Lecture 12

Gaussian Process Models

10/1?/2018



Multivariate Normal



Multivariate Normal Distribution

For an n-dimension multivate normal distribution with covariance X
(positive semidefinite) can be written as

Y ~N(p, X )where {3}, =07 =p;;0,0,
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For the n dimensional multivate normal given on the last slide, its density is
given by

(2m) ™2 det() V2 exp ( (Y — ) S (Y - u>)
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and its log density is given by

(¥ — )Y — )
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—g log 2 — 5 log det(X)
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Sampling

To generate draws from an n-dimensional multivate normal with mean
and covariance matrix X3,

- Find a matrix A such that ¥ = A A? most often we use
A = Chol(X) where A is a lower triangular matrix.

- Draw n iid unit normals (N (0, 1)) as z

- Obtain multivariate normal draws using

Y=pu+Az
nel ax!
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Bivariate Example

rho=0.9

rho=0.1

> rho=-0.9

rho=-0.7

rho=-0.5

rho=-0.1
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Marginal distributions

Proposition - For an n-dimensional multivate normal with mean g and covariance
matrix 33, any marginal or conditional distribution of the 3's will also be
(multivariate) normal.

For a univariate marginal distribution,

yi = N(py, )

For a bivariate marginal distribution,
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Marginal distributions

Proposition - For an n-dimensional multivate normal with mean g and covariance
matrix 33, any marginal or conditional distribution of the 3's will also be
(multivariate) normal.

For a univariate marginal distribution,

yi = N(py, )

For a bivariate marginal distribution,

For a k-dimensional marginal distribution,
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Conditional Distributions

If we partition the n-dimensions into two pieces such that
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Conditional Distributions

If we partition the n-dimensions into two pieces such that

1231 3 2:12>
Y ~N ,
nx1 (Nz) (Em 3
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Y, ~N(py o, B )

kx1 kx1 kxk
Y, ~N(py, Xy )
n—kx1 n—kxl n—kxn—k

then the conditional distributions are given by
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Gaussian Processes

From Shumway,

Aprocess, Y = {Y (t) : t € T}, issaidto be aGaussian process
if all possible finite dimensional vectors y = (y f L

1 27 T Ity
forevery collection of time points t1, t,, ..., t,,, and every positive

integer m, have a multivariate normal distribution.
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Gaussian Processes

From Shumway,

Aprocess, Y = {Y (t) : t € T}, issaidto be aGaussian process
if all possible finite dimensional vectors Y = (Yy , Yy_ s - Yy )"
forevery collection of time points t1, t,, ..., t,,, and every positive
integer m, have a multivariate normal distribution.

So far we have only looked at examples of time series where 1" is discete
(and evenly spaces & contiguous), it turns out things get a lot more
interesting when we explore the case where T"is defined on a continuous
space (e.g. R or some subset of R).



Gaussian Process Regression
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Parameterizing a Gaussian Process

Imagine we have a Gaussian process defined such that
Y ={Y(t) : te€l0,1]},

- We now have an uncountably infinite set of possible t's and Y (¢)s.

- We will only have a (small) finite number of observations

Y (ty), ..., Y(t,) with which to say something useful about this
infinite dimensional process.

- The unconstrained covariance matrix for the observed data can have
up to n(n + 1)/2 unique values*

- Necessary to make some simplifying assumptions:

CAM;I- E(Y)/ E‘M‘l’( Ve. [/)/ CU\/ D‘M'JS

- Stationarity on oisFenia

- Simple parameterization of X



Covariance Functions

More on these next week, but for now some simple / common examples



Covariance Functions

More on these next week, but for now some simple / common examples

.
Exponential Covariance: feal dss
A ?
Sy yp) = o” exp (=t=t]1)

RSN



Covariance Functions

More on these next week, but for now some simple / common examples

Exponential Covariance:

S(ypyp) =c2exp(—[t—1t'|1)

Squared Exponential Covariance:

(Y, yy) = 0%exp (— (Jt —t'|1)?)



Covariance Functions

More on these next week, but for now some simple / common examples

Exponential Covariance:

Sy, yp) = 02 exp (— [t —t'| 1)
Squared Exponential Covariance:
Sy, yp) = c?exp (— (Jt —t'] 1)?)

Powered Exponential Covariance (p € (0, 2]):

Sy yp) =0 exp (— ([t —t'[ 1)P)



Covariance Function - Correlation Decay

corr
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Correlation Decay - AR(1)

Recall that for a stationary AR(1) process:

v(h) = a2¢" and p(h) = ¢/

therefore we can draw a somewhat similar picture about the decay of p as a

function of distance.
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Example




Our example has 15 observations which we would like to use as the basis for
predicting Y (¢) at other values of ¢ (say a sequence of values from 0 to 1).
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Our example has 15 observations which we would like to use as the basis for
predicting Y'(¢) at other values of ¢ (say a sequence of values from 0 to 1).

For now lets use a square exponential covariance with 02 =10andl =5

We therefore want to sample from Y .. 4|'Y yps
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Many draws later
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Exponential Covariance - Draw 3
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Exponential Covariance - Posterior
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Powered Exponential Covariance (p = 1.5)
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Back to the square exponential
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Sq Exp Cov - sigma2=10, |=5

Sq Exp Cov - sigma2=10, |=10

e T
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Effective Range

For the square exponential covariance

Cov(d) = o2 exp (—(I - d)?)
Corr(d) =exp (—(I - d)?)

we would like to know, for a given value of [, beyond what distance apart
must observations be to have a correlation less than 0.05?

oc d) = - - d " cip o
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Changing the scale (0'2)

Sq Exp Cov - sigma2=5, |=15 Sq Exp Cov - sigma2=15, |=15
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Fitting

gp_sq_exp_model = "model{
y ~ dmnorm(mu, inverse(Sigma))

for (i in 1:N) {
mu[i] <- O

}

for (i in 1:(N-1)) {
for (j in (i+1):N) {
Sigma[i,j] <- sigma2 * exp(- pow(1lxd[i,j],2))
Sigmal[j,i] <- Sigmali,j]
}
}

for (k in 1:N) {
Sigmal[k,k] <- sigma2 +(0.00001

}

sigma?2 ~ dlnorm(0, 1.5)

1 ~ dt(e, 2.5, 1) T(0,) # Half-cauchy(0,2.5)
}"
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Trace plots
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param  post_mean  post_med  post_lower  post_upper

L 3020 28.70 20.63 5151
sigma2 144 133 072 278 3




Post Mean Model
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Forcasting

Post Mean Model




Improving the model

gp_sq_exp_model2 = "model{ v )+ 7t
y ~ dmnorm(mu, inverse(Sigma)) 7/(+) ( )
o O
for (i in 1:N) { l"(*) MVM( ){>
mu[i] <- 0 cid 2
} L)~ N(O/ ”T/)

for (i in 1:(N-1)) {
for (j in (i+1):N) {
Sigma[i,j] <- sigma2 * exp(- pow(lxd[i,j]1,2))
Sigmal[j,i] <- Sigmali,j]
}
}

for (k in 1:N) {
Sigma[k,k] <- sigma2 +/muggseth

}
sigma2 ~ dlnorm(@, 1.5)
1 ~ dt(e, 2.5, 1) T(0,) # Half-cauchy(0,2.5)

nugget ~ dlnorm(0, 1)
34



Trace plots
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Fitted models

Post Mean Model

0
>
14
_2-
—3-
O.bO O.I25 0.;30 O.I75 1.2)0
t

36



Forcasting

Post Mean Model
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