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Multivariate Normal



Multivariate Normal Distribution

For an n-dimension multivate normal distribution with covariance X2

(positive semidefinite) can be written as
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For the n dimensional multivate normal given on the last slide, 1ts density IS

given by O(V‘B)
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and I1ts log density IS given by
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Sampling

To generate draws from an n-dimensional multivate normal with mean f
and covariance matrix 22,
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Sampling

To generate draws from an n-dimensional multivate normal with mean f
and covariance matrix 24, 2
0 (")

F?
- Find a matrix A such that 3 = A A", most often we use A = Chol(3)

- Draw n iid unit normals (N(0,1)) as z

- Construct multivariate normal draws using



Bivariate Example

rho=0.9 rho=0.7 rho=0.5 rho=0.1

> rho=-0.9 rho=-0.7 rho=-0.5 rho=-0.1
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Marginal distributions

Proposition - For an n-dimensional multivate normal with mean g and covariance
matrix 22, any of the possible marginal distributions will also (multivariate) normal.
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Marginal distributions

Proposition - For an n-dimensional multivate normal with mean g and covariance
matrix 22, any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,
Vi = N(,ui, %‘)

For a bivariate marginal distribution,
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Marginal distributions

Proposition - For an n-dimensional multivate normal with mean g and covariance
matrix 22, any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,
Vi = N(,ui, %‘)

For a bivariate marginal distribution,

1 Yii  Yij
M Yii  Vj
For a R-dimensional marginal distribution,
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Conditional Distributions

f we partition the n-dimensions into two pieces such that Y = (Y;, Y5)"
then

R X1 kx1 RXR
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Conditional Distributions

f we partition the n-dimensions into two pieces such that Y = (Y4, Y,)"
then

R X1 kx1 RXR
Y2 NN( “2 . 2322 )
n—Rr X1 nN—kX1 N—RXn—R

then the conditional distributions are given by

Yi|Y, =a ~ N(lh + 2, 22_21 (a — py), 2 — Xy 22_21 31)

Y2|Y1 = b NN(H2+221 2171 (b—lM), 222—2212171221)



Gaussian Processes

From Shumway,

A process, Y = {Y; : t € T}, is said to be a Gaussian process if
all possible finite dimensional vectors y = (Vi, Vi, --+» V1. )5, fOr
every collection of time points t4, t,, ..., t, and every positive
Integer n, have a multivariate normal distribution.



Gaussian Processes

From Shumway,

A process, Y = {Y; : t € T}, is said to be a Gaussian process if
all possible finite dimensional vectors y = (Vi, Vi, --+» V1. )5, fOr
every collection of time points t4, t,, ..., t, and every positive
Integer n, have a multivariate normal distribution.

So far we have only looked at examples of time series where T Is discete

(and evenly spaces & contiguous), it turns out things get a lot more
Interesting when we explore the case where T Is defined on a continuous
space (e.g. IR or some subset of R).

[O/ ’]



Gaussian Process Regression

10



Parameterizing a Gaussian Process

Imagine we have a Gaussian process defined such that
y={y; : te|o,1]},
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Parameterizing a Gaussian Process

Imagine we have a Gaussian process defined such that
y={Yy; : te|o,1]},

- We now have an uncountably infinite set of possible Y;s.

- We will only have a (small) finite number of observations Y4, ..., Y,
with which to say something useful about this infinite dimension

Process.

- The unconstrained covariance matrix for the observed data can have
up to n(n + 1) /2 unique values (p >>> n)

- Necessary to make some simplifying assumptions:

- Stationarity
- Simple parameterization of 2.
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Covariance Functions

More on these next week, but for now some simple / common examples

L=0 &=
Exponential Covariance: [ = D i S5 6

Ny, ye) =0 exp (—|t—=t]1)
—Cﬁg O lensth [ renye
Ca le

Squared Exponential Covariance:

Y(yeye) =o0“exp (— (|t =t 1)’
o) =0 ({410

Powered Exponential Covariance (p € (0, 2]):

Ny, yr) = o exp (— ([t =t 1)?)
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Covariance Function Decay

exponential covariance

square exponential covariance
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Our example has 15 observations which we would like to use as the basis for

oredicting Y; at other values of t (say a grid of values from 0 to 1).
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Our example has 15 observations which we would like to use as the basis for

oredicting Y; at other values of t (say a grid of values from 0 to 1).

For now lets use a square exponential covariance with % = 10 and [ = 10

— /

We therefore want to sample from Yy eq|Yobs.

Ypred | YobS — Yy N(Epo Z(;;S Y, Zpred o Epo 2_1 Eop)

pred
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Many draws later
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Exponential Covariance
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Powered Exponential Covariance (p = 1.5)
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Back to the square exponential

0.00 0.25 0.50 0.75 1.00
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Changing the range (()

A Sq Exp Cov - sigma2=10, |=12.5 Sqg Exp Cov - sigma2=10, |=15
3 -
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Effective Range

For the square exponential covariance

Cov(d) = o exp (—(L- d)?)
Corr(d) = exp (—(L-d)?)

we would like to know, for a given value of [, beyond what distance apart

must observations be to have a correlation less than 0.057
O
e 4 6. 0%
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Changing the scale (o%)

Sqg Exp Cov - sigma2=5, |=10 Sqg Exp Cov - sigma2=15, |=10

Sqg Exp Cov - sigma2=5, |=5 Sqg Exp Cov - sigma2=15, |=5
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t
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Fitting

#t# model{

#t#t y ~ dmnorm(mu, inverse(Sigma))
Hi

#t#t  for (i in 1:N) {

i muli] <- O

i }

i

#t  for (1 in 1:(N-1)) {

i for (j in (i+1):N) {

it Sigmal[i,j] <- sigma2 * exp(- pow(lxd[1,7],2))
it Sigmal[j,1] <- Sigmali, j]
i }

i }

i

#t  for (k in 1:N) {

it Sigmalk,k] <- sigma2 + 0.01
Hi }

i

#t##  sigma2 ~ dlnorm(0, 1)

it 1 ~ dt(0, 2.5, 1) T(0,) # Half-cauchy(0,2.5)
#it }
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Trace plots
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param post_mean post_med  post_lower post_upper

l 5.981289 5.833655 4.2669795 8.4560006
sigma? 2.457979 2.032632 0.81/3064 /168197
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Fitted models

Post Mean Model - sigma2=2.32, |=6.03 Post Median Model - sigma2=1.89, |=5.86
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Forcasting

Post Mean Model - sigma2=2.32, 1=6.03

Post Median Model - sigma2=1.89, |=5.86
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