Lecture 12

Gaussian Process Models

Colin Rundel 02/27/2017

Multivariate Normal

Multivariate Normal Distribution

For an n-dimension multivate normal distribution with covariance Σ (positive semidefinite) can be written as

$$\mathbf{Y}_{n\times 1} \sim N(\mathbf{\mu}_{n\times 1}, \mathbf{\Sigma}_{n\times n})$$
 where $\{\mathbf{\Sigma}\}_{ij} = \sigma_{ij}^2 = \rho_{ij} \, \sigma_i \, \sigma_j$

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \begin{pmatrix} \rho_{11}\sigma_1\sigma_1 & \cdots & \rho_{1n}\sigma_1\sigma_n \\ \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \cdots & \rho_{nn}\sigma_n\sigma_n \end{pmatrix} \end{pmatrix}$$

Density

For the *n* dimensional multivate normal given on the last slide, its density is

given by

$$(2\pi)^{-n/2} \left(\det(\boldsymbol{\Sigma})^{-1/2} \right) \exp\left(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu}) (\boldsymbol{\Sigma}^{-1}) \mathbf{Y} - \boldsymbol{\mu} \right)$$

and its log density is given by

To generate draws from an n-dimensional multivate normal with mean μ and covariance matrix Σ ,

To generate draws from an n-dimensional multivate normal with mean μ and covariance matrix Σ ,

 \cdot Find a matrix **A** such that $oldsymbol{\Sigma} = \mathbf{A} \mathbf{A}^t$, most often we use $\mathbf{A} = \mathsf{Chol}(oldsymbol{\Sigma})$

To generate draws from an n-dimensional multivate normal with mean μ and covariance matrix Σ ,

 \cdot Find a matrix **A** such that $oldsymbol{\Sigma} = \mathbf{A} \mathbf{A}^t$, most often we use $\mathbf{A} = \mathsf{Chol}(oldsymbol{\Sigma})$

• Draw n iid unit normals $(\mathcal{N}(0,1))$ as z

To generate draws from an n-dimensional multivate normal with mean μ and covariance matrix Σ ,

- ullet Find a matrix **A** such that $oldsymbol{\Sigma} = \mathbf{A} \mathbf{A}^t$, most often we use $\mathbf{A} = \mathsf{Chol}(oldsymbol{\Sigma})$
- Draw n iid unit normals $(\mathcal{N}(0,1))$ as z

Construct multivariate normal draws using

$$Y = \mu + Az$$

$$V_{ar}(y) = V_{ar}(n) + V_{c}(Az)$$

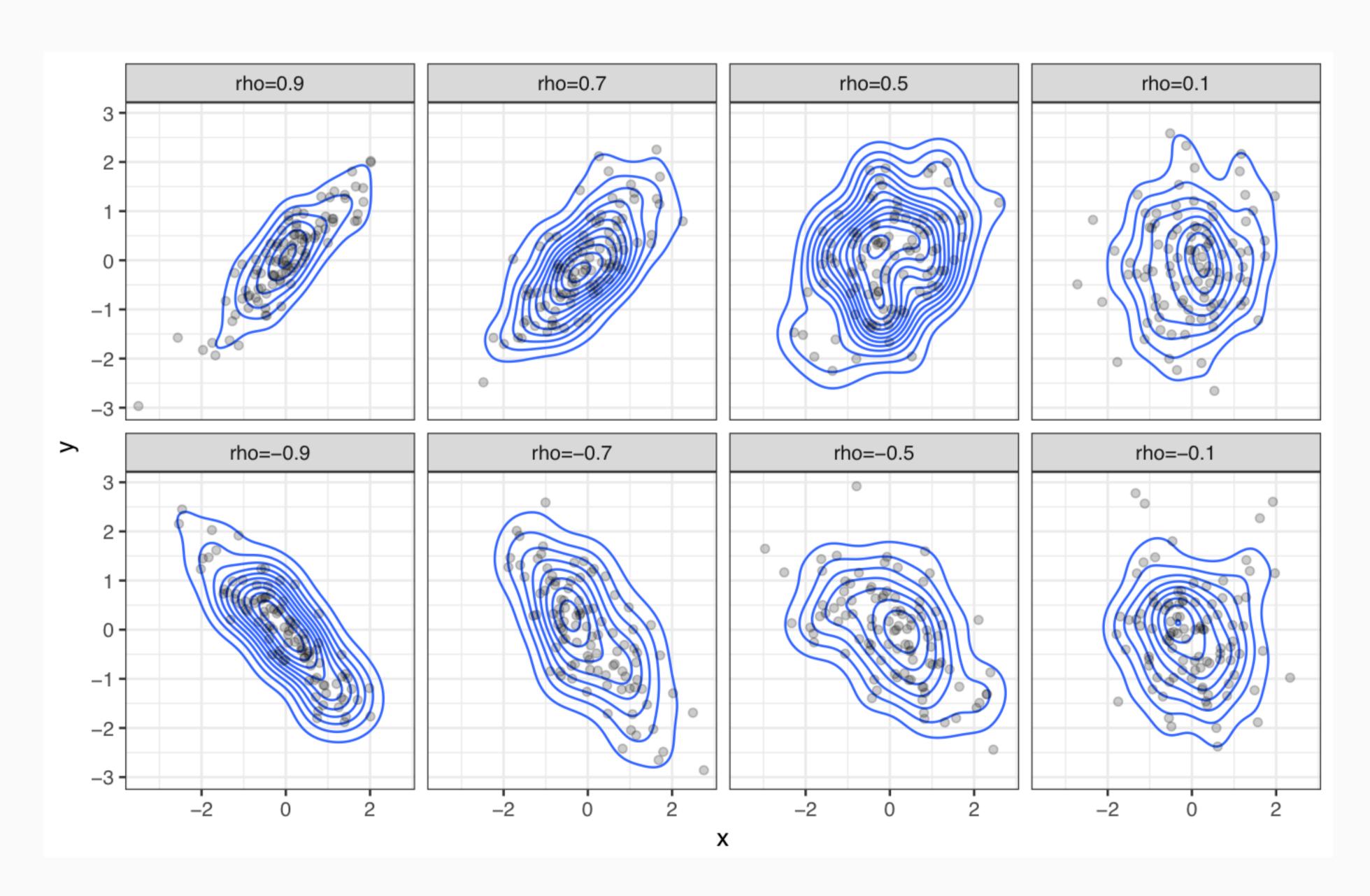
$$= \mu$$

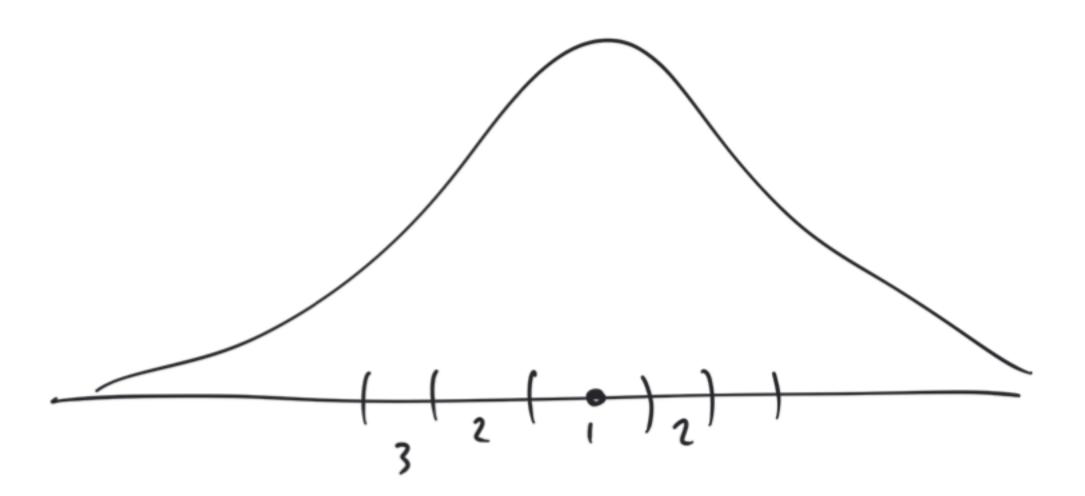
$$= A V_{ar}(z) A^{t}$$

$$= \xi$$
5.

Bivariate Example

$$\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$





Proposition - For an *n*-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \, \gamma_{ii})$$

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \gamma_{ii})$$

For a bivariate marginal distribution,

$$\mathbf{y}_{ij} = \mathcal{N}\left(\begin{pmatrix} \mu_i \\ \mu_j \end{pmatrix}, \begin{pmatrix} \gamma_{ii} & \gamma_{ij} \\ \gamma_{ji} & \gamma_{jj} \end{pmatrix} \right)$$

Proposition - For an *n*-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \gamma_{ii})$$

For a bivariate marginal distribution,

$$\mathbf{y}_{ij} = \mathcal{N}\left(\begin{pmatrix} \mu_i \\ \mu_j \end{pmatrix}, \begin{pmatrix} \gamma_{ii} & \gamma_{ij} \\ \gamma_{ji} & \gamma_{jj} \end{pmatrix} \right)$$

For a *k*-dimensional marginal distribution,

$$\mathbf{y}_{i_1, \dots, i_k} = \mathcal{N} \left(\begin{pmatrix} \mu_{i_1} \\ \vdots \\ \mu_{i_k} \end{pmatrix}, \begin{pmatrix} \gamma_{i_1 i_1} & \cdots & \gamma_{i_1 i_k} \\ \vdots & \ddots & \vdots \\ \gamma_{i_k i_1} & \cdots & \gamma_{i_k i_k} \end{pmatrix} \right)$$

Conditional Distributions

If we partition the *n*-dimensions into two pieces such that $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)^t$ then

$$\mathbf{Y}_{n \times 1} \sim \mathcal{N} \left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right)$$
 $\mathbf{Y}_{n \times 1} \sim \mathcal{N} \left(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11} \right)$
 $k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11} \right)$
 $k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$
 $n - k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$
 $n - k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$

Conditional Distributions

If we partition the *n*-dimensions into two pieces such that $\mathbf{Y} = (\mathbf{Y}_1, \mathbf{Y}_2)^t$ then

$$\mathbf{Y}_{n \times 1} \sim \mathcal{N} \left(\begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right)$$
 $\mathbf{Y}_{n \times 1} \sim \mathcal{N} \left(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11} \right)$
 $k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11} \right)$
 $k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$
 $n - k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$
 $n - k \times 1 \sim \mathcal{N} \left(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22} \right)$

then the conditional distributions are given by

$$Y_1 \mid Y_2 = a \sim \mathcal{N}(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \, \boldsymbol{\Sigma}_{22}^{-1} \, (a - \boldsymbol{\mu}_2), \, \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \, \boldsymbol{\Sigma}_{22}^{-1} \, \boldsymbol{\Sigma}_{21})$$

$$Y_2 \mid Y_1 = b \sim \mathcal{N}(\boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} (b - \boldsymbol{\mu}_1), \ \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{21})$$

Gaussian Processes

From Shumway,

A process, $\mathbf{Y} = \{Y_t : t \in T\}$, is said to be a Gaussian process if all possible finite dimensional vectors $\mathbf{y} = (y_{t_1}, y_{t_2}, ..., y_{t_n})^t$, for every collection of time points $t_1, t_2, ..., t_n$, and every positive integer n, have a multivariate normal distribution.

Gaussian Processes

From Shumway,

A process, $\mathbf{Y} = \{Y_t : t \in T\}$, is said to be a Gaussian process if all possible finite dimensional vectors $\mathbf{y} = (y_{t_1}, y_{t_2}, ..., y_{t_n})^t$, for every collection of time points $t_1, t_2, ..., t_n$, and every positive integer n, have a multivariate normal distribution.

So far we have only looked at examples of time series where T is discete (and evenly spaces & contiguous), it turns out things get a lot more interesting when we explore the case where T is defined on a *continuous* space (e.g. \mathbb{R} or some subset of \mathbb{R}).

Gaussian Process Regression

$$Y = \{Y_t : t \in [0,1]\},$$

Imagine we have a Gaussian process defined such that

$$Y = \{Y_t : t \in [0,1]\},$$

• We now have an uncountably infinite set of possible Y_t s.

$$Y = \{Y_t : t \in [0,1]\},$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.

$$Y = \{Y_t : t \in [0,1]\},$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.
- The unconstrained covariance matrix for the observed data can have up to n(n+1)/2 unique values (p >>> n)

$$Y = \{Y_t : t \in [0,1]\},$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.
- The unconstrained covariance matrix for the observed data can have up to n(n+1)/2 unique values (p >>> n)
- Necessary to make some simplifying assumptions:
 - Stationarity
 - Simple parameterization of Σ

Covariance Functions

More on these next week, but for now some simple / common examples

Exponential Covariance:

$$L = 0$$
 E => 0

$$\Sigma(y_t, y_{t'}) = \frac{\sigma^2 \exp(-|t - t'| 1)}{C}$$
 length / mase

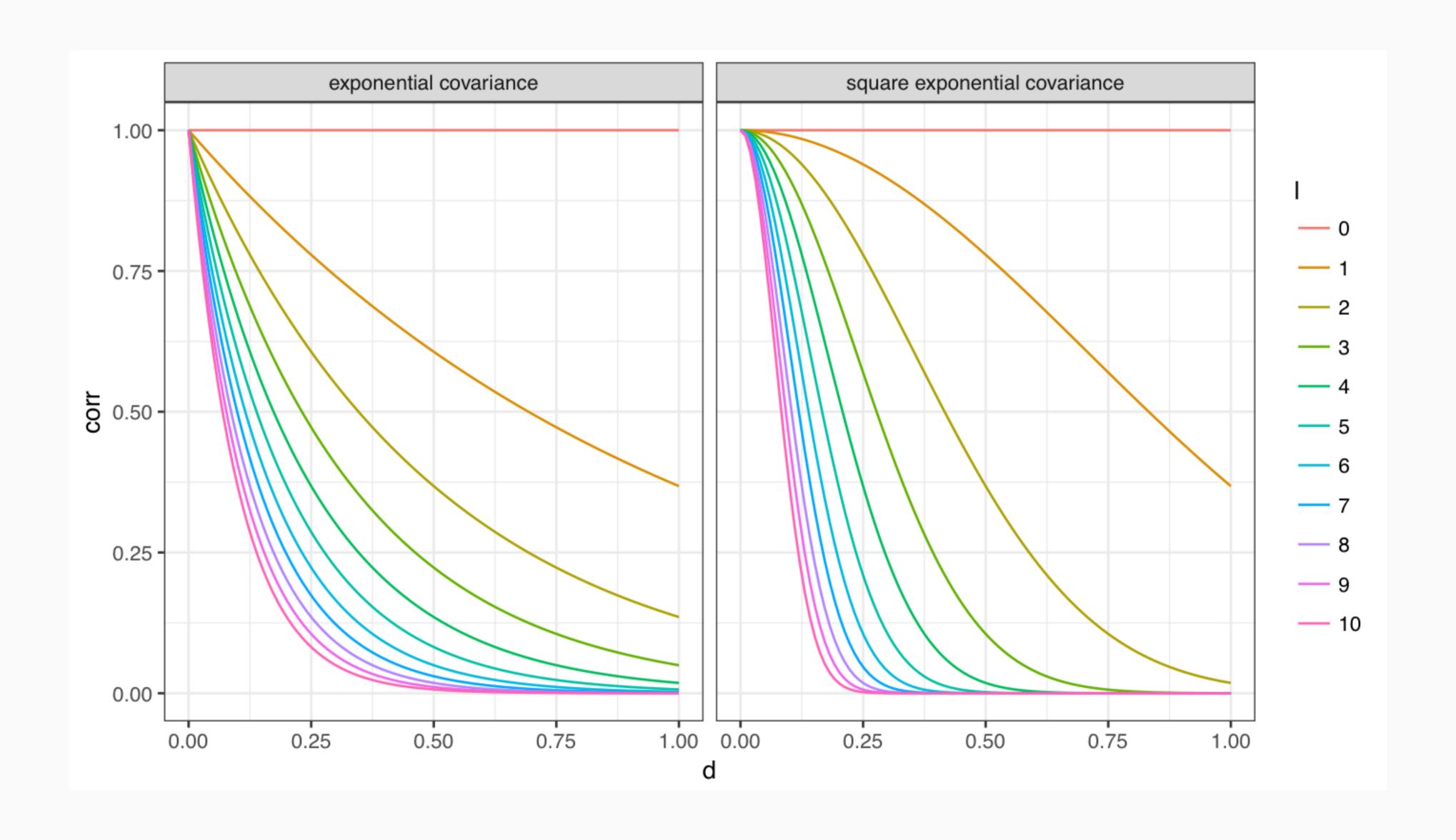
Squared Exponential Covariance:

$$\Sigma(y_t, y_{t'}) = \sigma^2 \exp\left(-\left(|t - t'| l\right)^2\right)$$

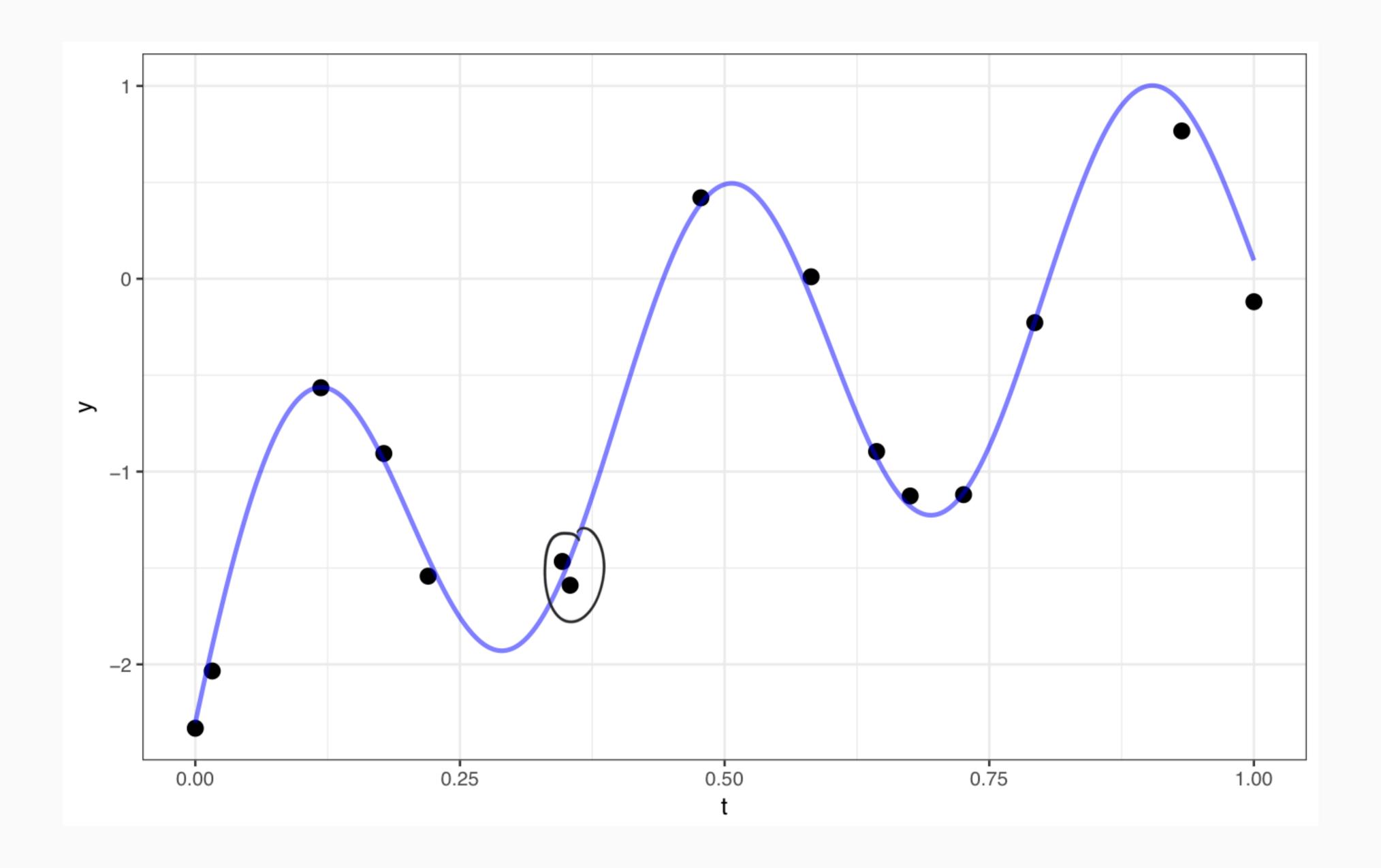
Powered Exponential Covariance ($p \in (0, 2]$):

$$\Sigma(y_t, y_{t'}) = \sigma^2 \exp(-(|t - t'| l)^p)$$

Covariance Function Decay



Example



Prediction

Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

Prediction

Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

For now lets use a square exponential covariance with $\sigma^2=10$ and l=10

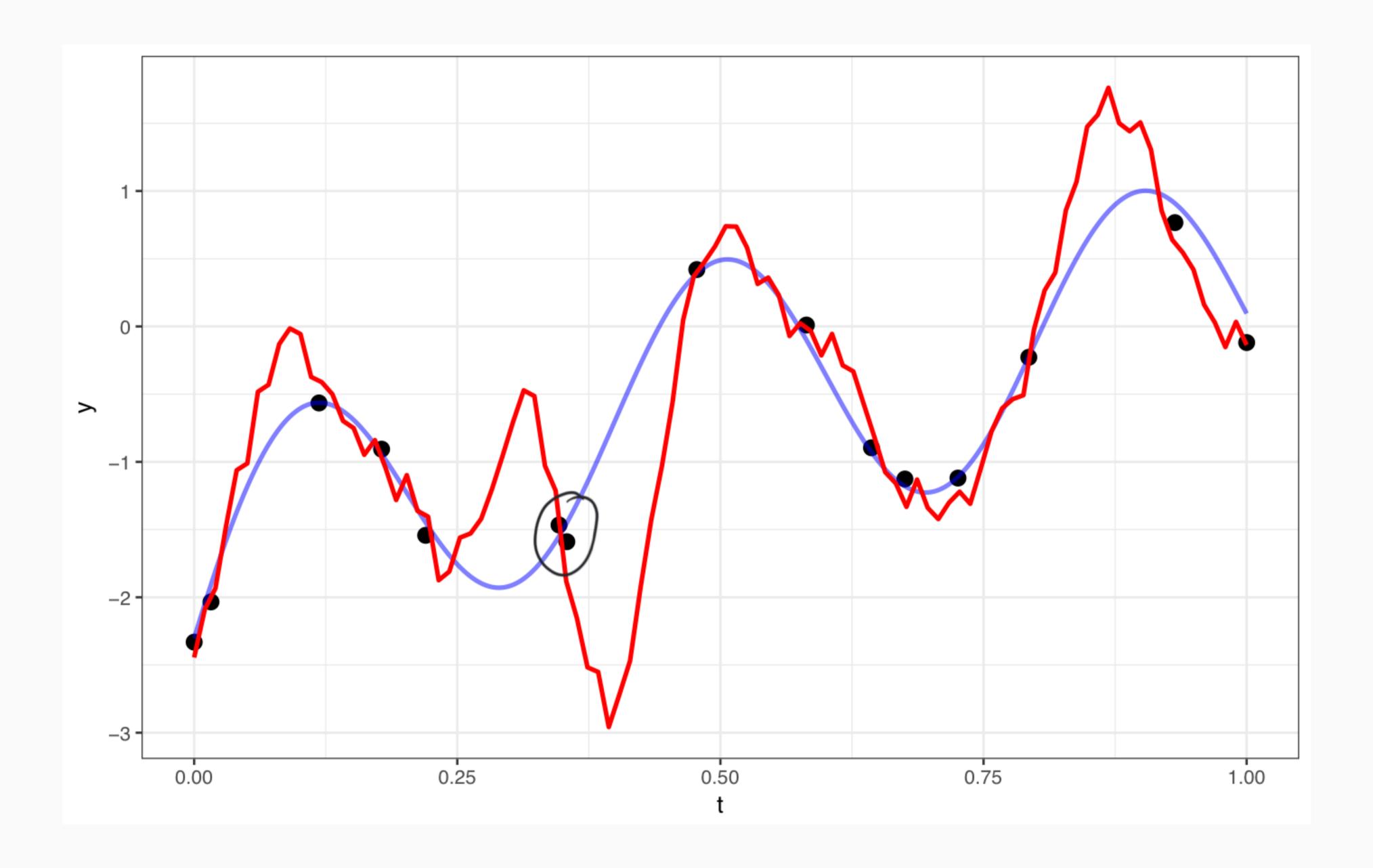
Prediction

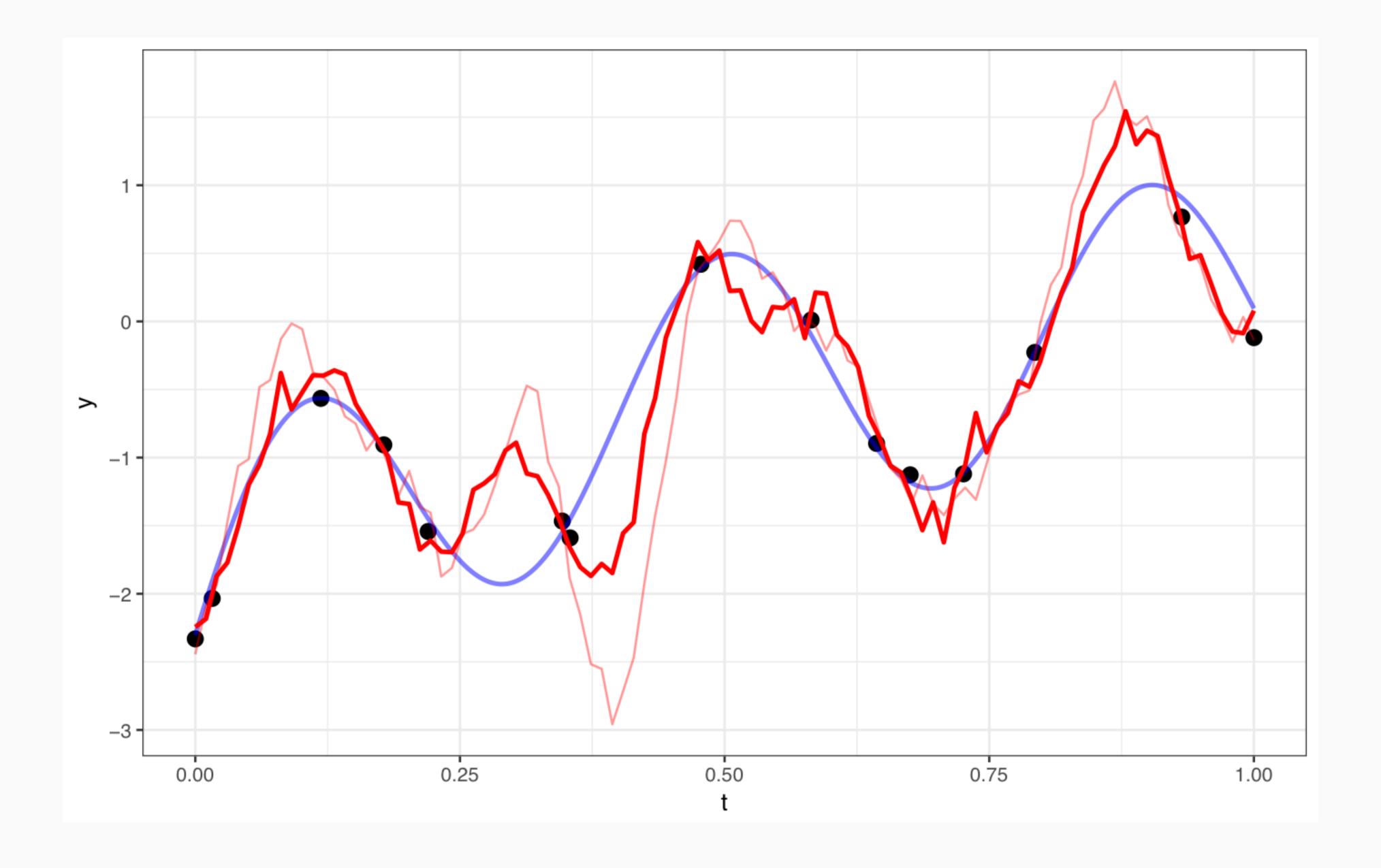
Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

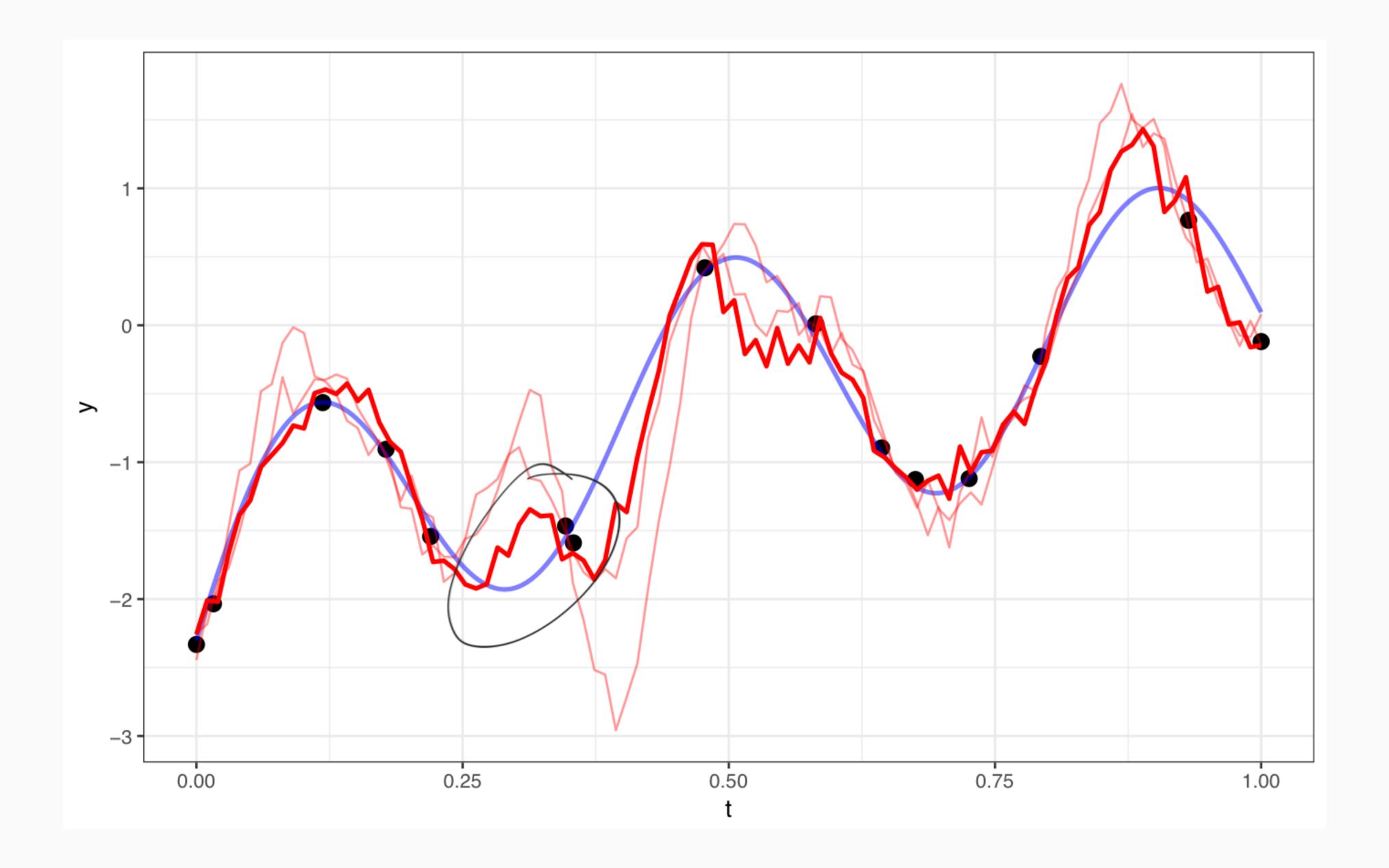
For now lets use a square exponential covariance with $\sigma^2=10$ and l=10

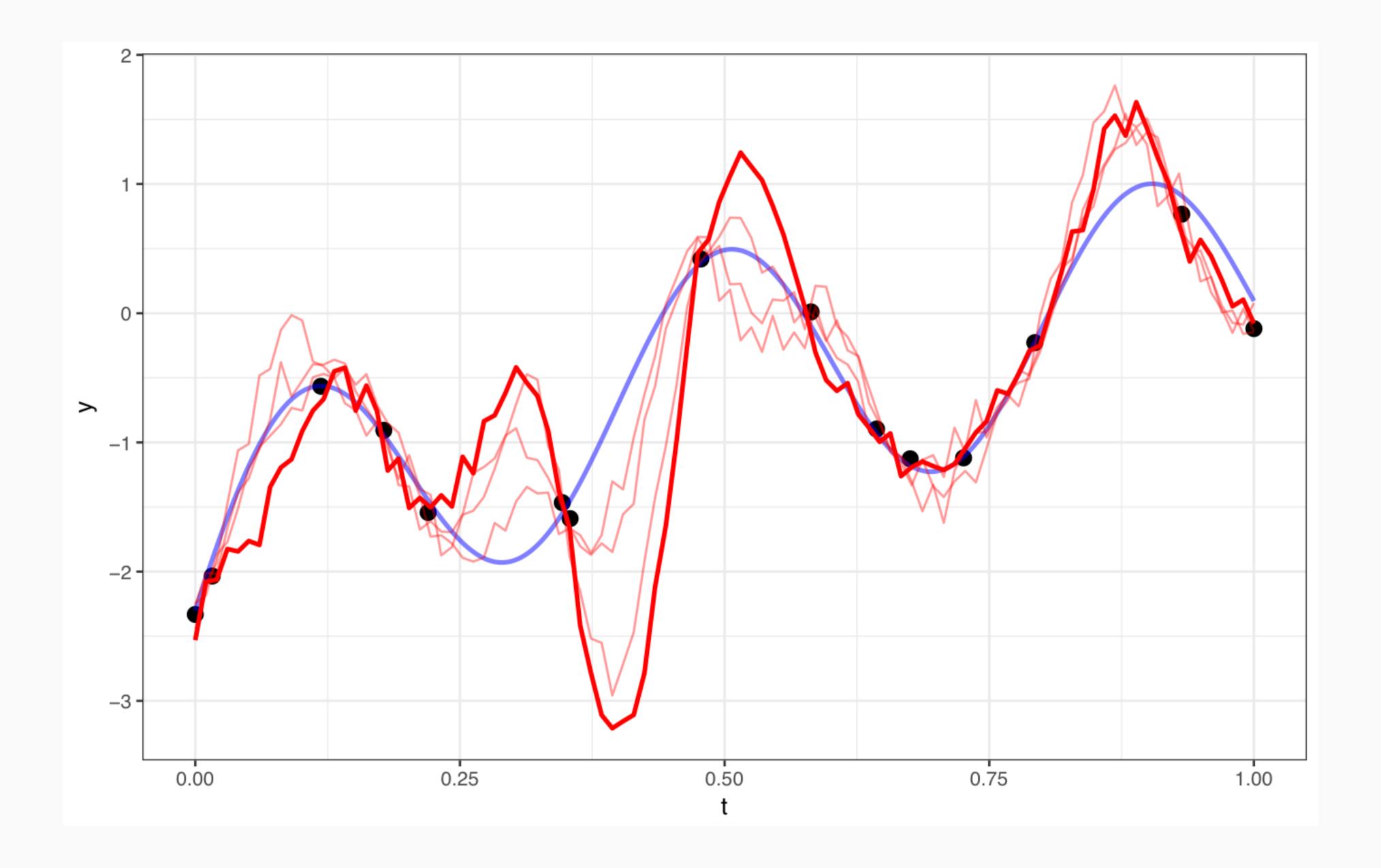
We therefore want to sample from $Y_{pred} | Y_{obs}$.

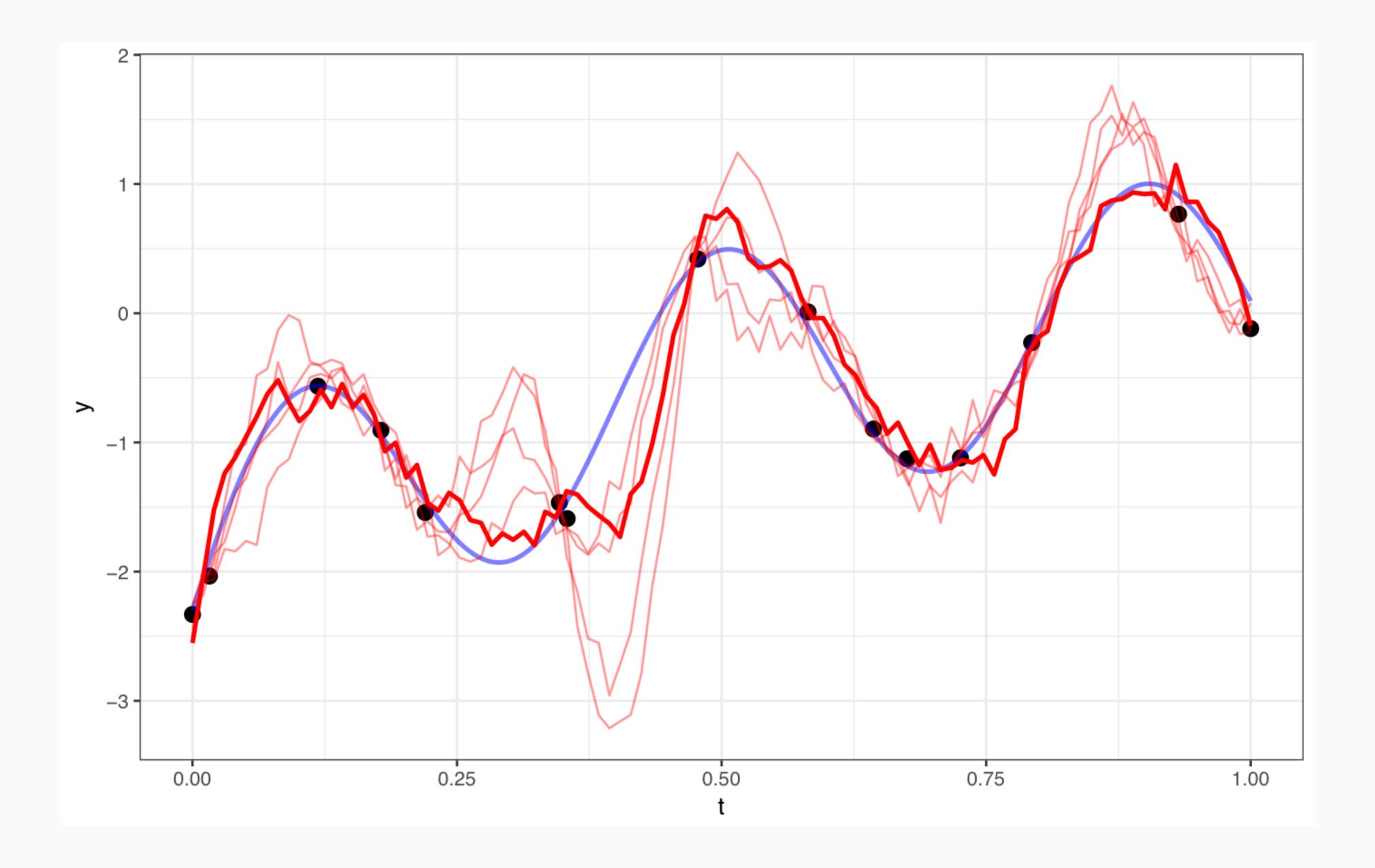
$$Y_{pred} \mid Y_o bs = y \sim \mathcal{N}(\mathbf{\Sigma}_{po} \, \mathbf{\Sigma}_{obs}^{-1} \, y, \, \mathbf{\Sigma}_{pred} - \mathbf{\Sigma}_{po} \, \mathbf{\Sigma}_{pred}^{-1} \, \mathbf{\Sigma}_{op})$$



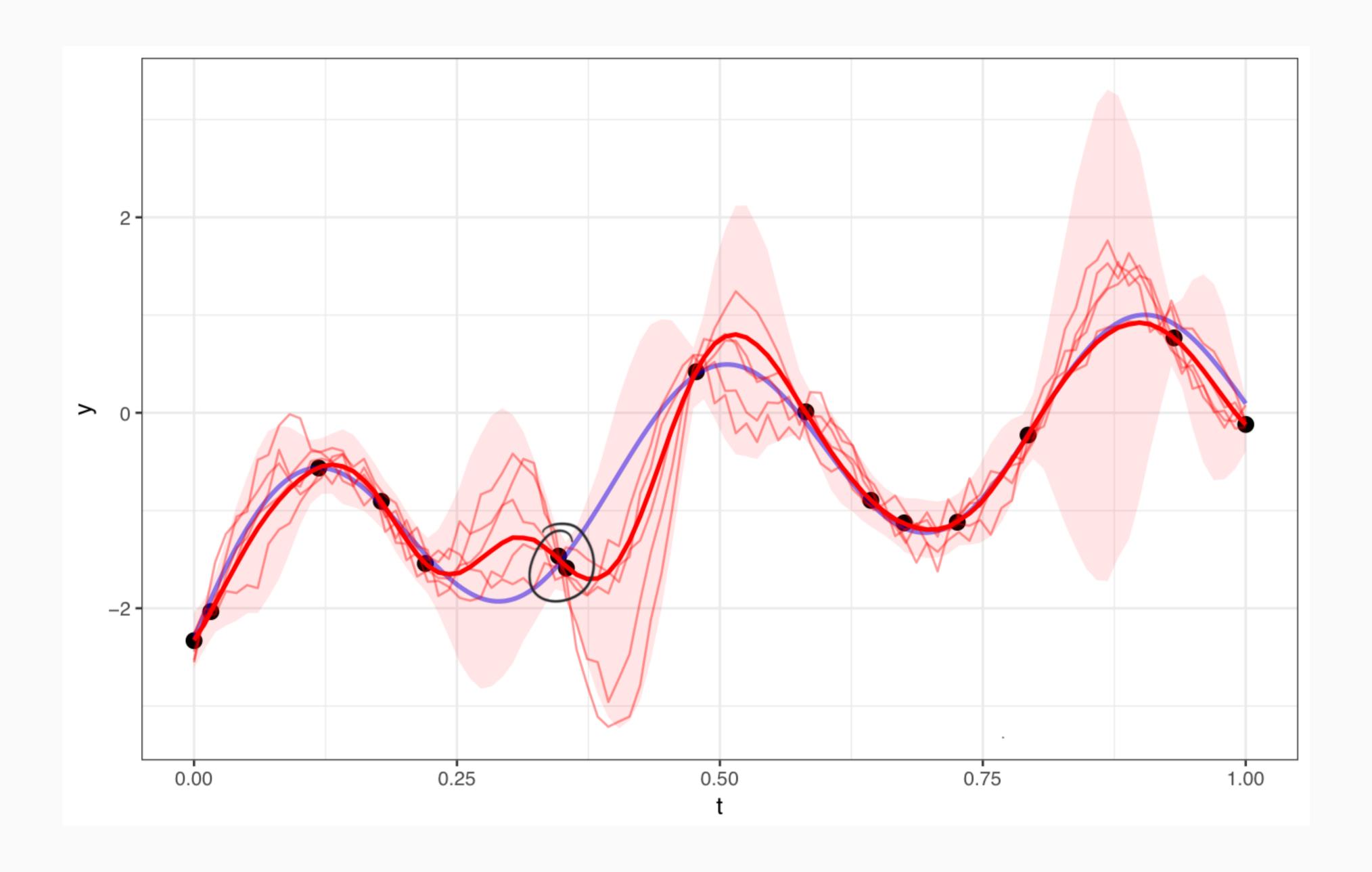






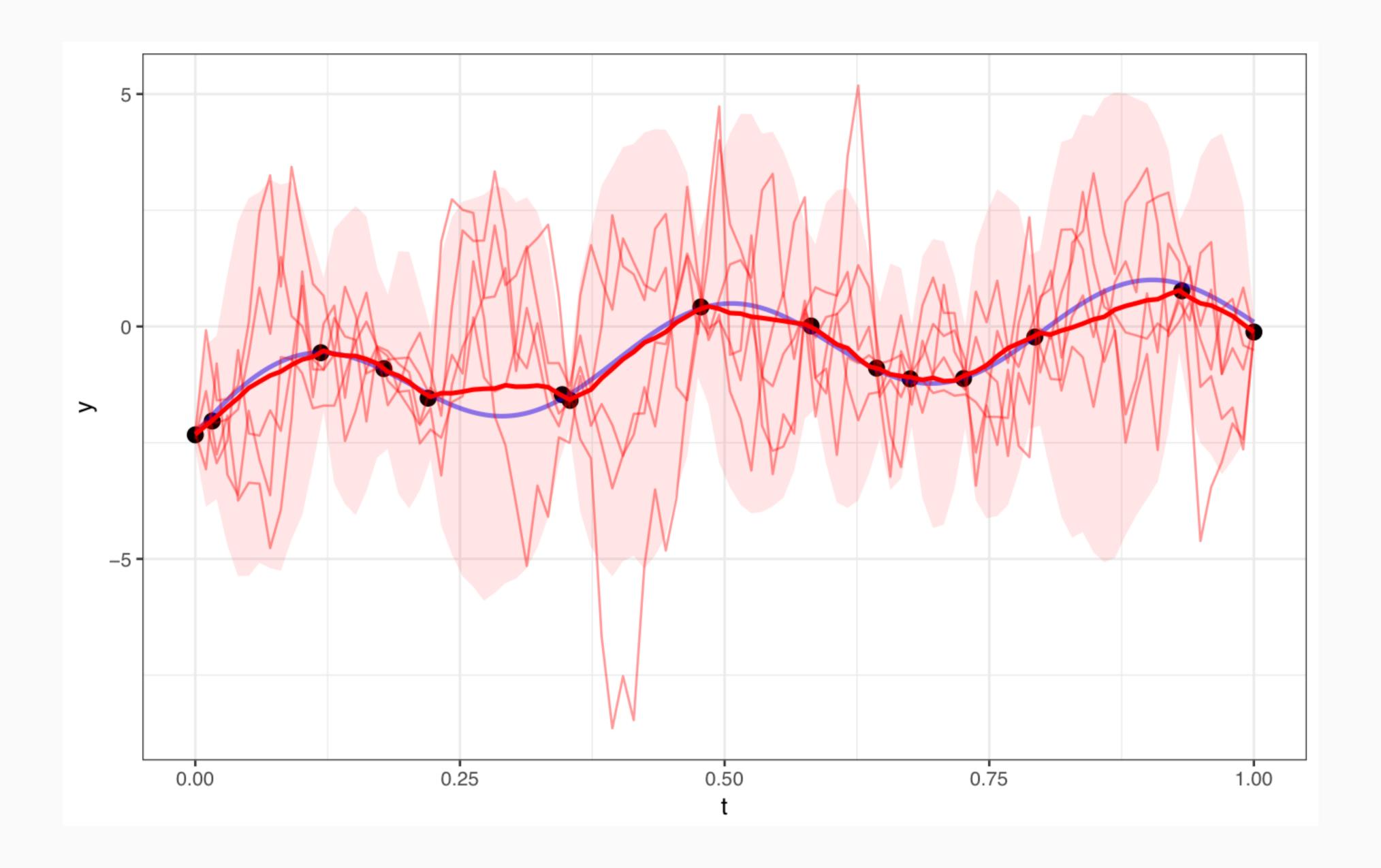


Many draws later

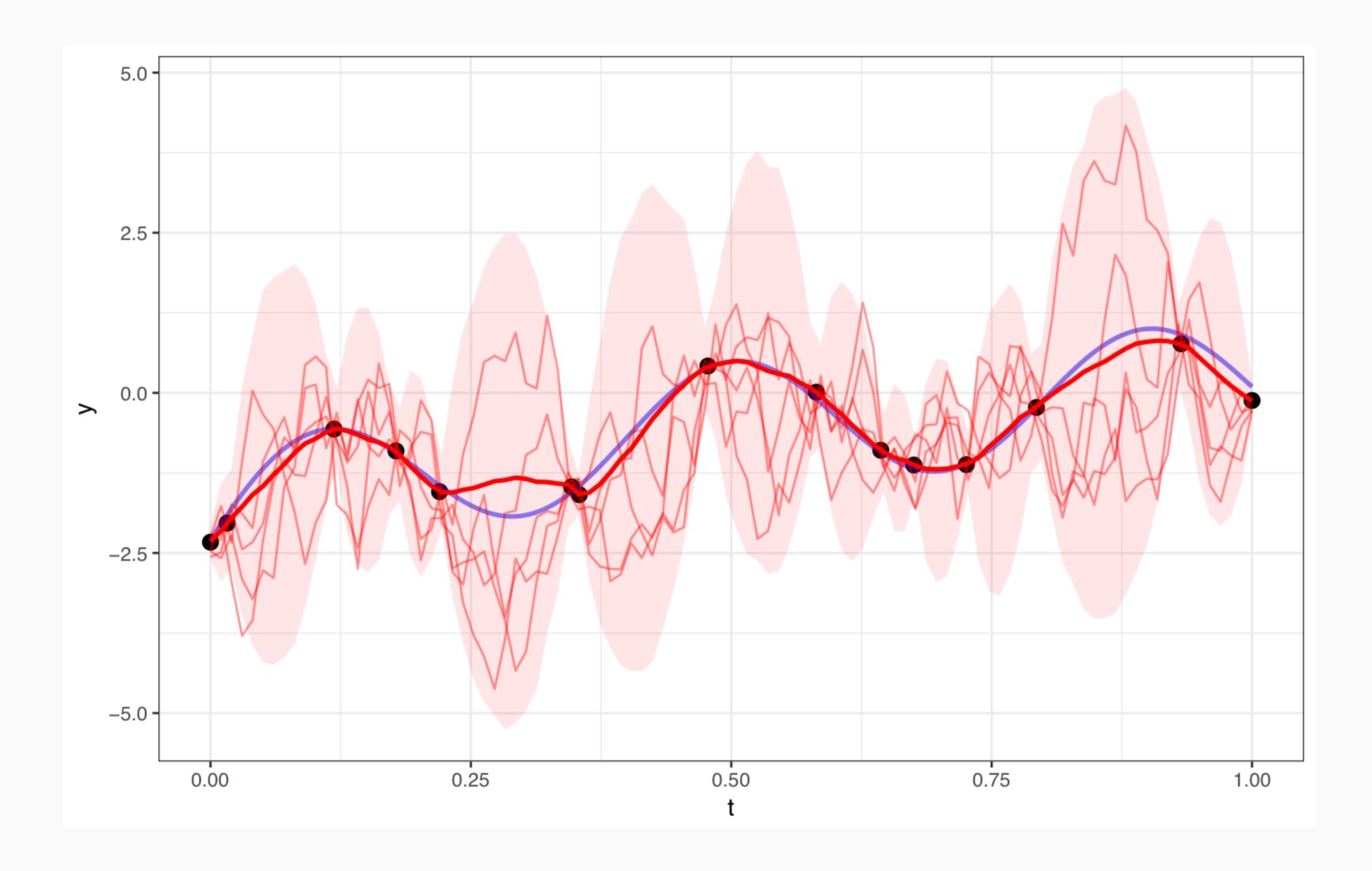


. 21

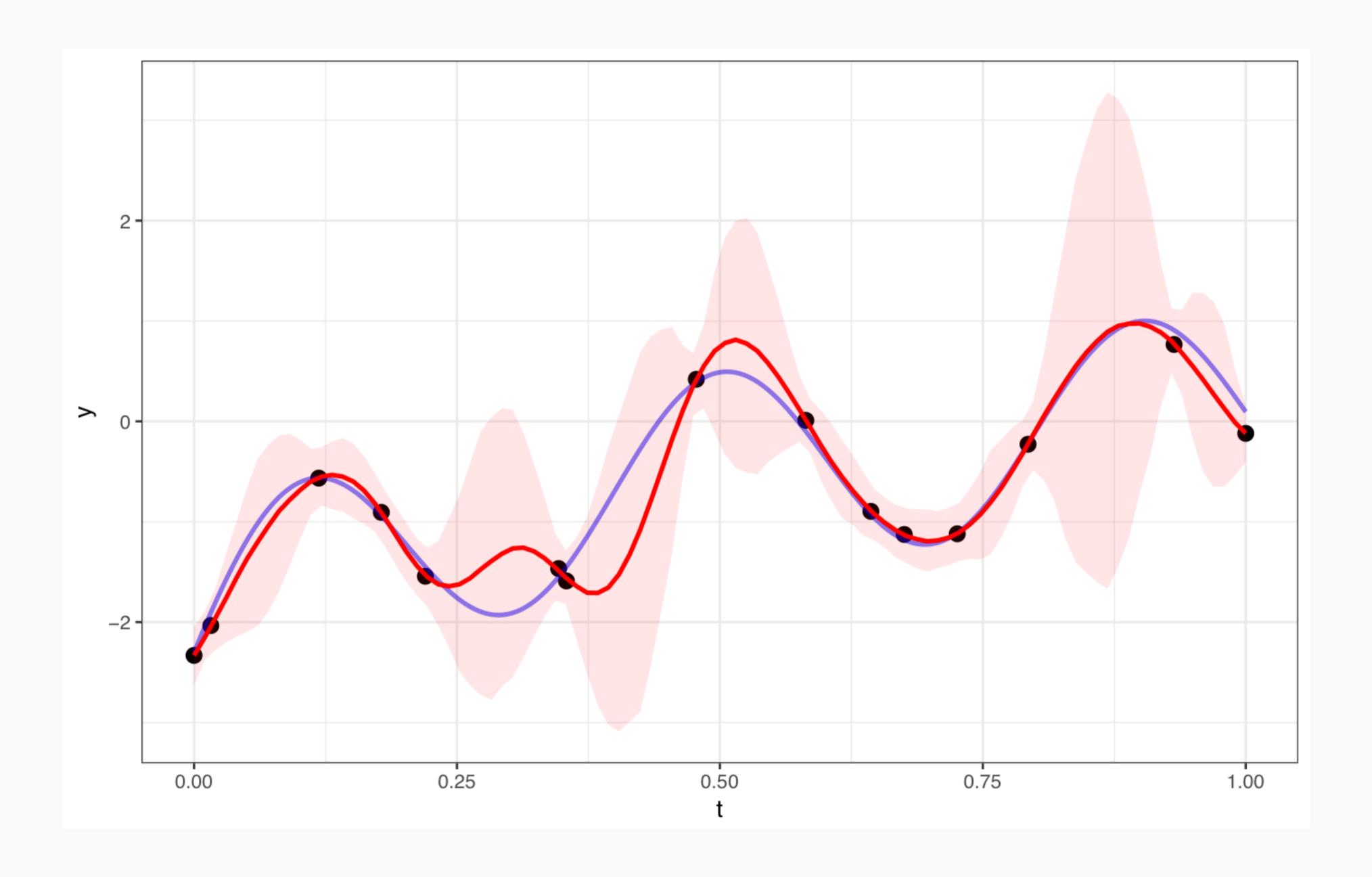
Exponential Covariance



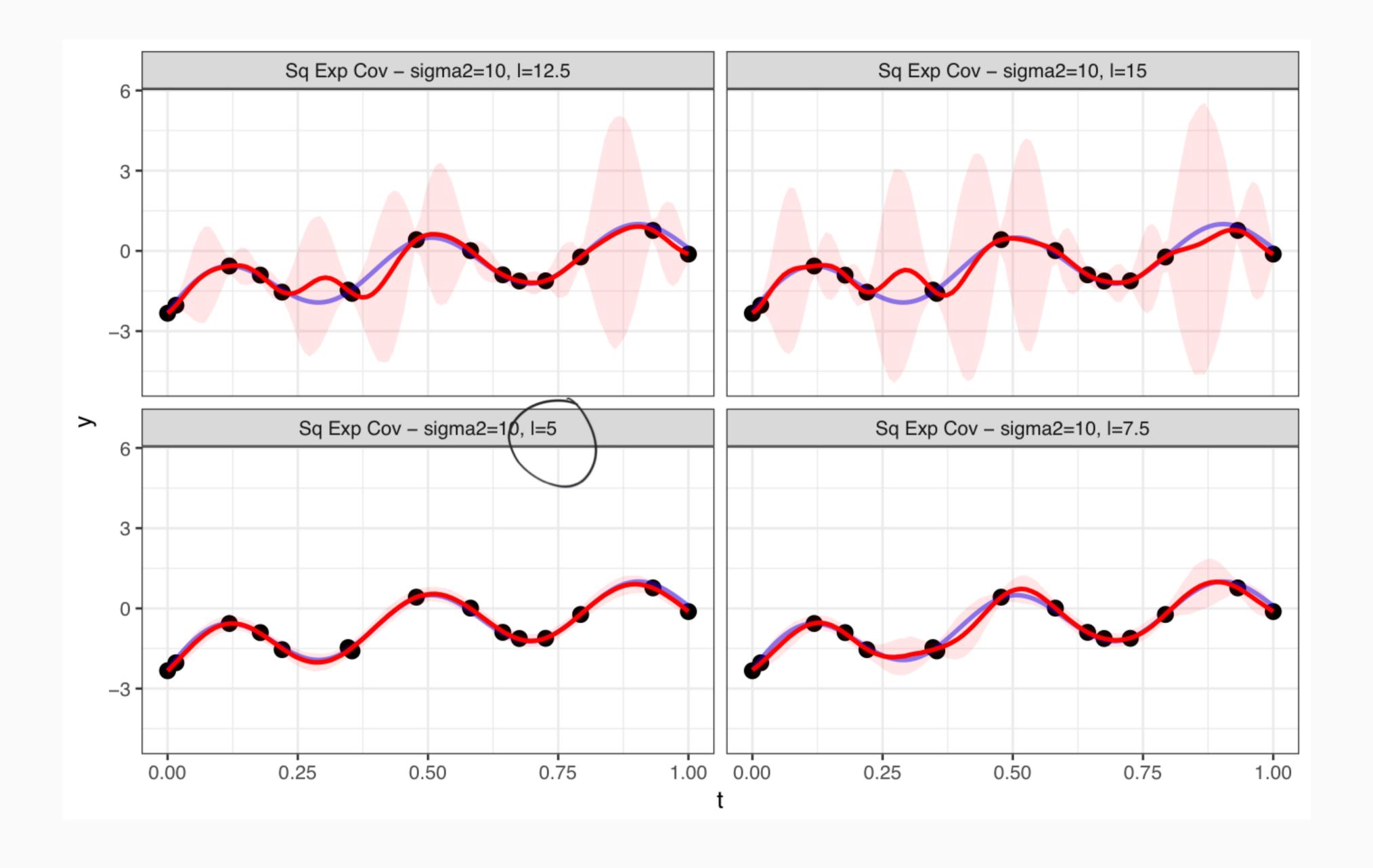
Powered Exponential Covariance (p = 1.5)



Back to the square exponential



Changing the range (l)



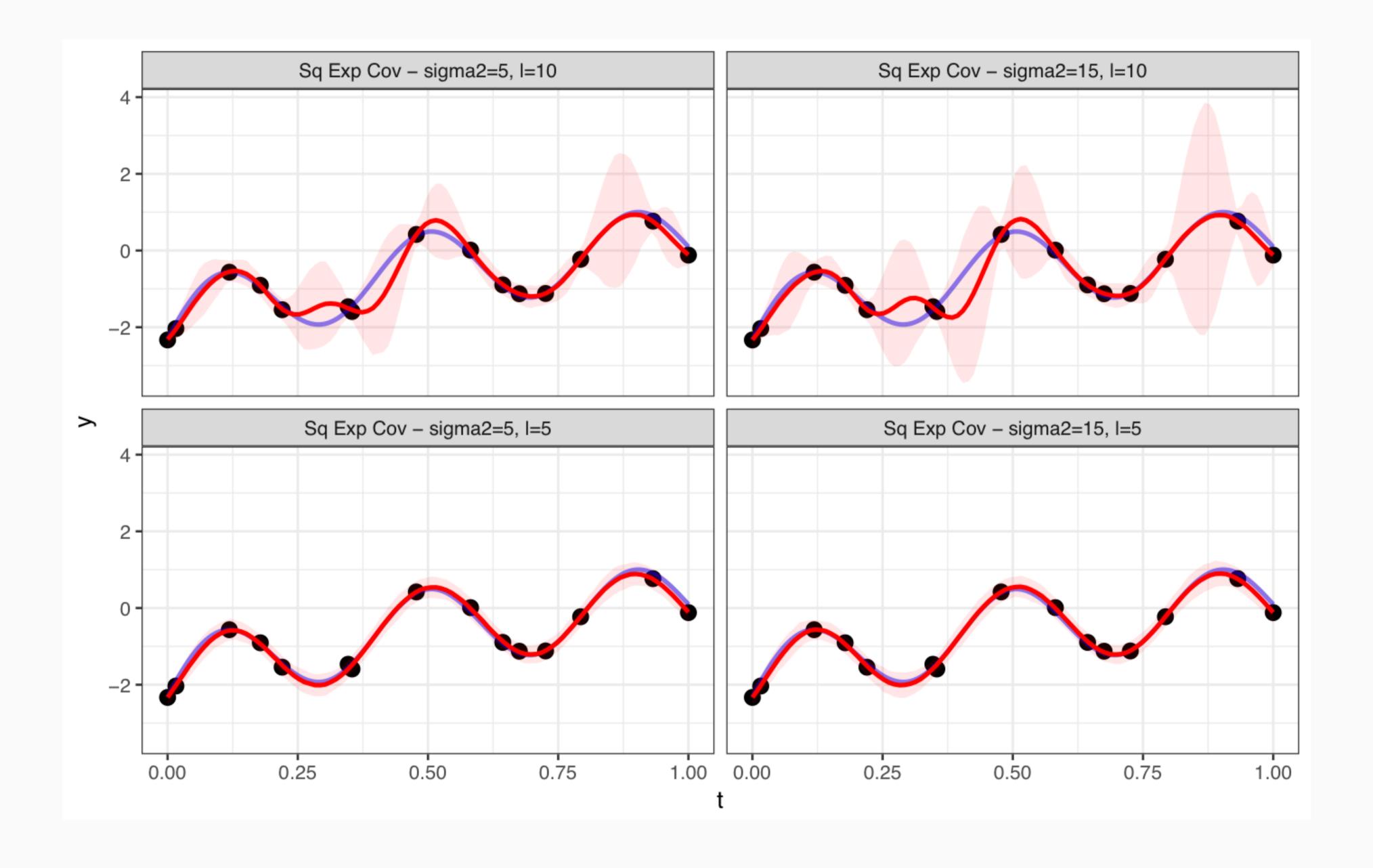
Effective Range

For the square exponential covariance

$$Cov(d) = \sigma^2 \exp(-(l \cdot d)^2)$$
$$Corr(d) = \exp(-(l \cdot d)^2)$$

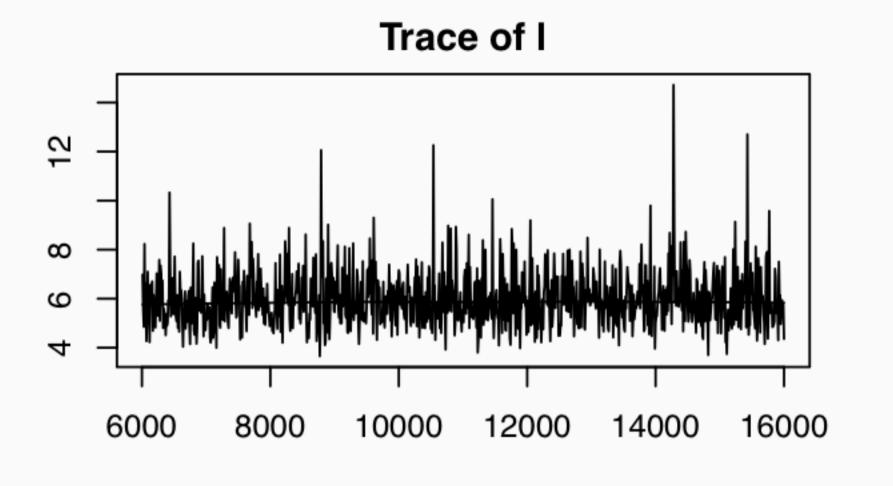
we would like to know, for a given value of *l*, beyond what distance apart must observations be to have a correlation less than 0.05?

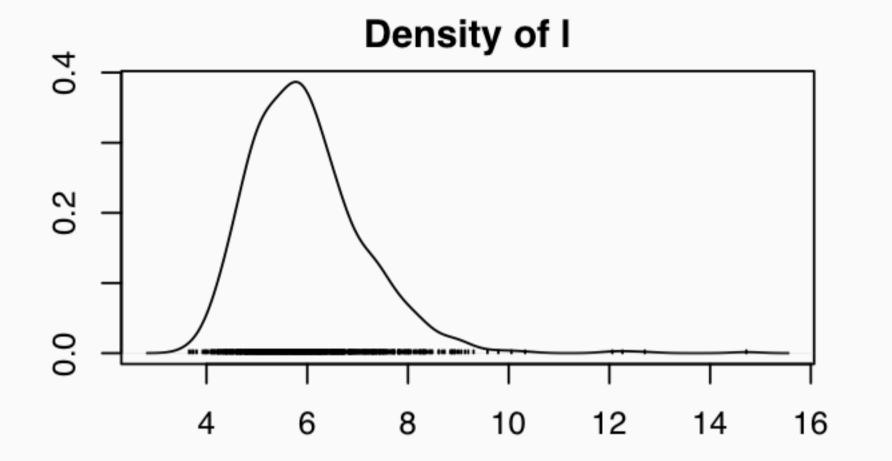
Changing the scale (σ^2)

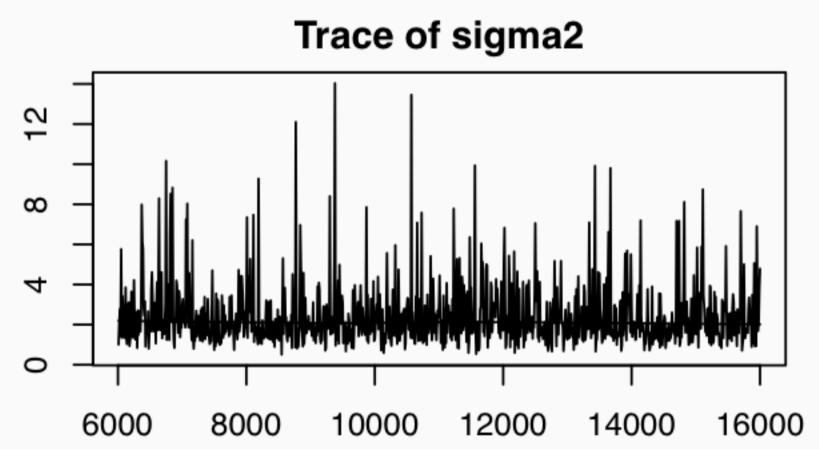


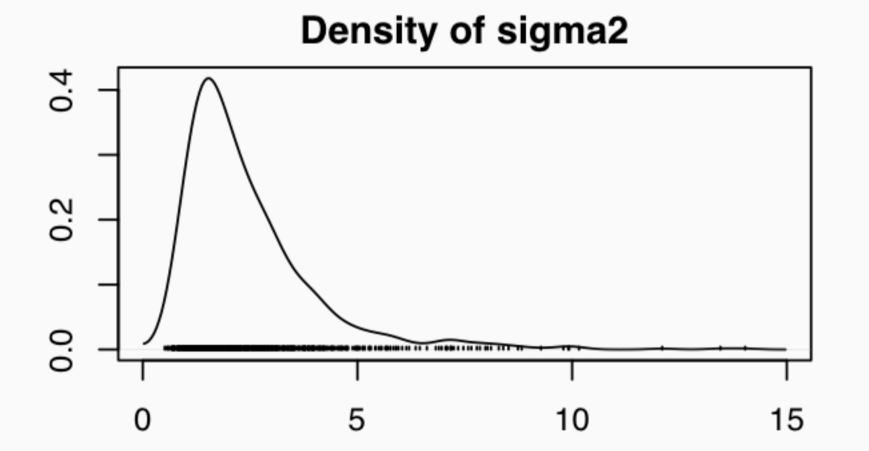
```
## model{
     y ~ dmnorm(mu, inverse(Sigma))
##
##
     for (i in 1:N) {
##
     mu[i] < -0
##
##
##
     for (i in 1:(N-1)) {
##
       for (j in (i+1):N) {
##
         Sigma[i,j] <- sigma2 * exp(- pow(l*d[i,j],2))
##
         Sigma[j,i] <- Sigma[i,j]
##
##
    }
##
##
     for (k in 1:N) {
##
       Sigma[k,k] < - sigma2 + 0.01
##
##
##
             ~ dlnorm(0, 1)
     sigma2
##
              ~ dt(0, 2.5, 1) T(0,) # Half-cauchy(0,2.5)
##
## }
```

Trace plots



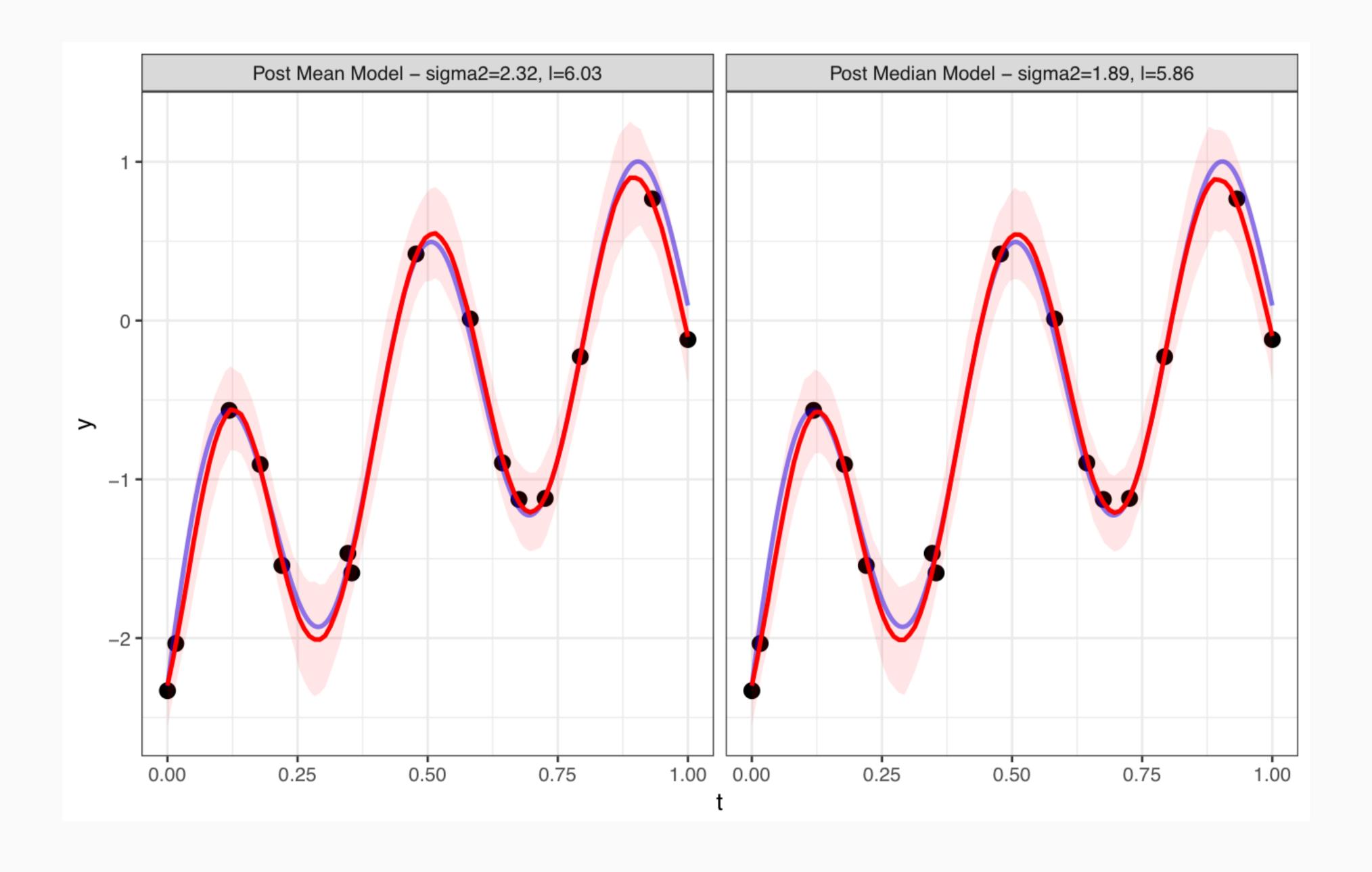






param	post_mean	post_med	post_lower	post_upper
l	5.981289	5.833655	4.2669795	8.456006
sigma2	2.457979	2.032632	0.8173064	7.168197

Fitted models



Forcasting

