prod_l P(i_l, j_l | \mathbf{f}, k)$$

$$P(i_l, j_l | \mathbf{f}, k) = \begin{cases} \gamma P(i_l | \mathbf{f}, k) + (1 - \gamma) P(i_l | \tilde{\mathbf{f}}, k)^2 & \text{if } i = j \\ (1 - \gamma) P(i_l | \mathbf{f}, k) P(j_l | \mathbf{f}, k) & \text{if } i \neq j \end{cases}$$

 $P(i_l|\mathbf{f},k) = (1-\delta)f_{lik} + \delta/m_l$

False Positive Rate

Migratory Connectivity

