Lecture 18

Models for areal data

Colin Rundel
03/22/2017
areal / lattice data
Example - NC SIDS

SID79
If we have observations at \(n \) spatial locations \((s_1, \ldots s_n)\):

\[
I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y(s_i) - \bar{y})(y(s_j) - \bar{y})}{\sum_{i=1}^{n} (y(s_i) - \bar{y})}
\]

where \(w \) is a spatial weights matrix.
If we have observations at n spatial locations $(s_1, \ldots s_n)$

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y(s_i) - \bar{y}) (y(s_j) - \bar{y})}{\sum_{i=1}^{n} (y(s_i) - \bar{y})}$$

where w is a spatial weights matrix.

Some properties of Moran’s I (when there is no spatial autocorrelation):

- $E(I) = -1/(n - 1)$

- $Var(I) = E(I^2) - E(I)^2 = $ Something ugly but closed form

- Asymptotically, $\frac{I - E(I)}{\sqrt{Var(I)}} \sim \mathcal{N}(0, 1)$
NC SIDS & Moran’s I

Lets start by using an adjacency matrix for \(w \) (shared county borders).

\[
\text{morans}_I = \text{function}(y, w) \\
\{ \\
\quad n = \text{length}(y) \\
\quad y_bar = \text{mean}(y) \\
\quad \text{num} = \sum(w \times (y-y_bar)^2) \\
\quad \text{denom} = \sum((y-y_bar)^2) \\
\quad (n/\text{sum}(w)) \times (\text{num}/\text{denom}) \\
\}
\]

\[
\text{morans}_I(y = \text{nc}\$\text{SID74}, \ w = 1*\text{st_touches}(\text{nc}, \ \text{sparse=}\text{FALSE}))
\]

[1] 0.119089

\[
\text{library(ape)} \\
\text{Moran}_I(\text{nc}\$\text{SID74}, \ \text{weight} = 1*\text{st_touches}(\text{nc}, \ \text{sparse=}\text{FALSE})) \%>\% \text{str()}
\]

List of 4
$ observed: num 0.148
$ expected: num -0.0101
$ sd : num 0.0627
$ p.value : num 0.0118
Like Moran’s I, if we have observations at \(n \) spatial locations \((s_1, \ldots s_n)\)

\[
C = \frac{n - 1}{2 \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(y(s_i) - y(s_j) \right)^2} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(y(s_i) - y(s_j) \right)^2}{\sum_{i=1}^{n} \left(y(s_i) - \bar{y} \right)}
\]

where \(w \) is a spatial weights matrix.

Some properties of Geary’s C:

- \(0 < C < 2 \)
- If \(C \approx 1 \) then no spatial autocorrelation
- If \(C > 1 \) then negative spatial autocorrelation
- If \(C < 1 \) then positive spatial autocorrelation

Geary’s C is inversely related to Moran’s I.
EDA - Geary’s C

Like Moran’s I, if we have observations at \(n \) spatial locations \((s_1, \ldots s_n)\)

\[
C = \frac{n - 1}{2 \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y(s_i) - y(s_j))^2}{\sum_{i=1}^{n} (y(s_i) - \bar{y})}
\]

where \(w \) is a spatial weights matrix.

Some properties of Geary’s C:

• \(0 < C < 2 \)
 • If \(C \approx 1 \) then no spatial autocorrelation
 • If \(C > 1 \) then negative spatial autocorrelation
 • If \(C < 1 \) then positive spatial autocorrelation

• Geary’s C is inversely related to Moran’s I
NC SIDS & Geary’s C

Again using an adjacency matrix for w (shared county borders).

```r
gearys_C = function(y, w)
{
  n = length(y)
  y_bar = mean(y)
  y_i = y %*% t(rep(1,n))
  y_j = t(y_i)
  num = sum(w * (y_i-y_j)^2)
  denom = sum((y-y_bar)^2)
  ((n-1)/(2*sum(w))) * (num/denom)
}

gearys_C(y = nc$SID74, w = 1*st_touches(nc, sparse=FALSE))
## [1] 0.8898868
```
Spatial Correlogram

d = nc %>% st_centroid() %>% st_distance() %>% strip_class()
breaks = seq(0, max(d), length.out = 21)
d_cut = cut(d, breaks)

adj_mats = map(
 levels(d_cut),
 function(l)
 {
 (d_cut == l) %>%
 matrix(ncol=100) %>%
 'diag<-'(0)
 }
)

d = data_frame(
 dist = breaks[-1],
 morans = map_dbl(adj_mats, morans_I, y = nc$SID74),
 gearys = map_dbl(adj_mats, gearys_C, y = nc$SID74)
)
Autoregressive Models
Lets just focus on the simplest case, an AR(1) process

\[y_t = \delta + \phi y_{t-1} + w_t \]

where \(w_t \sim \mathcal{N}(0, \sigma^2) \) and \(|\phi| < 1\), then

\[E(y_t) = \frac{\delta}{1 - \phi} \]

\[\text{Var}(y_t) = \frac{\sigma^2}{1 - \phi} \]
Previously we saw that an AR(1) model can be represented using a multivariate normal distribution

\[
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
\sim \mathcal{N}
\begin{bmatrix}
1 \\
\delta \\
\frac{1}{1-\phi} \\
\frac{\sigma^2}{1-\phi}
\end{bmatrix},
\begin{bmatrix}
1 & \phi & \cdots & \phi^{n-1} \\
\phi & 1 & \cdots & \phi^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\phi^{n-1} & \phi^{n-2} & \cdots & 1
\end{bmatrix}
\]
Previously we saw that an AR(1) model can be represented using a multivariate normal distribution

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
 \delta \\
 1 \\
 \vdots \\
 1
\end{pmatrix},
\frac{\sigma^2}{1-\phi}
\begin{pmatrix}
 1 & \phi & \cdots & \phi^{n-1} \\
 \phi & 1 & \cdots & \phi^{n-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 \phi^{n-1} & \phi^{n-2} & \cdots & 1
\end{pmatrix}
\]

In writing down the likelihood we also saw that an AR(1) is 1st order Markovian,

\[
f(y_1, \ldots, y_n) = f(y_1)f(y_2|y_1)f(y_3|y_2, y_1) \cdots f(y_n|y_{n-1}, y_{n-2}, \ldots, y_1)
\]
\[
= f(y_1)f(y_2|y_1)f(y_3|y_2) \cdots f(y_n|y_{n-1})
\]
Competing Definitions for y_t

\[y_t = \delta + \phi y_{t-1} + w_t \]

vs.

\[y_t | y_{t-1} \sim \mathcal{N}(\delta + \phi y_{t-1}, \sigma^2) \]
Competing Definitions for y_t

$$y_t = \delta + \phi y_{t-1} + w_t$$

vs.

$$y_t | y_{t-1} \sim \mathcal{N}(\delta + \phi y_{t-1}, \sigma^2)$$

In the case of time, both of these definitions result in the same multivariate distribution for y.
Even in the simplest spatial case there is no clear / unique ordering,
\[f(y(s_1), \ldots, y(s_{10})) = f(y(s_1)) f(y(s_2) | y(s_1)) \ldots = f(y(s_{10})) f(y(s_9) | y(s_{10})) \ldots \]

Instead we need to think about things in terms of their neighbors / neighborhood. We will define \(N(s_i) \) to be the set of neighbors of location \(s_i \).

- If we define the neighborhood based on “touching” then \(N(s_3) = \{ s_2, s_4 \} \)
- If we use distance within 2 units then \(N(s_3) = \{ s_1, s_2, s_3, s_4 \} \)
- etc.

<table>
<thead>
<tr>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>s5</th>
<th>s6</th>
<th>s7</th>
<th>s8</th>
<th>s9</th>
<th>s10</th>
</tr>
</thead>
</table>
Even in the simplest spatial case there is no clear / unique ordering,

\[f(y(s_1), \ldots, y(s_{10})) = f(y(s_1)) f(y(s_2)|y(s_1)) \cdots f(y(s_{10}|y(s_9), y(s_8), \ldots, y(s_1)) \]

\[= f(y(s_{10})) f(y(s_9)|y(s_{10})) \cdots f(y(s_1|y(s_2), y(s_3), \ldots, y(s_{10})) \]

\[= ? \]
Even in the simplest spatial case there is no clear / unique ordering,

\[f(y(s_1), \ldots, y(s_{10})) = f(y(s_1)) \cdot f(y(s_2)|y(s_1)) \cdot \ldots \cdot f(y(s_{10}|y(s_9), y(s_8), \ldots, y(s_1)) \]
\[= f(y(s_{10})) \cdot f(y(s_9)|y(s_{10})) \cdot \ldots \cdot f(y(s_1)|y(s_2), y(s_3), \ldots, y(s_{10})) \]
\[= ? \]

Instead we need to think about things in terms of their neighbors / neighborhoods. We will define \(N(s_i) \) to be the set of neighbors of location \(s_i \).

- If we define the neighborhood based on “touching” then
 \[N(s_3) = \{ s_2, s_4 \} \]
- If we use distance within 2 units then
 \[N(s_3) = \{ s_1, s_2, s_3, s_4 \} \]
- etc.
Defining the Spatial AR model

Here we will consider a simple average of neighboring observations, just like with the temporal AR model we have two options in terms of defining the autoregressive process,

- Simultaneous Autoregressive (SAR)
 \[y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2) \]

- Conditional Autoregressive (CAR)
 \[y(s)|y_{-s} \sim \mathcal{N} \left(\delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s'), \sigma^2 \right) \]
Simultaneous Autoregressive (SAR)

Using

$$y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2)$$

we want to find the distribution of $y = \left(y(s_1), y(s_2), \ldots, y(s_n) \right)^t$.
Simultaneous Autoregressive (SAR)

Using

\[y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2) \]

we want to find the distribution of \(y = (y(s_1), y(s_2), \ldots, y(s_n))^t \).

First we need to define a weight matrix \(\mathbf{W} \) where

\[
\{\mathbf{W}\}_{ij} = \begin{cases}
1/|N(s_i)| & \text{if } j \in N(s_i) \\
0 & \text{otherwise}
\end{cases}
\]
Simultaneous Autoregressive (SAR)

Using

\[y(s) = \delta + \phi \frac{1}{|N(s)|} \sum_{s' \in N(s)} y(s') + \mathcal{N}(0, \sigma^2) \]

we want to find the distribution of \(y = (y(s_1), y(s_2), \ldots, y(s_n))^t \).

First we need to define a weight matrix \(W \) where

\[
\{W\}_{ij} = \begin{cases}
1/|N(s_i)| & \text{if } j \in N(s_i) \\
0 & \text{otherwise}
\end{cases}
\]

then we can write \(y \) as follows,

\[y = \delta + \phi Wy + \epsilon \]

where

\[\epsilon \sim \mathcal{N}(0, \sigma^2 I) \]
A toy example

\[W = \begin{bmatrix}
0 & 1/2 & 1/2 \\
1/2 & 0 & 1/2 \\
1/2 & 1/2 & 0
\end{bmatrix} \]
\[y = \delta + \phi W y + \epsilon \]
This is a bit trickier, in the case of the temporal AR process we actually went from joint distribution \rightarrow conditional distributions (which we were then able to simplify).

Since we don’t have a natural ordering we can’t get away with this (at least not easily).

Going the other way, conditional distributions \rightarrow joint distribution is difficult because it is possible to specify conditional distributions that lead to an improper joint distribution.
Brook’s Lemma

For sets of observations x and y where $p(x) > 0 \ \forall x \in x$ and $p(y) > 0 \ \forall y \in y$ then

$$
\frac{p(y)}{p(x)} = \prod_{i=1}^{n} \frac{p(y_i | y_1, \ldots, y_{i-1}, x_{i+1}, \ldots, x_n)}{p(x_i | x_1, \ldots, x_{i-1}, y_{i+1}, \ldots, y_n)}
$$

$$
= \prod_{i=1}^{n} \frac{p(y_i | x_1, \ldots, x_{i-1}, y_{i+1}, \ldots, y_n)}{p(x_i | y_1, \ldots, y_{i-1}, x_{i+1}, \ldots, x_n)}
$$
A simplified example

Let $y = (y_1, y_2)$ and $x = (x_1, x_2)$ then we can derive Brook’s Lemma for this case,

\[
p(y_1, y_2) = p(y_1 | y_2) p(y_2)
\]

\[
= p(y_1 | y_2) \frac{p(y_2 | x_1) p(x_1)}{p(x_1 | y_2)} = \frac{p(y_1 | y_2)}{p(x_1 | y_2)} p(y_2 | x_1) p(x_1)
\]

\[
= \frac{p(y_1 | y_2)}{p(x_1 | y_2)} p(y_2 | x_1) p(x_1) \left(\frac{p(x_2 | x_1)}{p(x_2 | x_1)} \right)
\]

\[
= \frac{p(y_1 | y_2)}{p(x_1 | y_2)} \frac{p(y_2 | x_1)}{p(x_2 | x_1)} p(x_1, x_2)
\]

\[
\frac{p(y_1, y_2)}{p(x_1, x_2)} = \frac{p(y_1 | y_2) p(y_2 | x_1)}{p(x_1 | y_2) p(x_2 | x_1)}
\]
Utility?

Let’s repeat that last example but consider the case where \(y = (y_1, y_2) \) but now we let \(x = (y_1 = 0, y_2 = 0) \)

\[
\frac{p(y_1, y_2)}{p(x_1, x_2)} = \frac{p(y_1, y_2)}{p(y_1 = 0, y_2 = 0)}
\]

\[
p(y_1, y_2) = \frac{p(y_1|y_2)}{p(y_1 = 0|y_2)} \frac{p(y_2|y_1 = 0)}{p(y_2 = 0|y_1 = 0)} p(y_1 = 0, y_2 = 0)
\]

\[
p(y_1, y_2) \propto \frac{p(y_1|y_2) p(y_2|y_1 = 0)}{p(y_1 = 0|y_2)} \frac{p(y_2|y_1 = 0)}{p(y_2 = 0|y_1)} p(y_1 = 0, y_2 = 0)
\]
As applied to a simple CAR

\[y(s_1) | y(s_2) \sim \mathcal{N}(\phi_{W_{12}} y(s_2), \sigma^2) \]
\[y(s_2) | y(s_1) \sim \mathcal{N}(\phi_{W_{21}} y(s_1), \sigma^2) \]
As applied to a simple CAR

\[y(s_1) | y(s_2) \sim \mathcal{N} (\phi W_{12} y(s_2), \sigma^2) \]

\[y(s_2) | y(s_1) \sim \mathcal{N} (\phi W_{21} y(s_1), \sigma^2) \]

\[
p(y(s_1), y(s_2)) \propto \frac{p(y(s_1)|y(s_2)) \ p(y(s_2)|y(s_1) = 0)}{p(y(s_1) = 0|y(s_2))} \]

\[
\propto \exp \left(-\frac{1}{2\sigma^2} (y(s_1) - \phi W_{12} y(s_2))^2 \right) \ exp \left(-\frac{1}{2\sigma^2} (y(s_2) - \phi W_{21} 0)^2 \right) \]

\[
\propto \exp \left(-\frac{1}{2\sigma^2} \ (y(s_1) - \phi W_{12} y(s_2))^2 + y(s_2)^2 - (\phi W_{12} y(s_2))^2 \right) \]

\[
\propto \exp \left(-\frac{1}{2\sigma^2} \ (y(s_1)^2 - 2\phi W_{12} y(s_1) y(s_2) + y(s_2)^2) \right) \]

\[
\propto \exp \left(-\frac{1}{2\sigma^2} \ (y - 0) \begin{pmatrix} 1 & -\phi W_{12} \\ -\phi W_{12} & 1 \end{pmatrix} (y - 0)^t \right) \]
Implications for y

\[\mathbf{\mu} = 0 \]

\[\mathbf{\Sigma}^{-1} = \frac{1}{\sigma^2} \begin{pmatrix} 1 & -\phi W_12 \\ -\phi W_12 & 1 \end{pmatrix} \]

\[= \frac{1}{\sigma^2} (I - \phi W) \]

\[\mathbf{\Sigma} = \sigma^2 (I - \phi W)^{-1} \]
Implications for y

\[\mu = 0 \]

\[\Sigma^{-1} = \frac{1}{\sigma^2} \begin{pmatrix} 1 & -\phi W_{12} \\ -\phi W_{12} & 1 \end{pmatrix} \]

\[= \frac{1}{\sigma^2} (I - \phi W) \]

\[\Sigma = \sigma^2 (I - \phi W)^{-1} \]

we can then conclude that for $y = (y(s_1), y(s_2))^t$,

\[y \sim \mathcal{N} \left(0, \sigma^2 (I - \phi W)^{-1} \right) \]

which generalizes for all mean 0 CAR models.
Let $\mathbf{y} = (y(s_1), \ldots, y(s_n))$ and $\mathbf{0} = (y(s_1) = 0, \ldots, y(s_n) = 0)$ then by Brook’s lemma,

$$
\frac{p(\mathbf{y})}{p(\mathbf{0})} = \prod_{i=1}^{n} \frac{p(y_i|y_1, \ldots, y_{i-1}, 0_{i+1}, \ldots, 0_n)}{p(0_i|y_1, \ldots, y_{i-1}, 0_{i+1}, \ldots, 0_n)}
$$

$$
= \prod_{i=1}^{n} \frac{\exp \left(-\frac{1}{2\sigma^2} \left(y_i - \phi \sum_{j<i} W_{ij} y_j - \phi \sum_{j>i} 0_j \right)^2 \right)}{\exp \left(-\frac{1}{2\sigma^2} \left(0_i - \phi \sum_{j<i} W_{ij} y_j - \phi \sum_{j>i} 0_j \right)^2 \right)}
$$

$$
= \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(y_i - \phi \sum_{j<i} W_{ij} y_j \right)^2 + \frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(\phi \sum_{j<i} W_{ij} y_j \right)^2 \right)
$$

$$
= \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} y_i^2 - 2\phi y_i \sum_{j<i} W_{ij} y_j \right)
$$

$$
= \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} y_i^2 - \phi \sum_{i=1}^{n} \sum_{j=1}^{n} y_i W_{ij} y_j \right) \quad \text{(if } W_{ij} = W_{ji} \text{)}
$$

$$
= \exp \left(-\frac{1}{2\sigma^2} \mathbf{y}^t (I - \phi \mathbf{W}) \mathbf{y} \right)
$$
• Simultaneous Autoregressive (SAR)

\[y(s) = \phi \sum_{s'} \frac{W_{ss'}}{W_s} y(s') + \epsilon \]

\[y \sim \mathcal{N}(0, \sigma^2 ((I - \phi W)^{-1})(I - \phi W)^{-1}^t) \]

• Conditional Autoregressive (CAR)

\[y(s)|y_{-s} \sim \mathcal{N} \left(\sum_{s'} \frac{W_{ss'}}{W_s} y(s'), \sigma^2 \right) \]

\[y \sim \mathcal{N}(0, \sigma^2 (I - \phi W)^{-1}) \]
Generalization

- Adopting different weight matrices, W
 - Between SAR and CAR model we move to a generic weight matrix definition (beyond average of nearest neighbors)
 - In time we varied p in the $AR(p)$ model, in space we adjust the weight matrix.
 - In general having a symmetric W is helpful, but not required

- More complex Variance (beyond $\sigma^2 I$)
 - σ^2 can be a vector (differences between areal locations)
 - E.g. since areal data tends to be aggregated - adjust variance based on sample size