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Loa Loa Example



Loa Loa
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Data

loaloa = tbl_df(PrevMap::loaloa) %>% setNames(., tolower(names(.))) %>%
rename(elev=elevation)

loaloa
## # A tibble: 197 x 11
## row villcode longitude latitude no_exam no_inf elev mean9901 max9901
## <int> <int> <dbl> <dbl> <int> <int> <int> <dbl> <dbl>
## 1 1 214 8.04 5.74 162 0 108 0.439 0.69
## 2 2 215 8.00 5.68 167 1 99 0.426 0.74
## 3 3 118 8.91 5.35 88 5 783 0.491 0.79
## 4 4 219 8.10 5.92 62 5 104 0.432 0.67
## 5 5 212 8.18 5.10 167 3 109 0.415 0.85
## 6 6 116 8.93 5.36 66 3 909 0.436 0.8
## 7 7 16 11.4 4.88 163 11 503 0.502 0.78
## 8 8 217 8.07 5.90 83 0 103 0.373 0.69
## 9 9 112 9.02 5.59 30 4 751 0.481 0.8
## 10 10 104 9.31 6.00 57 4 268 0.487 0.84
## # ... with 187 more rows, and 2 more variables: min9901 <dbl>,
## # stdev9901 <dbl>
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Spatial Distribution
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Normalized Difference Vegetation Index (NDVI)

6-21 Mar 2017
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Paper / Data summary

Original paper - Diggle, et. al. (2007). Spatial modelling and prediction of
Loa loa risk: decision making under uncertainty. Annals of Tropical Medicine
and Parasitology, 101, 499-509.

• no_exam and no_inf - Collected between 1991 and 2001 by NGOs
(original paper mentions 168 villages and 21,938 observations)

• elev - USGS gtopo30 (1km resolution)

• mean9901 to stdev9901 - aggregated data from 1999 to 2001 from
the Flemish Institute for Technological Research (1 km resolution)
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Diggle’s Model

log ( 𝑝(𝑠)
1 − 𝑝(𝑠)) = 𝛼 + 𝑓1(elev(𝑠))

+ 𝑓2(MAX.NDVI(𝑠))
+ 𝑓3(SD.NDVI(𝑠)) + 𝑤(𝑠)

where

𝑤(𝑠) ∼ 𝒩(0, Σ)
{Σ}𝑖𝑗 = 𝜎2 exp(−𝑑 𝜙)
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Diggle’s EDA
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to fit the model. Details of the implemen-
tation are given in the Appendix.

The MCMC algorithm was used to
generate samples from the predictive dis-
tribution of the complete surface S(x) at
1-km resolution, given the observed values
of the response variable Yi at each sampled
village location, and of the three explanatory
variables at 1-km resolution throughout
the study region. Inversion of Equation
1 converts each sampled S(x) to a corre-
sponding sample from the predictive dis-
tribution of the prevalence surface p(x). The
posterior exceedance probability at each
location was then calculated as the observed
proportion of sampled values that exceeds
the agreed policy intervention threshold of
20%.

RESULTS

Figure 1 shows the construction of the
piece-wise linear functions f1(?), f2(?) and
f3(?) through which the effects of elevation
and NDVI on L. loa prevalence were
represented in the spatial model (Equation
1). Although there was a positive association
between elevation and prevalence up to a
threshold of 1000 m above sea level, pre-
valence dropped sharply beyond this thresh-
old and was effectively zero at altitudes of
.1300 m [Fig. 1(a)]. Prevalence showed a
linear increase with maxNDVI up to a
maxNDVI value of 0.8 but was constant
thereafter, albeit with substantial residual
variation about the fitted piece-wise linear
function [Fig. 1(b)]. Although, from a
purely empirical point of view, similar
predictions could have been obtained with-
out truncating the linear increase at the
NDVI value of 0.8, the piece-wise linear
form was still used in the present study, for
consistency with the analysis reported by
Thomson et al. (2004). Finally, the standard
deviation of NDVI showed a very weak
negative association with prevalence, which
was represented as a simple linear effect
[Fig. 1(c)]. Again, this term was included

for consistency with the earlier analysis of
Thomson et al. (2004).

The map of estimated prevalence
obtained from the spatial model is presented
in Figure 2. Although this shows a qualita-
tive agreement with the map obtained using
the earlier model (Thomson et al., 2004), it
can be considered to be more accurate in
that it includes more data and allows for
residual spatial variation in prevalence that
is not explained by the combination of

FIG. 1. Piece-wise linear functions used in the spatial

model to describe the effects of elevation; (a), max-

imum values of the normalized difference vegetation
index [NVDI; (b)] and standard deviations of the

NDVI (c) on the prevalence of Loa loa microfilaraemia.

502 DIGGLE ET AL.
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Data Augmentation

loaloa = loaloa %>%
mutate(
elev_f = cut(elev, breaks=c(0,1000,1300,2000), dig.lab=5),
max_f = cut(max9901, breaks=c(0,0.8,1))

)

loaloa %>% select(elev, elev_f, max9901, max_f)
## # A tibble: 197 x 4
## elev elev_f max9901 max_f
## <int> <fct> <dbl> <fct>
## 1 108 (0,1000] 0.69 (0,0.8]
## 2 99 (0,1000] 0.74 (0,0.8]
## 3 783 (0,1000] 0.79 (0,0.8]
## 4 104 (0,1000] 0.67 (0,0.8]
## 5 109 (0,1000] 0.85 (0.8,1]
## 6 909 (0,1000] 0.8 (0,0.8]
## 7 503 (0,1000] 0.78 (0,0.8]
## 8 103 (0,1000] 0.69 (0,0.8]
## 9 751 (0,1000] 0.8 (0,0.8]
## 10 268 (0,1000] 0.84 (0.8,1]
## # ... with 187 more rows
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Model Matrix {.}

model.matrix(
~ elev:elev_f - 1,
data = loaloa

) %>%
as_data_frame()

## # A tibble: 197 x 3
## `elev:elev_f(0,1000]` `elev:elev_f(1000,1300]` `elev:elev_f(1300,2000]`
## <dbl> <dbl> <dbl>
## 1 108 0 0
## 2 99 0 0
## 3 783 0 0
## 4 104 0 0
## 5 109 0 0
## 6 909 0 0
## 7 503 0 0
## 8 103 0 0
## 9 751 0 0
## 10 268 0 0
## # ... with 187 more rows
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OOS Validation

loaloa_test = loaloa %>% sample_frac(0.20)
loaloa = anti_join(loaloa, loaloa_test, quiet=TRUE)
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Model

g = glm(no_inf/no_exam ~ elev:elev_f + max9901:max_f + stdev9901,
data=loaloa, family=binomial, weights=loaloa$no_exam)

summary(g)
##
## Call:
## glm(formula = no_inf/no_exam ~ elev:elev_f + max9901:max_f +
## stdev9901, family = binomial, data = loaloa, weights = loaloa$no_exam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.9522 -2.5662 -0.4621 1.6720 10.1809
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.5735389 0.5333413 -16.075 < 2e-16 ***
## stdev9901 11.9141737 1.3070028 9.116 < 2e-16 ***
## elev:elev_f(0,1000] 0.0015951 0.0001018 15.660 < 2e-16 ***
## elev:elev_f(1000,1300] 0.0003343 0.0000953 3.507 0.000453 ***
## elev:elev_f(1300,2000] -0.0016964 0.0002513 -6.750 1.48e-11 ***
## max9901:max_f(0,0.8] 5.2697375 0.6918702 7.617 2.60e-14 ***
## max9901:max_f(0.8,1] 5.2632126 0.6362108 8.273 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3210.2 on 157 degrees of freedom
## Residual deviance: 1557.4 on 151 degrees of freedom
## AIC: 2181
##
## Number of Fisher Scoring iterations: 5
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Predictions - Training
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Predictions - Testing
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Fit - Training
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Fit - Testing
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Spatial Structure?

geoR::variog(coords = cbind(loaloa$longitude, loaloa$latitude),
data = loaloa$prop - loaloa$glm_pred,
uvec = seq(0, 4, length.out = 50)) %>% plot()

## variog: computing omnidirectional variogram
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spBayes GLM Model

spg = spBayes::spGLM(
no_inf/no_exam ~ elev:elev_f + max9901:max_f + stdev9901,

data=loaloa, family=”binomial”, weights=loaloa$no_exam,

coords=cbind(loaloa$longitude, loaloa$latitude),

cov.model=”exponential”, n.samples=20000,

starting=list(beta=rep(0,7), phi=3, sigma.sq=1, w=0),

priors=list(phi.unif=c(0.1, 10), sigma.sq.ig=c(2, 2)),

amcmc=list(n.batch=1000, batch.length=20, accept.rate=0.43))

save(spg, loaloa, file=”loaloa.Rdata”)
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spg$p.beta.theta.samples %>%
post_summary() %>%
knitr::kable(digits=5)

param post_mean post_med post_lower post_upper

(Intercept) -7.62467 -7.10607 -15.33201 -1.56786
stdev9901 1.77896 -0.26705 -19.15846 24.59887
elev:elev_f(0,1000] 0.00010 0.00065 -0.00780 0.00316
elev:elev_f(1000,1300] -0.00059 -0.00035 -0.00471 0.00176
elev:elev_f(1300,2000] -0.01448 -0.01064 -0.04942 -0.00030
max9901:max_f(0,0.8] 0.08517 -0.78200 -6.96111 9.06059
max9901:max_f(0.8,1] 0.69926 -0.25813 -5.79400 9.08833
sigma.sq 0.45277 0.39071 0.14322 1.17856
phi 2.12385 1.44856 0.12026 8.46872
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spBayes GLM Model - Fixed?

spg_fix = spBayes::spGLM(
no_inf ~ elev:elev_f + max9901:max_f + stdev9901,

data=loaloa, family=”binomial”, weights=loaloa$no_exam,

coords=cbind(loaloa$longitude, loaloa$latitude),

cov.model=”exponential”, n.samples=20000,

starting=list(beta=rep(0,7), phi=3, sigma.sq=1, w=0),

priors=list(phi.unif=c(0.1, 10), sigma.sq.ig=c(2, 2)),

amcmc=list(n.batch=1000, batch.length=20, accept.rate=0.43)
)

save(spg_fix, loaloa, file=”loaloa_fix.Rdata”)
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param post_mean post_med post_lower post_upper

(Intercept) -3.14223 -3.43877 -4.38140 -1.01108
stdev9901 1.88811 1.02957 -5.28818 9.04674
elev:elev_f(0,1000] 0.00036 0.00048 -0.00069 0.00114
elev:elev_f(1000,1300] -0.00036 -0.00031 -0.00127 0.00039
elev:elev_f(1300,2000] -0.00209 -0.00206 -0.00310 -0.00131
max9901:max_f(0,0.8] 0.74129 0.55728 -0.98971 2.78417
max9901:max_f(0.8,1] 1.15469 0.92740 -0.18829 2.89406
sigma.sq 1.26052 1.21204 0.32891 2.36502
phi 2.51439 2.38441 1.08064 4.86766
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Fit - Training
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Fit - Testing
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Diggle’s Predictive Surface
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elevation and NDVI. Thus, when the
accuracies of the predictions obtained from
the spatial model (present study) and the
earlier model (Thomson et al., 2004) are
compared, by plotting observed prevalences
against those predicted in each model
(Fig. 3), the plot for the spatial model
shows substantially less scatter.

The probability contour map (PCM)
obtained from the spatial model is presented
in Figure 4. Areas within the red-brown
colour range (indicating probabilities of at
least 70%) are those where there is a high
probability that the policy intervention
threshold of 20% is exceeded. Likewise,
areas in the pale orange-yellow colour range
(indicating probabilities of (30%) are those
where there is a low probability that the
threshold of 20% is exceeded, whilst the
pink areas (indicating probabilities of .30%
but ,70%) can be considered as areas of
high uncertainty. As expected, there is a
qualitative similarity between Figures 2 and
4 but, as discussed below, the quantitative
differences are sufficient to affect the inter-
pretation materially.

DISCUSSION

The vectors of L. loa are flies of the genus
Chrysops. They are associated with forest
and forest-fringe habitats, with the larval
stages restricted to wet, organically rich and
muddy low-lying habitats within the forest.
The mapping and modelling of key environ-
mental variables, such as vegetation cover
and elevation, provide baseline information
delineating areas of potential L. loa trans-
mission (Thomson et al., 2000). The
empirical relationship observed between
the prevalence of human infection with
L. loa and environmental factors requires
interpretation in the light of current under-
standing of the biology of the vector and the
filarial worm.

It is possible to estimate surface tempera-
tures from the thermal channels of a number
of satellite sensors (Ceccato et al., 2005).
The land surface temperature (LST), a
proxy environmental variable, is commonly
calculated using a split-window method that
takes into account some atmospheric effects.
However, since the relationship between air

FIG. 2. Point estimates of the prevalence of Loa loa microfilaraemia, over-laid with the prevalences observed in
field studies.

MODELLING Loa RISK 503
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Exceedance Probability - Posterior Summary
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Exceedance Probability Predictive Surface
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phenology have been extensively researched
using vegetation indices such as NDVI,
which is an empirical formula designed to
produce quantitative measures related to
vegetation properties such as vegetation
biomass and conditions. NDVI derived
from the imagery of the SPOT satellite
series have been extensively used to map the
forests of West and Central Africa (Mayaux
et al., 2004). The higher the NDVI value is,
the denser or healthier the green vegetation
is, although there is a tendency for the index
to saturate at higher levels. This saturation
may account for the observation that the
increase in L. loa prevalence with increasing
NDVI is truncated at a maxNVDI of about
0.8 [Fig. 1(b)].

Similar ERM, with relevance to disease
control in Africa, have been generated for
many vector-borne diseases (Thomson
and Connor, 2000), including malaria
(Kleinschmidt et al., 2001), Rift Valley fever
(Anyamba et al., 2002), visceral leishmania-
sis (Thomson et al., 1999), and schistoso-
miasis (Malone et al., 1997; Brooker et al.,
2002), as well as non-vector-borne
diseases, such as those caused by intestinal

nematodes (Brooker et al., 2000) and
meningococcal meningitis (Molesworth
et al., 2003). After using a range of environ-
mental data, as predictors in regression
models, model outputs have been mapped
within a geographical information system
(Thomson and Connor, 2000). To date,
however, the uncertainty in model outputs
has not been addressed explicitly.

Decision makers need to take action
under uncertainty. Those involved in the
distribution of ivermectin for the APOC
need to weigh the evidence of probable risk
of adverse reactions against the societal
benefits of onchocerciasis control. In this
context, the agreed threshold for a policy
intervention is a local prevalence of L. loa
microfilaraemia in excess of 20%. An
appropriate map to support such interven-
tions therefore needs to quantify the
strength of the available evidence pointing
to exceedance of this threshold, as in the
probability contour map created in the
present study (Fig. 4). The traditional prac-
tice of mapping estimated prevalence does
not produce such a result. An estimated
prevalence of 25%, for example, may or may

FIG. 4. A probability contour map, indicating the probability that the prevalence of Loa loa microfilaraemia in

each area exceeds 20%, over-laid with the prevalences observed in field studies.

MODELLING Loa RISK 505
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Spatial Assignment of Migratory
Birds



Background

Using intrinsic markers (genetic and isotopic signals) for the purpose of
inferring migratory connectivity.

• Existing methods are too coarse for most applications

• Large amounts of data are available ( >150,000 feather samples from
>500 species)

• Genetic assignment methods are based on Wasser, et al. (2004)

• Isotopic assignment methods are based on Wunder, et al. (2005)
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Data - DNA microsatellites and 𝛿2H

Hermit Thrush (Catharus guttatus)

• 138 individuals
• 14 locations
• 6 loci
• 9-27 alleles / locus

Wilson’s Warbler (Wilsonia pusilla)

• 163 individuals
• 8 locations
• 9 loci
• 15-31 alleles / locus
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Sampling Locations
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Allele Frequency Model

For the allele 𝑖, from locus 𝑙, at location 𝑘

𝐲⋅𝑙𝑘|𝚯 ∼ 𝒩 (∑𝑖 𝑦𝑖𝑙𝑘, 𝐟⋅𝑙𝑘)

𝑓𝑖𝑙𝑘 = exp(Θ𝑖𝑙𝑘)
∑𝑖 exp(Θ𝑖𝑙𝑘)

𝚯𝑖𝑙|𝜶, 𝝁 ∼ 𝒩(𝝁𝑖𝑙, 𝚺)

{Σ}𝑖𝑗 = 𝜎2 exp ( − ({𝑑}𝑖𝑗 𝑟)𝜓) + 𝜎2
𝑛 1𝑖=𝑗

32



Predictions by Allele (Locus 3)
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Genetic Assignment Model

Assignment model assuming Hardy-Weinberg equilibrium and allowing for
genotyping (𝛿) and single amplification (𝛾) errors.

𝑃(𝑆𝐺|𝐟 , 𝑘) = ∏
𝑙

𝑃(𝑖𝑙, 𝑗𝑙|𝐟 , 𝑘)

𝑃 (𝑖𝑙, 𝑗𝑙|𝐟 , 𝑘) =
⎧{
⎨{⎩

𝛾𝑃 (𝑖𝑙|𝐟 , 𝑘) + (1 − 𝛾)𝑃(𝑖𝑙| ̃𝐟 , 𝑘)2 if 𝑖 = 𝑗
(1 − 𝛾)𝑃(𝑖𝑙|𝐟 , 𝑘)𝑃 (𝑗𝑙|𝐟 , 𝑘) if 𝑖 ≠ 𝑗

𝑃(𝑖𝑙|𝐟 , 𝑘) = (1 − 𝛿)𝑓𝑙𝑖𝑘 + 𝛿/𝑚𝑙
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Combined Model

Genetic Isotopic Combined

d = 0.05 and c = 0.01 based on Wasser et al. (2004), and
we found that in practice reasonable changes to these
values have little impact on the results.
To compute the likelihood of an assignment location

k, we can integrate over the unobserved allele frequency
surfaces (~f ) using the following Monte Carlo approxi-
mation:

PðSGjk;Gref Þ #
1

M

XM

m¼1

PðSGjk; ~f
ðmÞ

Þ ð7Þ

In this approximation, the ~f
ð%Þ

need to be realiza-
tions from the posterior predictive distribution of ~f

given the reference genotypes. We use posterior real-

izations from our first stage (~f
ðiÞ
, i = 1,…,1000, i.e.

M = 1000). Also, we opted to use the median rather
than the mean prescribed by equation 7, as we found
the distribution PðSGj~f

ðmÞ
; kÞ to be highly right skewed

making the mean estimate unstable. As further
validation, we found the median to display superior
assignment performance to mean, as assessed by
AUC.
To derive the posterior assignment probability surface

for a given genetic sample (PðkjSG;Gref Þ) using Eq. 7
we multiply by a spatial prior (p(k)) and normalize over
the grid of prediction locations to obtain a proper
probability,

(A)

(B)

(C)

(D)

Fig. 2. Posterior assignment probability maps, from left to right, of the genetic, isotopic and combined assignment model output.
Rows A and B reflect the results for the same hermit thrush test sample, and C and D of the same Wilson’s warbler test sample.
These pairs reflect the result of cross-validation by individual and cross-validation by location respectively. These cross-validation
schemes involve the exclusion of an individual or a sampling location before fitting the model to the remainder of the data. The fit-
ted model is then used to predict the origin of the excluded individuals. The indicates the true origin of the sample and ● indicate
all other sampling locations.

© 2013 John Wiley & Sons Ltd
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Model Assessment

Location CV Type N Ind 10% 30% 50% 70% 90%
Overall Individual 75 0 111 272 474 1151

Location 342 584 1124 1567 2971
Al Individual 18 77.8 340 524 774 1562

Location 406 494 872 1490 1590
Co Individual 5 44.5 117 141 219 919

Location 1348 1462 1804 1863 2288
Ont Individual 13 0 43.3 111 132 222

Location 2245 2617 2993 3195 3467
Or Individual 24 23.8 134 254 454 786

Location 342 342 448 712 1641
SF Individual 15 0 128 376 713 927

Location 796 896 1124 1124 1190

Supplementary Table 2: Wilson’s warbler - Table shows percentiles of the distribution of great circle distances
(in km) between the center of the grid cell of known origin to the center of the grid cell with maximum median
posterior probability for all samples at the given location.
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Supplementary Figure 1: ROC curves for Hermit Thrush (A - C) and Wilson’s Warbler (D - F) under
individual (A and B) and location (B and E) based cross-validation. Combined model results under size
adjusted individual cross-validation are presented in C and F. Identically colored lines reflect the result of
independent MCMC chains.
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Migratory Connectivity

Figure 5: Maps showing connectivity between sampling locations of wintering Wilson’s warblers and max-
imum a posteriori (MAP) estimates of breeding season origin using genetic (A), isotopic (B) or combined
(C) models. Connections are indicated using great circle arcs and are colored according to wintering loca-
tion. Breeding and wintering range maps for Wilson’s warbler are indicated in orange and blue respectively
(Ridgely et al 2007). Each assigned location is a point estimate with associated uncertainty, but the collective
distribution of assigned origins is revealing of migratory connectivity between regions of mainland Mexico
and locations in Western North America and Baja and the coastal Pacific Northwest.
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