
Lecture 21

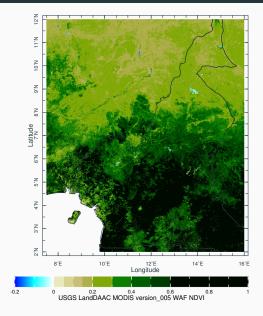
More Spatial Random Effects Models

Colin Rundel 04/10/2017

Loa Loa Example

Loa Loa


```
library(PrevMap)
loaloa = tbl_df(loaloa) %>% setNames(., tolower(names(.)))
```

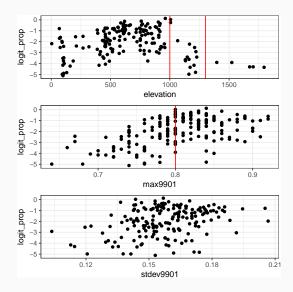

loaloa

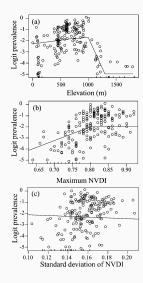
##	# A	tibble	: 197 ×	11						
##		row v	illcode	longitude	latitude	no_exam	no_inf e	elevation	mean9901	m
##		<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	
##	1	1	214	8.041860	5.736750	162	Θ	108	0.4389815	
##	2	2	215	8.004330	5.680280	167	1	99	0.4258333	
##	3	3	118	8.905556	5.347222	88	5	783	0.4914815	
##	4	4	219	8.100720	5.917420	62	5	104	0.4324074	
##	5	5	212	8.182510	5.104540	167	3	109	0.4150000	
##	6	6	116	8.929167	5.355556	66	3	909	0.4363889	
##	7	7	16	11.360000	4.885000	163	11	503	0.5019444	
##	8	8	217	8.067490	5.897800	83	Θ	103	0.3731481	
##	9	9	112	9.018056	5.593056	30	4	751	0.4808333	
##	10	10	104	9.312500	6.004167	57	4	268	0.4865741	
##	# .	with	187 mon	re rows, ar	nd 2 more	variable	s: min99	901 <dbl></dbl>	, stdev9901	L

Spatial Distribution

Normalized Difference Vegetation Index (NVDI)

6

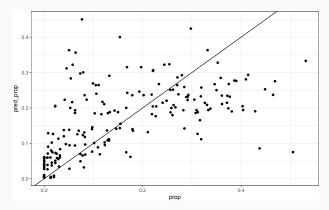

Original paper - Diggle, et. al. (2007). Spatial modelling and prediction of *Loa loa risk: decision making under uncertainty*. Annals of Tropical Medicine and Parasitology, 101, 499-509.


- no_exam and no_inf Collected between 1991 and 2001 by NGOs (original paper mentions 168 villages and 21,938 observations)
- elevation USGS gtopo30 (1km resolution)
- **mean9901** to **stdev9901** aggregated data from 1999 to 2001 he Flemish Institute for Technological Research (1 km resolution)

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \alpha + f_1(\text{ELEVATION}) + f_2(\max(\text{NDVI})) + f_3(\text{sd}(\text{NDVI})) + S(X)$$

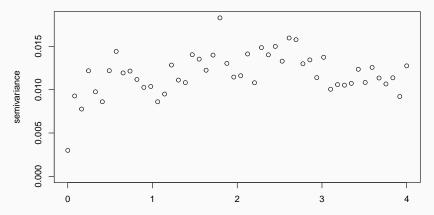
where

$$S(X) \sim \mathcal{N}(0, \Sigma)$$
$$\{\Sigma\}_{ij} = \sigma^2 \exp(-d\phi)$$



Model EDA

```
loaloa = loaloa %>%
  mutate(elev factor = cut(elevation, breaks=c(0,1000,1300,2000), dig.lab=5),
        max factor = cut(max9901, breaks=c(0,0.8,1)))
g = glm(no inf/no exam ~ elevation:elev factor + max9901:max factor + stdev9901,
       data=loaloa. family=binomial. weights=loaloa$no exam)
summary(g)
##
## Call:
## glm(formula = no inf/no exam ~ elevation:elev factor + max9901:max factor +
      stdev9901, family = binomial, data = loaloa, weights = loaloa$no exam)
##
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  30
                                         Max
## -7.1434 -2.5887 -0.8993
                            1.6375 10.9052
##
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                   -8.343e+00 4.825e-01 -17.291 < 2e-16 ***
## stdev9901
                                    8.781e+00 1.205e+00 7.288 3.14e-13 ***
## elevation:elev factor(0.1000]
                                 1.606e-03 8.749e-05 18.358 < 2e-16 ***
## elevation:elev_factor(1000,1300] 1.631e-04 8.792e-05 1.855 0.0636 .
## elevation:elev factor(1300,2000] -1.432e-03 1.887e-04 -7.588 3.25e-14 ***
## max9901:max factor(0.0.8]
                             5.511e+00 6.299e-01 8.749 < 2e-16 ***
## max9901:max factor(0.8,1]
                                5.626e+00 5.793e-01 9.711 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

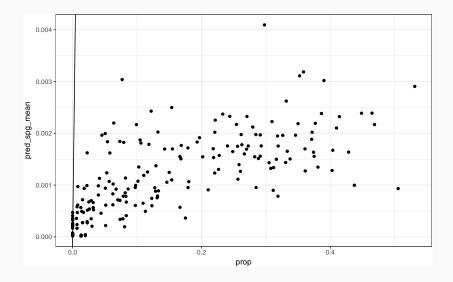

11

Residuals

Spatial Structure

library(geoR)

distance

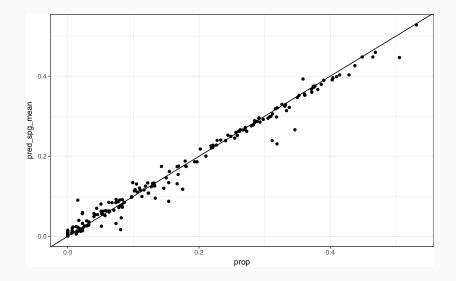

library(spBayes)

save(spg, loaloa, file="loaloa.Rdata")

spg\$p.beta.theta.samples %>% post_summary() %>% knitr::kable(digits=5)

param	post_mean	post_med	post_lower	post_upper
(Intercept)	-12.69885	-11.61326	-21.65388	-6.96361
stdev9901	9.24231	9.15244	-14.48649	29.76058
elevation:elev_factor(0,1000]	0.00048	0.00077	-0.00474	0.00291
elevation:elev_factor(1000,1300]	-0.00048	-0.00032	-0.00359	0.00169
elevation:elev_factor(1300,2000]	-0.00814	-0.00581	-0.02900	0.00004
max9901:max_factor(0,0.8]	4.87762	3.99492	-2.93030	15.63246
max9901:max_factor(0.8,1]	5.08690	4.44632	-2.18626	14.89011
sigma.sq	0.38088	0.34626	0.12793	0.88673
phi	6.22996	5.18205	0.69584	18.67107

Prediction


library(spBayes)

save(spg_good, loaloa, file="loaloa_good.Rdata")

spg_good\$p.beta.theta.samples %>% post_summary() %>% knitr::kable(digits=5)

param	post_mean	post_med	post_lower	post_upper
(Intercept)	-2.66090	-2.13138	-6.31576	-0.80487
stdev9901	-0.12840	-0.41947	-5.86766	8.58835
elevation:elev_factor(0,1000]	0.00023	0.00024	-0.00051	0.00086
elevation:elev_factor(1000,1300]	-0.00054	-0.00055	-0.00128	0.00020
elevation:elev_factor(1300,2000]	-0.00204	-0.00200	-0.00285	-0.00127
max9901:max_factor(0,0.8]	0.88041	0.90550	-1.03795	3.63477
max9901:max_factor(0.8,1]	1.28673	1.13796	-0.26884	3.83860
sigma.sq	1.47552	1.39146	0.43359	3.05883
phi	2.22372	2.09524	0.86456	4.14663

Prediction

19

Diggle's Predictive Surface

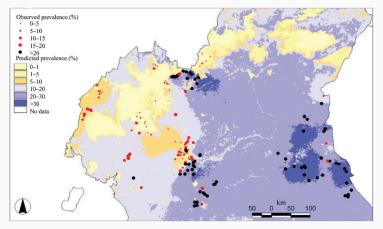
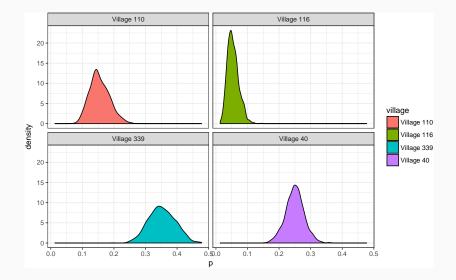



FIG. 2. Point estimates of the prevalence of Loa loa microfilaraemia, over-laid with the prevalences observed in field studies.

Exceedance Probability - Posterior Summary

Exceedance Probability Predictive Surface

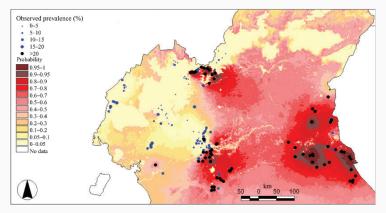


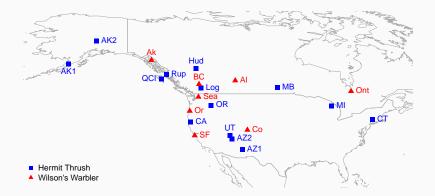
FIG. 4. A probability contour map, indicating the probability that the prevalence of *Loa loa* microfilaraemia in each area exceeds 20%, over-laid with the prevalences observed in field studies.

Spatial Assignment of Migratory Birds

Using intrinsic markers (genetic and isotopic signals) for the purpose of inferring migratory connectivity.

- Existing methods are too coarse for most applications
- Large amounts of data are available (>150,000 feather samples from >500 species)
- Genetic assignment methods are based on Wasser, et al. (2004)
- Isotopic assignment methods are based on Wunder, et al. (2005)

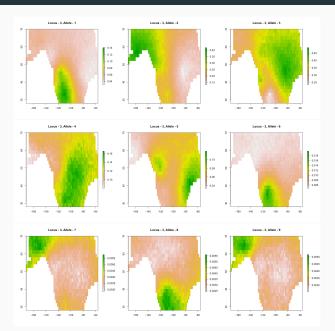
- 138 individuals
- 14 locations
- 6 loci
- 9-27 alleles / locus



Hermit Thrush (*Catharus guttatus*) Wilson's Warbler (*Wilsonia pusilla*)

- 163 individuals
- 8 locations
- 9 loci
- 15-31 alleles / locus

Sampling Locations

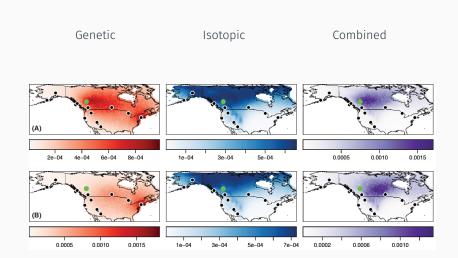


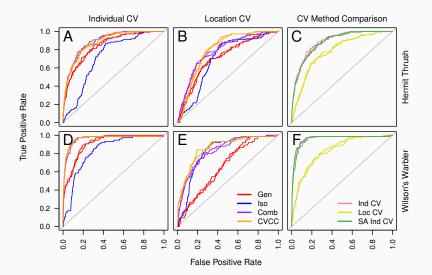
For the allele i, from locus l, at location k

$$y_{\cdot lk} | \Theta \sim \mathcal{N} \left(\sum_{i} y_{ilk}, f_{\cdot lk} \right)$$
$$f_{ilk} = \frac{\exp(\Theta_{ilk})}{\sum_{i} \exp(\Theta_{ilk})}$$

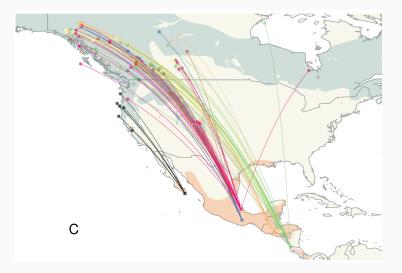
$$\begin{split} \boldsymbol{\Theta}_{il} | \boldsymbol{\alpha}, \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\mu}_{il}, \boldsymbol{\Sigma}) \\ \{ \boldsymbol{\Sigma} \}_{ij} = \sigma^2 \, \exp \Big(- (\{d\}_{ij} \, r)^{\psi} \Big) + \sigma_n^2 \, \mathbf{1}_{i=j} \end{split}$$

Predictions by Allele (Locus 3)


28


Assignment model assuming Hardy-Weinberg equilibrium and allowing for genotyping (δ) and single amplification (γ) errors.

$$P(S_G|f,k) = \prod_l P(i_l, j_l|f,k)$$


$$P(i_l, j_l | \mathbf{f}, k) = \begin{cases} \gamma P(i_l | \mathbf{f}, k) + (1 - \gamma) P(i_l | \mathbf{\tilde{f}}, k)^2 & \text{if } i = j \\ (1 - \gamma) P(i_l | \mathbf{f}, k) P(j_l | \mathbf{f}, k) & \text{if } i \neq j \end{cases}$$

$$P(i_l|f,k) = (1-\delta)f_{lik} + \delta/m_l$$

Migratory Connectivity

