Abstract

A key question in evaluation of computer models is *Does the computer model adequately represent reality?* A six-step process for computer model validation is set out in Bayarri et al. (2005a) (and briefly summarized below), based on comparison of computer model runs with field data of the process being modeled. The methodology is particularly suited to treating the major issues associated with the validation process: quantifying multiple sources of error and uncertainty in computer models; combining multiple sources of information; and being able to adapt to different – but related – scenarios.

Two complications that frequently arise in practice are the need to deal with highly irregular functional data and the need to acknowledge and incorporate uncertainty in the inputs. We develop methodology to deal with both complications. A key part of the approach utilizes a wavelet representation of the functional data, applies a hierarchical version of the scalar validation methodology to the wavelet coefficients, and transforms back, to ultimately compare computer model output with field output. The generality of the methodology is only limited by the capability of a combination of computational tools and the appropriateness of decompositions of the sort (wavelets) employed here.

The methods and analyses we present are illustrated with a test bed dynamic stress analysis for a particular engineering system.

Keywords and phrases: Computer models; Validation; Functional data; Bias; Bayesian
1 Introduction

1.1 Validation Framework

Bayarri et al. (2005a) described a general framework for validation of complex computer models and applied the framework to two examples involving scalar data. The framework consists of a six-step procedure to treat the combined calibration/validation process, and to assess the possible systematic differences between model outcomes and test outcomes (so-termed biases), by estimating these biases along with uncertainty bounds for these estimates. The six steps are (1) defining the problem (inputs, outputs, initial uncertainties); (2) establishing evaluation criteria; (3) designing experiments; (4) approximating computer model output; (5) analyzing the combination of field and computer run data; (6) feeding-back to revise the model, perform additional experiments, etc. Bayarri et al. (2005b) generalized this work to the situation of smooth functional data, arising within a hierarchical structure.

This paper is an extension of Bayarri et al. (2005a), motivated by methodological needs in analyzing a computer model for analyzing stress on an engineering system, a vehicle suspension system, subject to forces over time (the test bed problem is described in the following section). This involves the following important – and technically challenging – problems that greatly widen the applicability of the six-step strategy.

Problem 1 – Irregular Functional Output: In Bayarri et al. (2005a), examples involved real-valued model outputs; in Bayarri et al. (2005b), outputs were smooth
functions that could be handled by the simple device of including the function argument (time) as an input of the system. In many engineering scenarios with functional output, functions are not smooth, and adding the function variable to the list of inputs can result in a computationally intractable problem. This is so in the test bed problem, for instance, with typical irregular functional data indicated in Figure 1.

Problem 2 – Uncertainty in Inputs: A second ubiquitous problem in engineering scenarios is that (unmeasured) manufacturing variations are present in tested components; incorporating this uncertainty into the analysis can be crucial.

Problem 3 – Prediction in Altered or New Settings: The point of computer modeling in engineering contexts is typically to allow use of the computer model to predict outcomes in altered or new settings, for which no field data are available. We consider several approaches to this problem.

1.2 Background and Motivation

General discussions of the entire Validation and Verification process can be found in Roache (1998), Oberkampf and Trucano (2000), Cafeo and Cavendish (2001), Easterling (2001), Pilch et al. (2001), Trucano et al. (2002), and Santner et al. (2003). We focus here on the last stage of the process: assessing the accuracy of the computer model in predicting reality, and using both the computer model and field data to make predictions, especially in new situations.

Because a computer model can virtually never be said to be a completely accurate representation of the real process being modelled, the relevant question is “Does the model provide predictions that are accurate enough for the intended use of the model?” Thus
predictions need to come with what were called *tolerance bounds* in Bayarri et al. (2005a), indicating the magnitude of the possible error in prediction. This focus on giving tolerance bounds, rather than stating a yes/no answer as to model validity, is important for several reasons: (i) Models rarely give highly accurate predictions over the entire range of inputs of possible interest, and it is often difficult to characterize regions of accuracy and inaccuracy; (ii) The degree of accuracy that is needed can vary from one application of the computer model to another; (iii) Tolerance bounds account for *model bias*, the principal symptom of model inadequacy – accuracy of the model cannot simply be represented by a variance or standard error.

The key components of the approach outlined here are the use of Gaussian process response-surface approximations to a computer model, following on work in Sacks et al. (1989), Currin et al. (1991), Welch et al. (1992), and Morris et al. (1993), and introduction of Bayesian representations of model bias and uncertainty, following on work in Kennedy and O’Hagan (2001) and Kennedy et al. (2002). A related approach to Bayesian analysis of computer models is that of Craig et al. (1997), Craig et al. (2001), Goldstein and Rougier (2003) and Goldstein and Rougier (2004), which focus on utilization of linear Bayes methodology.

1.3 Overview

Section 2 describes the test bed example and associated data. Section 3 has the formulation of the statistical problem and assumptions that we make for the analysis. In Section 4 we set down the methods of analysis with the results in Section 5. Most of the details of computations are relegated to the Appendices.
2 The Test Bed

The test bed case study is about predicting loads resulting from stressful events on a vehicle suspension system over time, e.g., hitting a pothole. In the initial part of the study there are seven unmeasured parameters of the system with specified nominal (mean) values x_{nom} (referred to later on as Condition A) and unknown manufacturing variations, δ^*. There are other relevant parameters that are known and fixed and hence not part of the experiments.

Field data are obtained by driving a vehicle over a proving ground course and recording the time history of load at sites on the suspension system. The curves must be registered (Appendix A) to assure that peaks and valleys occur at the same place.

In addition, there is a computer model aimed at producing the same response. The computer model is a so-termed ADAMS model, a commercially available, widely used finite-element based code that analyzes complex dynamic behavior (e.g., vibration, stress) of mechanical assemblies. The computer model has within it two calibration parameters $u^* = (u_1^*, u_2^*)$ quantifying two different types of damping (unknown levels of energy dissipation) that need to be estimated (or tuned) to produce a matching response.

For proprietary reasons the specific parameters are not fully described – they include characteristics of tires, bushings and bumpers as well as vehicle mass. In addition, the values assigned to these parameters are coded on a $[0,1]$ scale and the output responses are also coded. In the coded scale the fixed values of x_{nom} are all 0.50. The uncertainty ranges for the nine parameters were elicited through extensive discussion with engineers and modelers; they are given in Table 1, the so-termed Input/Uncertainty map (Bayarri et al., 2005a). Along with the ranges, prior distributions were elicited for (u^*, δ^*) in section 3.4.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Uncertainty Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Damping_1$</td>
<td>Calibration</td>
<td>[0.125, 0.875]</td>
</tr>
<tr>
<td>$Damping_2$</td>
<td>Calibration</td>
<td>[0.125, 0.875]</td>
</tr>
<tr>
<td>x_1</td>
<td>Nominal+Variation</td>
<td>[0.1667, 0.8333]</td>
</tr>
<tr>
<td>x_2</td>
<td>Nominal+Variation</td>
<td>[0.1667, 0.8333]</td>
</tr>
<tr>
<td>x_3</td>
<td>Nominal+Variation</td>
<td>[0.2083, 0.7917]</td>
</tr>
<tr>
<td>x_4</td>
<td>Nominal+Variation</td>
<td>[0.1923, 0.8077]</td>
</tr>
<tr>
<td>x_5</td>
<td>Nominal+Variation</td>
<td>[0.3529, 0.6471]</td>
</tr>
<tr>
<td>x_6</td>
<td>Nominal+Variation</td>
<td>[0.1471, 0.8529]</td>
</tr>
<tr>
<td>x_7</td>
<td>Nominal+Variation</td>
<td>[0.1923, 0.8077]</td>
</tr>
</tbody>
</table>

Table 1: I/U Map. Uncertainty ranges for the two calibration parameters and the seven input parameters that are subject to manufacturing variation.

Field data:

In the initial study with Condition A inputs, a single vehicle was driven over a proving ground course seven times. The recorded field data consist of the time history of load at two sites on the suspension system. Plots of the output for Site 1 can be seen in Figure 1 for two of the time periods of particular interest. Thus there are seven replicates and a single x_{nom} in the field data.

Computer model runs:

A typical model run for the test bed example takes one hour, limiting the number of runs that can feasibly be made. To select which runs to make we adopted the design strategy used in Bayarri et al. (2005a): the 9-dimensional rectangle defined by the ranges of the parameters in Table 1 is first transformed into the 9-dimensional unit cube. We then selected a 65 point Latin Hypercube Design (LHD) using code by W. Welch that finds an approximately maximin LHD. The actual design points, as well as a 2-dimensional projection of the design, can be found in Bayarri et al. (2006). In addition, we added a point at the center (0.5,...,0.5), the nominal values. One run failed to converge and was deleted from the experiment leaving a total of 65 design points.
Figure 1: Model output (bottom) and registered field output (top) for Site 1 at Region 1 (left) and Region 2 (right). Vertical lines indicate the reference peak locations used in the curve registration discussed in Appendix A.
3 Formulation, Statistical Model and Assumptions

3.1 Formulation

Given a vector of inputs, \(x = (x_1, \ldots, x_d) \), to a time-dependent system, denote the “real” response over time \(t \) as \(y^R(x; t) \). Field measurement of the real response has error and we write the \(r \)^{th} replicate field measurement as

\[
y_r^F(x; t) = y^R(x; t) + \varepsilon_r(t)
\]

where the \(\varepsilon_r(\cdot) \)'s are independent mean zero Gaussian processes (described below). Some inputs may also have error; we take that into account below.

In addition, there is a computer model aimed at producing the same response. The computer model may have within it calibration/tuning parameters \(u = (u_1, \ldots, u_m) \) that need to be estimated (or tuned) to produce a matching response. The model output is then of the form \(y^M(x, u; t) \); it is affected by \(u \) but the real response, \(y^R \), is not. The connection between model output and reality is then expressed in

\[
y^R(x; t) = y^M(x, u^*; t) + b(x; t),
\]

where \(u^* \) is the true value of the (vector) calibration parameter; \(y^M(x, u^*; t) \) is the model response at time \(t \) and the true value of \(u \); and \(b(x; t) \), defined by subtraction, is the associated bias. In situations where \(u \) is a tuning parameter, there is no “true value” so \(u^* \) should be thought of as some type of fitted value of \(u \), with the bias defined relative to it.

Data from the field and from the computer model runs provide information for estimating the unknowns in equation (1) and (2). The Bayesian analysis we employ takes note of the fact, as in Bayarri et al. (2005a), that the unknowns \(u^* \) and the bias are not stati-
cally identifiable and, consequently, specification of their prior distributions is of particular importance for the analysis.

Inputs: Some inputs may be specified or physically measured with essentially perfect accuracy. Those that remain fixed for both field data and model runs play no further role and are not part of x. Other (unmeasured) inputs will have specified nominal values (generally, they will vary in the experiments) that are subject to manufacturing variation with specified distributions. We write these as

$$x = x_{\text{nom}} + \delta,$$ (3)

where x_{nom} is the known nominal value and the distribution of the manufacturing variation δ can be specified. In effect this transforms (2) into

$$y^R(x_{\text{nom}} + \delta^*; t) = y^M(x_{\text{nom}} + \delta^*, u^*; t) + b(x_{\text{nom}} + \delta^*; t)$$

where δ^* is the actual (unknown) value of δ. The parameters δ are like calibration parameters in that they are unknown but physically real.

The Unknowns: Prior to making computer runs or collecting field data, the unknowns in equation (1) and (2) are $(y^M, u^*, \delta^*, b, V_\epsilon)$, where V_ϵ is the covariance function of ϵ. A full Bayesian analysis would contemplate placing priors on these unknowns and, given field data and model runs, produce posterior distributions. But the complexity (for example, of irregular functional output) and high-dimensionality militate against such a strategy unless simplifications can be made. One such is the use of a basis representation of the functional data. In particular, to handle the irregular functions, we will consider wavelet decompositions. Other settings may allow different representations such as Fourier series or principal components (Higdon et al., 2007).
3.2 Wavelet decomposition

The nature of the functions in Figure 1, for example, suggests that wavelet decomposition would be a suitable basis representation (see Vidakovic (1999); Müller and Vidakovic (1999) and Morris et al. (2003) are among other references with applications related to ours).

The wavelet decomposition (more details are in Appendix A) we use for y^M is of the form

$$y^M(x, u; t) = \sum_i w^M_i(x, u) \Psi_i(t)$$ \hspace{1cm} (4)

where the wavelet basis functions $\Psi_i(t)$ are default choices in R wavethresh (Daubechies wavelets of index 2; for simplicity of notation, we include the scaling function as one of the basis elements). Similarly, the field curves (rth replicate) are represented as

$$y^F_r(x; t) = \sum_i w^F_{ir}(x) \Psi_i(t).$$ \hspace{1cm} (5)

A thresholding procedure, used to produce a manageable number of coefficients while maintaining adequate accuracy, leads to the approximations

$$y^M(x, u; t) = \sum_{i \in I} w^M_i(x, u) \Psi_i(t),$$

$$y^F_r(x; t) = \sum_{i \in I} w^F_{ir}(x) \Psi_i(t).$$ \hspace{1cm} (6)

The accuracy of the approximations using the reduced set of elements for the test bed problem is indicated in Figure 2. Since similarly accurate reconstruction resulted for all field and model run curves, we also assume that reality and the bias function can be accurately
Figure 2: The original curve and wavelet reconstructed curve for the first field-run at Site 1.

represented by the same basis elements, and write

\[y^R(x; t) = \sum_{i \in I} w^R_i(x)\Psi_i(t), \]
\[b(x; t) = \sum_{i \in I} w^b_i(x)\Psi_i(t), \]
\[\varepsilon(t) = \sum_{i \in I} \varepsilon_{ir}\Psi_i(t). \]

(7)

Matching coefficients and using equation (1) and (2) we get

\[w^R_i(x) = w^M_i(x, u^*) + w^b_i(x) \quad \forall i \in I, \]

(8)

\[w^F_{ir}(x) = w^R_i(x) + \varepsilon_{ir} \quad \forall i \in I. \]

(9)
That the measurements errors in the wavelet domain, ε_{ir}, are normally distributed with mean zero and are independent across replications r follows from the Gaussian process assumption on the process measurement error. We will, in addition, assume that these coefficients are independent across i, with possibly differing variances σ_i^2. This independence assumption is imposed so that later computations are feasible. That might seem unrealistic, given that the seven residual functions $(y_r^F(x; t) - \bar{y}_r^F(x; t))$ – shown in the left hand side of Figure 3 – can be seen to be correlated in time t, suggesting that the ε_{ir} should be correlated in i. But, as long as the σ_i^2 differ, independent normal ε_{ir} lead to a Gaussian process with mean zero and covariance function $\sum_{i \in I} \sigma_i^2 \Psi_i(t) \Psi_i(t')$. The right hand side of Figure 3 gives seven realizations of this process, with the σ_i^2 being estimated by the usual unbiased estimates, based on the replicates. The correlation patterns of the two processes seem quite similar.

![Figure 3: The seven residual field processes (left) and seven simulated error processes (right).](image)
Our approach is to analyze each of the retained wavelet coefficients, in equation (8) and (9), and recombine them to obtain estimates and uncertainties for the “original” functions, in equation (1) and (2).

3.3 GASP Approximation

For \(y^M \), the wavelet coefficients are functions of \((x, u) \). Because we cannot freely run the computer model for every \((x, u) \) we approximate each of the retained coefficients using data from computer runs. Formally, we start with a Gaussian process prior distribution on a coefficient \(w^M_i(x, u) \). Given computer model runs, \(y^M(x_k, u_k) \), where \(\{(x_k, u_k), k = 1, \ldots, K\} \) are the design points in a computer experiment, we extract the data \(\{w^M_i(x_k, u_k)\} \) and approximate \(w^M_i(x, u) \) as the Bayes predictor, the posterior mean, of \(w^M_i(x, u) \) given the data.

The Gaussian process priors we use are as in the GASP methodology described in Bayarri et al. (2005a): Let \(z = (x, u) \). For each \(i \in I \) (the set of retained wavelet coefficients), the GASP assumption is that \(w^M_i(z) \) is a Gaussian process with mean \(\mu^M_i \), constant variance \(1/\lambda^M_i \), and correlation function

\[
c_i^M(z, z') = \exp\left(-\sum_{p=1}^{n_M} \beta_{ip}^M |z_p - z'_p|^2 - \alpha_{ip}^M\right),
\]

where \(n_M \) is the number of coordinates in \(z \), the \(\beta \)’s are non-negative parameters and the \(\alpha \)’s are between 0 and 1.

Let \(\theta^M_i = \{\mu^M_i, \lambda^M_i, \alpha^M_{ip}, \beta^M_{ip}; p = 1, \ldots, n_M\} \) be the collection of the (hyper) parameters determining the Gaussian prior distribution of \(w^M_i \). To produce the Bayes predictor we have to deal with the \(\theta^M_i \)’s; we do so in section 4.
3.4 Other prior specifications

Priors for $\mathbf{u}^*, \mathbf{\delta}^*$ are context specific. Engineering advice led to adopting uniform priors for \mathbf{u}^* on their ranges in Table 1. For the manufacturing variations of the unmeasured parameters in Table 1, the advice led to normal priors with standard deviations equal to 1/6 of the ranges of the uncertainty intervals in Table 1. Specifically,

$$
\pi(u_1) = \pi(u_2) = \text{Uniform on } [0.125, 0.875],
$$

$$
\pi(\delta_1) = \pi(\delta_2) \sim N(0, 0.1111^2) \text{ truncated to } [-0.3333, 0.3333],
$$

$$
\pi(\delta_3) \sim N(0, 0.09723^2) \text{ truncated to } [-0.2917, 0.2917],
$$

$$
\pi(\delta_4) = \pi(\delta_7) \sim N(0, 0.1026^2) \text{ truncated to } [-0.3077, 0.3077],
$$

$$
\pi(\delta_5) \sim N(0, 0.04903^2) \text{ truncated to } [-0.1471, 0.1471],
$$

$$
\pi(\delta_6) \sim N(0, 0.1176^2) \text{ truncated to } [-0.3529, 0.3529].
$$

The σ_i^2 are given the usual noninformative priors $\pi(\sigma_i^2) \propto 1/\sigma_i^2$. Priors for the bias wavelet coefficients, the (w^b_i)’s, will be Gaussian but restricted to depend only on those coordinates of \mathbf{x}_{nom} that vary in the experiments. Because there is only one \mathbf{x}_{nom} in the test bed experiment, we only consider the case where the (w^b_i)’s are constants, though a similar approach can be taken for more general settings.

In the wavelet decomposition, each $i \in I$ belongs to some resolution level, $j(i)$ (in the test bed – see Appendix A – the levels go from 0 to 12). It is natural and common to model wavelet parameters hierarchically, according to their resolution level. The priors for the biases w^b_i at resolution level j are

$$
\pi(w^b_i \mid \tau_j^2) \sim N(0, \tau_j^2) \quad j = 0, \ldots, 12.
$$

(10)
This is a strong shrinkage prior, shrinking the biases to zero. One might be concerned with such strong shrinkage to zero, but the computer modeling world is one in which biases are typically assumed to be zero, so that utilizing a strong shrinkage prior has the appeal that any detected bias is more likely to be believed to be real in the community than would bias detected with a weaker assumption. (Of course, there are also statistical arguments for using such shrinkage priors.)

The hypervariances τ_j^2 are assigned a variant of a typical objective prior for hypervariances,

$$
\pi(\tau_j^2 | \{\sigma_i^2\}) \propto \frac{1}{\tau_j^2 + \frac{1}{7} \bar{\sigma}_j^2},
$$

where $\bar{\sigma}_j^2$ = average of σ_i^2 for i at level j. The $\bar{\sigma}_j^2$ provide a ‘scale’ for the τ_j^2 and are necessary – or at least some constants in the denominators are necessary – to yield a proper posterior.

4 Estimation and Analysis

We restrict attention, for the most part, to the context of the test bed. It will be clear that much of what is done can be generalized.

Approximating wavelet coefficients: In Appendix A we find that, for the test bed, there are 289 wavelet coefficients, w_i^M, to be treated. The Gaussian prior for each has 20 hyperparameters (coordinates of θ_i^M). A full Bayesian treatment would then require treatment of 5780 parameters, an infeasible task. Instead, we treat each coefficient separately and estimate each θ_i^M by maximum likelihood based on the model-run data $w_i^M = \{w_i^M(z_k)\}$, using code developed by W. Welch. Recall that $z = (x, u)$ and denote the kth design point
in the computer experiment by \(z_k \). For the test bed there are 65 \(z_k \)'s.

Letting \(\hat{\theta}_i^M = \{ \hat{\mu}_i^M, \hat{\lambda}_i^M, \hat{\alpha}_{ip}^M, \hat{\beta}_{ip}^M : p = 1, \ldots, n_M \} \) be the maximum likelihood estimates of the \(\theta \)'s, it follows that the GASP predictive distribution of \(w_i^M(z) \) at a new \(z \) is

\[
 w_i^M (z) | w_i^M, \hat{\theta}_i^M \sim N(\hat{m}_i^M(z), \hat{V}_i^M(z)),
\]

where

\[
 \hat{m}_i^M (z) = \hat{\mu}_i^M + \hat{\gamma}_i^M (z)'(\hat{\Gamma}_i^M)^{-1}(w_i^M - \hat{\mu}_i^M)1,
\]

\[
 \hat{V}_i^M (z) = \frac{1}{\hat{\lambda}_i^M} - \hat{\gamma}_i^M (z)'(\hat{\Gamma}_i^M)^{-1}\hat{\gamma}_i^M (z),
\]

with \(1 \) the vector of ones, \(\hat{\Gamma}_i^M \) (65 \(\times \) 65 in the test bed example) the covariance matrix for the model-run data \(w_i^M \) estimated by plugging in \(\hat{\theta}_i^M \), and

\[
 \hat{\gamma}_i^M (z) = (1/\hat{\lambda}_i^M)(\hat{c}_i^M(z_1, z), \ldots, \hat{c}_i^M(z_k, z))',
\]

where \(\hat{c} \) is the estimated correlation function. For the rest of the paper we will use equation (11) as the definition of the GASP predictive distribution.

A plot of the \((\hat{\alpha}, \hat{\beta})\) pairs can be found in Bayarri et al. (2006). A \(\beta \) near zero corresponds to a correlation near one, and a function that is quite flat in that variable; an \(\alpha \) near zero corresponds to a power of two in the exponent of the correlation, suggesting smooth functional dependence on that variable. For most of the pairs \((\hat{\alpha}, \hat{\beta})\), one or the other is near zero.

Full justification of the use of the plug-in maximum likelihood estimates for the parameters \(\theta_i^M \) is an open theoretical issue. Intuitively, one expects modest variations in parameters to have little effect on the predictors because they are interpolators. In practice, “studentized” cross-validation residuals (leave-one-out predictions of the data normalized by standard error) have been successfully used to gauge the “legitimacy” of such usage (for
examples and additional references see Schonlau and Welch (2005) and Aslett et al. (1998)). Only recently, Nagy (2006) has reported simulations indicating reasonably close prediction accuracy of the plug-in MLE predictions to Bayes (Jeffrey priors) predictions in dimensions 1-10 when the number of computer runs \(= 7 \times \text{dimension} \).

The Posterior Distributions: Restricting to the test bed problem, we simplify the notation by referring only to \(\delta \), the deviation of \(x \) from the nominal inputs \(x_{\text{nom}} \), and rewrite equation (8) and (9), \(\forall i \in I \), as

\[
\begin{align*}
\omega^R_i(\delta^*) & = \omega^M_i(\delta^*, u^*) + w^b_i \\
\omega^F_i(\delta^*) & = \omega^R_i(\delta^*) + \epsilon_{ir},
\end{align*}
\]

(12)

where the \(\epsilon_{ir} \) are independent \(N(0, \sigma^2_i)\).

The field data can be summarized by the (independent) sufficient statistics

\[
\begin{align*}
\bar{\omega}_i^F & = \frac{1}{7} \sum_{r=1}^{7} \omega^F_{ir}(\delta^*) , \\
\bar{s}_i^2 & = \sum_{r=1}^{7} (\omega^F_{ir}(\delta^*) - \bar{\omega}_i^F)^2 .
\end{align*}
\]

(We drop the argument \(\delta^* \) for these statistics, since the statistics are actual numbers given from the data.) Key facts to be retained, using equation (11) and (12) and properties of normal distributions:

\[
\begin{align*}
\frac{s_i^2}{\sigma_i^2} | \sigma_i^2 & \sim \chi^2_{6} , \\
\omega^F_i | \omega^M_i(\delta^*, u^*), w^b_i, \sigma_i^2 & \sim N \left(\omega^M_i(\delta^*, u^*) + w^b_i, \frac{1}{7} \sigma_i^2 \right) , \\
\bar{\omega}_i^F | \delta^*, u^*, \omega^M_i, w^b_i, \sigma_i^2 & \sim N \left(\hat{m}_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2 \right) ,
\end{align*}
\]

(13)

where (11) is used to get the last expression.

Let \(w^b, \tau^2, \sigma^2, \delta^* \), and \(u^* \) denote the vectors of the indicated parameters and write
their prior distribution as
\[
\pi(w^b, \tau^2, \sigma^2, \delta^*, u^*) = \pi(w^b | \tau^2) \times \pi(\delta^*, u^*, \tau^2 | \sigma^2) \times \pi(\sigma^2) \tag{14}
\]
\[
= \prod_{i \in I} \pi(w^b_i | \tau^2_{j(i)}) \times \left[\prod_{i=1}^7 \pi(\delta^*_i) \prod_{i=1}^2 \pi(u^*_i) \prod_{j=0}^{12} \pi(\tau^2_{j} | \{\sigma^2_i\}) \right] \times \prod_{i \in I} \pi(\sigma^2_i).
\]

The data, from field and computer model runs, can be summarized as \(D = \{w_i, s_i, w^M_i; i = 1, \ldots, 289\}\). Using equation (11), (13) (10) and (14), together with standard computations involving normal distributions, it is straightforward to obtain the posterior distribution of all unknowns as
\[
\pi_{\text{post}}(w^M(\delta^*, u^*), w^b, \delta^*, u^*, \sigma^2, \tau^2 | D) = \pi_{\text{post}}(w^M(\delta^*, u^*) | w^b, \delta^*, u^*, \sigma^2, D) \\
\times \pi_{\text{post}}(w^b | \delta^*, u^*, \sigma^2, \tau^2, D) \times \pi_{\text{post}}(\delta^*, u^*, \tau^2 | \sigma^2, D) \times \pi_{\text{post}}(\sigma^2 | D), \tag{15}
\]
where
\[
\pi_{\text{post}}(w^M(\delta^*, u^*) | w^b, \delta^*, u^*, \sigma^2, D) \sim \prod_{i \in I} N(m_{1i}, V_{1i}); \tag{16}
\]
\[
m_{1i} = \frac{V_i^M(\delta^*, u^*)}{V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2} (\bar{w}_i^F - w_i^b) + \frac{1}{7} \sigma_i^2 \left(\hat{m}_i^M(\delta^*, u^*) \right),
\]
\[
V_{1i} = \frac{V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2}{V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2},
\]
and
\[
\pi_{\text{post}}(w^b | \delta^*, u^*, \sigma^2, \tau^2, D) \sim \prod_{i \in I} N(m_{2i}, V_{2i}); \tag{17}
\]
\[
m_{2i} = \frac{\tau^2_{j(i)}}{V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2 + \tau^2_{j(i)}} (\bar{w}_i^F - \hat{m}_i^M(\delta^*, u^*)),
\]
\[
V_{2i} = \frac{\tau^2_{j(i)}(V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2)}{V_i^M(\delta^*, u^*) + \frac{1}{7} \sigma_i^2 + \tau^2_{j(i)}}.
\]
The third factor in (15) is
\[
\pi_{\text{post}}(\delta^*, u^*, \tau^2 | \sigma^2, D) \propto L(\overline{w}^F, s^2 | \delta^*, u^*, \sigma^2, \tau^2) \times \pi(\delta^*, u^*, \tau^2 | \sigma^2), \tag{18}
\]
where the marginal likelihood, \(L\), found by integrating out \(w^b\) and \(w^M(\delta^*, u^*)\) in the product
of the full likelihood and $\pi(w^b \mid \tau^2)$, is

$$L(w^F, s^2 \mid \delta^*, u^*, \sigma^2, \tau^2) = \prod_{i \in I} \frac{1}{\sqrt{\hat{V}_i^M(\delta^*, u^*) + \frac{1}{7}\sigma_i^2 + \tau_j^2(i)}} \times \exp \left\{ -\frac{1}{2} \left(\frac{(\hat{w}_i^F - \hat{m}_i^M(\delta^*, u^*))^2}{\hat{V}_i^M(\delta^*, u^*) + \frac{1}{7}\sigma_i^2 + \tau_j^2(i)} \right) \right\}.$$

Finally, the fourth factor in (15) is

$$\pi_{\text{post}}(\sigma^2 \mid D) \propto \left[\prod_{i \in I} \frac{1}{(\sigma_i^2)^3} \exp \left\{ -\frac{s_i^2}{2\sigma_i^2} \right\} \right] \int L(w^F, s^2 \mid \delta^*, u^*, \sigma^2, \tau^2) \, d\delta^* \, du^* \, d\tau^2. \quad (19)$$

At this point we make an approximation, and ignore the integral in (19); i.e., we simply utilize the replicate observations to determine the posteriors for the σ_i^2. The reason for this is not computational; indeed, one can include the σ_i^2 in the posterior in (18) and deal with them by a Metropolis algorithm. Instead, the motivation is what we call modularization, which is meant to indicate that it can be better to separately analyze pieces of the problem than to perform one global Bayesian analysis. The difficulty here is that there is a significant confounding in the posterior distribution between the calibration parameters, the bias function, and the σ_i^2, and this, for instance, allows bias to be replaced by larger σ_i^2. Here we have seven replicate observations for each σ_i^2, so simply utilizing the replicate observation posteriors and preventing the confounding has intuitive appeal. (Formalizing this argument is not so easy. The difficulty occurs because part of the model – the modeling of the bias – is quite uncertain. Better or more robust modeling of the bias may correct the problem within a full Bayesian analysis, but the difficulty of doing so argues for the simpler modular approach. We will discuss these issues more fully elsewhere.)

Simulating from equation (16) and (17) and the first factor of (19) is, of course, trivial, but simulating from equation (18) requires MCMC methodology. Given the complexity of
the problem, the MCMC requires careful choice of proposal distributions in order to achieve suitable mixing. Discussion of these proposals is relegated to Appendix B because of the level of detail needed to describe them, but we note that these are technically crucial for the methodology to work and required extensive exploration.

The end result of the simulation is a sample of draws from the posterior distribution in equation (15): each saved draw from the first factor of (19) is used to generate the MCMC sample for the third factor, with both being used to generate a draw from the second and the first factors, using equations (16) and (17). We saved every 200^{th} draw from 200,000 MCMC iterations for the third factor, thereby obtaining a final sample of 1000 draws

$$\{w^{M,h}(\delta^{sh}, u^{sh}), w^{bh}, \delta^{sh}, u^{sh}, \sigma^{2h}, \tau^{2h}; h = 1, \ldots, 1000\}.$$ (20)

The results below are based on this sample from the posterior.

5 Results

5.1 Estimates of δ^*, u^*

Histograms for δ^*, u^* (Figure 4) are obtained by forming a histogram for each component of δ^*, u^* from the corresponding elements in equation (20). The calibration parameters are moderately affected by the data but, of the input variables, only x_5 and x_6 have posteriors that are significantly different than the priors. The posterior for x_5 is piled up at the end of the allowed range for the variable, which suggests the (undesirable) possibility that this uncertain input is being used as a tuning parameter to better fit the model; a case could be made for preventing this by additional modularization.
Figure 4: Histogram of the posterior draws for the two calibration parameters (u_1 and u_2), and the seven calibration parameters (x_1 through x_7), along with their priors (solid lines).
5.2 Estimation of Bias and Reality

Posterior distributions of the bias and reality curves are obtained by recombining the wavelets with the posterior wavelet coefficients from equation (20). For instance, the posterior distribution of b is represented by the sample curves

$$b^h(t) = \sum_{i \in I} w^h_i \Psi_i(t); \quad h = 1, \ldots, 1000.$$

(21)

The posterior mean curve, $\widehat{b}(t) = \frac{1}{1000} \sum_{h=1}^{1000} b^h(t)$, is plotted as the solid line in Figure 5. The uncertainty of this estimate of b is quantified by producing upper and lower uncertainty (tolerance) bounds at each t by, for example, taking the lower $\alpha/2$ and upper $1 - \alpha/2$ quantiles of the posterior distribution of $b(t)$ i.e.,

$$L^b(t) = \frac{\alpha}{2} \text{ quantile of } \{b^h(t); h = 1, \ldots, 1000\}$$

$$U^b(t) = \left(1 - \frac{\alpha}{2}\right) \text{ quantile of } \{b^h(t); h = 1, \ldots, 1000\}.$$

(22)

These lower and upper bounds are also plotted in Figure 5. It is apparent in Figure 5 that the bias function is significantly different from 0 especially in the neighborhood of 8.7 and 9.1.

The bounds in equation (22) are symmetrically defined. Alternative tolerance bounds can be defined by only requiring that $100\alpha\%$ of the curves lie outside the bounds; a useful choice would satisfy this condition and minimize the width of the bounds: $U^b(t) - L^b(t)$.

Figures 4 and 5 provide marginal distributions of $u^*, x_{nom} + \delta^*$ and the bias, but it is important to note that these are highly dependent in the posterior. Hence most analyses involving these quantities must be based on their joint, rather than marginal, distributions.

Estimating reality with uncertainty bounds is done similarly: take the sample of wavelet coefficients $w^{Rh}_i = w^{Mh}_i(\delta^{*h}, u^{*h}) + w^{bh}_i$ and form
Figure 5: The estimate of the bias function (solid line) with 90% tolerance bounds (dashed lines) for Suspension Site 1 and at Region 1.

\[
y^{Rh}(t) = \sum_i w_i^{Rh} \Psi_i(t), \quad \hat{y}^R(t) = \frac{1}{1000} \sum_h y^{Rh}(t),
\]
\[
L^R(t) = \frac{\alpha}{2} \text{ quantile of } \{y^{Rh}(t); h = 1, \ldots, 1000\},
\]
\[
U^R(t) = \left(1 - \frac{\alpha}{2}\right) \text{ quantile of } \{y^{Rh}(t); h = 1, \ldots, 1000\}.
\]

We call \(\hat{y}^R(t)\) the bias-corrected prediction of reality. Figure 6 exhibits the bias-corrected prediction and associated uncertainty band.

Figure 6 further shows a comparison between bias-corrected prediction and pure model prediction, the latter being defined as follows:
\[
\hat{y}^M(t) = \sum_i \hat{m}^M_i \left(\hat{\delta}, \hat{\mu} \right) \Psi_i(t),
\]

where \(\hat{\delta} = \frac{1}{1000} \sum_h \delta^h \) and \(\hat{\mu} = \frac{1}{1000} \sum_h u^h \) and \(\hat{m}^M_i \left(\hat{\delta}, \hat{\mu} \right) \) is the posterior mean of the wavelet coefficients with plugged-in estimates for the unknown parameters (use equation (11)).

Figure 6: Bias-corrected prediction of reality (solid black line) with 90% tolerance bands (dashed black lines), pure model prediction (solid grey line), and field runs (solid yellow lines).

In practice, it may be that running the computer model after estimating \(\delta^*, \mu^* \) is feasible. Then an alternative (and preferred) pure model prediction is \(y^M(\hat{\delta}, \hat{\mu}; t) \).

Assessing the uncertainty for predicting reality of the pure model prediction (equation (24)) can be done by considering samples \(\{ y^{Rh}(t) - \hat{y}^M(t) \} \) and forming bounds. If a new
model run producing \(y^M(\hat{\delta}, \hat{u}; t) \) is used instead, then the computation should be redone with this additional model run included, but a typically accurate approximation is to simply consider \(\{ y^{Rh}(t) - y^M(\hat{\delta}, \hat{u}; t) \} \) and proceed as before. Here it may be useful to consider asymmetric bounds because the pure model predictions may lie entirely above or below the realizations of reality. But plots like that of Figure 6 already show the gap between pure model prediction and reality.

5.3 Predicting a New Run; Same System, Same Vehicle (new run)

In some prediction settings, not necessarily the one of the test bed, there is interest in predicting a new \textit{field run} with the same inputs (and the same system). Prediction is done by adding in draws, \(\varepsilon^h_i \), from a \(N(0, \sigma^2_{ih}) \) distribution and then following the same prescription as in equation (23) to form \(\hat{y}^F(t) \) and corresponding uncertainty bounds. This, of course, produces wider uncertainty bounds.

5.4 Extrapolating

There are many follow-on settings where prediction is called for. We single out three such: (i) the same vehicle except that \(\mathbf{x}_{\text{nom}} \) changes; (ii) same vehicle type but new components: that is, same nominal values and prior distributions for the manufacturing variations but a new realization of the \(\delta \)'s from the prior distribution; (iii) new vehicle: different nominal \((x_1, \ldots, x_7) \) inputs, but the same prior distributions for the \(\delta \)'s.

Any analysis we perform for the test bed is severely constrained by the fact that we have limited field data on just one set of inputs measured with error.
5.4.1 Same Vehicle, Different Load

Here the same vehicle was tested but with added mass. This causes a known change in x_{nom}, with everything else (including the δ's) remaining unchanged. The effect of a simple change in inputs such as this can be addressed using the difference in computer model runs at the nominal values of the inputs. More formally, suppose we add a computer model run at $(x_{\text{nom}} + \Delta, u_{\text{nom}})$ where Δ is the modest change in the nominal inputs (Δ has only one non-zero coordinate if the only change is in the mass). Suppose we also have a run at the old nominals $(x_{\text{nom}}, u_{\text{nom}})$; if not, use the GASP prediction based on the existing runs. Our assumption then is that (with x^* referring to the true unknown input values for the original system)

$$y^M(x^* + \Delta, u^*; t) - y^M(x^*, u^*; t) \approx y^M(x_{\text{nom}} + \Delta, u_{\text{nom}}; t) - y^M(x_{\text{nom}}, u_{\text{nom}}; t) \equiv D(t).$$

We can then make predictions under the new inputs by simply adding $D(t)$ to the old predictions.

This is illustrated in Figure 7; the given bias corrected prediction and tolerance bands for the vehicle with the additional mass is simply the results of Section 5.3 translated by $D(t)$. The grey solid line is pure model prediction. The yellow line is the actual result from a field test of the system with added mass, and the strategy appears to have successfully extrapolated in the critical Region 1. Again, the pure model prediction is not successful.

5.4.2 New Vehicle of the Same Type

In this setting the nominal values x_{nom} remain the same but the new δ's are random draws from their prior (population) distribution and are, therefore, different than those for the
field-tested system. This is of particular interest in practice, in that it is prediction for the population of vehicles of the given type that is of prime interest, rather than just prediction for the single system/vehicle tested.

The calibration parameters u^* do not change; they belong to the model and, if physically real, are inherently the same for all systems/vehicles of the same type. Denote the parameters of the new components by $z_{new} = (x_{nom} + \delta_{new}, u^*)$. The input parameters of the computer runs remain $z_k = (x_{nom} + \delta_k, u_k)$; and $z^* = (x_{nom} + \delta^*, u^*)$ are the true values for the tested system. Denote the associated model wavelet coefficients for the new components by $w^M(z_{new})$.

Since δ_{new} is independent of $(w^b, \delta^*, u^*, \sigma^2, \tau^2, D)$, the predictive (posterior) distribution is (with the L_i’s denoting likelihood terms arising from the data)
\[\pi_{\text{post}}(w^M(z_{\text{new}}), w^M(z^*), \mathbf{w}^b, \delta_{\text{new}}, \delta^*, \mathbf{u}^*, \sigma^2, \tau^2 \mid D) \propto \pi(\delta_{\text{new}}) \times \pi(w^b, \delta^*, \mathbf{u}^*, \sigma^2, \tau^2) \times L_1(w^M(z_{\text{new}}), w^M(z^*), \{w^M_i(z_k)\} \mid \delta_{\text{new}}, \delta^*, \mathbf{u}^*) \times L_2(\{\tilde{w}_i\}, \{s_i^2\} \mid w^M(z^*), w^b, \sigma^2) \]
\[\propto \pi_{\text{post}}(w^M(z_{\text{new}}) \mid w^M(z^*), \{w^M_i(z_k)\}, \delta_{\text{new}}, \delta^*, \mathbf{u}^*) \times \pi(\delta_{\text{new}}) \times \pi(w^b, \delta^*, \mathbf{u}^*, \sigma^2, \tau^2) \times L_3(w^M(z^*), \{w^M_i(z_k)\} \mid \delta^*, \mathbf{u}^*) \times L_2(\{\tilde{w}_i\}, \{s_i^2\} \mid w^M(z^*), w^b, \sigma^2). \] (25)

To sample from equation (25), note that the last three factors in the expression yield exactly the same posterior for \((w^M(z^*), w^b, \delta^*, \mathbf{u}^*, \sigma^2, \tau^2)\) as before (with the same modularization used), so the draws from the previous MCMC can be used in the new computations. Since \(\delta_{\text{new}}\) can be drawn from its prior \(\pi(\delta_{\text{new}})\), it only remains to draw from \(\pi_{\text{post}}(w^M(z) \mid w^M(z^*), \{w^M_i(z_k)\}, \delta_{\text{new}}, \delta^*, \mathbf{u}^*)\). But this is simply the GASP distribution where \(w^M(z^*)\) has to be added to the model run data. Therefore one simply determines the GASP for the augmented runs \(w_i^{M_0} = (w_i^M(z_1), w_i^M(z_2), \ldots, w_i^M(z_k), w_i^M(z^*))\), i.e.

\[w_i^M(z_{\text{new}}) \mid w_i^{M_0}, \hat{\mathbf{\theta}}_i \sim N(\tilde{m}_i^{M_0}(z_{\text{new}}), \tilde{\Gamma}_i^{M_0}(z_{\text{new}})), \] (26)

where \(\hat{\mathbf{\theta}}_i\) is as in Section 4 and

\[
\tilde{m}_i^{M_0}(z_{\text{new}}) = \tilde{\mu}_i^M + \gamma_i^{M_0}(z_{\text{new}})'(\tilde{\Gamma}_i^{M_0})^{-1}(w_i^{M_0} - \hat{\mu}_i^M \mathbf{1})
\]
\[\tilde{V}_i^{M_0}(z_{\text{new}}) = \frac{1}{\tilde{\lambda}_i^M} - \gamma_i^{M_0}(z_{\text{new}})'(\tilde{\Gamma}_i^{M_0})^{-1}\gamma_i^{M_0}(z_{\text{new}}),\]

where \(\gamma_i^{M_0}(z_{\text{new}}) = (1/\tilde{\lambda}_i^M)(\hat{c}_i^M(z_1, z_{\text{new}}), \ldots, \hat{c}_i^M(z_k, z_{\text{new}}), \hat{c}_i^M(z^*, z_{\text{new}}))'\) and \(\tilde{\Gamma}_i^{M_0}\) is obtained by appending the column \(\gamma_i^{M_0}(z^*)\) and row \(\gamma_i^{M_0}(z^*)'\) to \(\tilde{\Gamma}_i^M\).

Application of these expressions yield draws \(h = 1, \ldots, 1000\) from the posterior distribution of the \(i^{th}\) wavelet coefficient for the new system as
\[w_i^{Fh}(z^h) = w_i^M(z^h) + w_i^{bh} + \varepsilon_i^h \]

where \(\varepsilon_i^h \sim N(0, \sigma_i^{2h}) \). Figure 8 plots the predictions of the new system with uncertainty bands. The uncertainty has increased as compared with Figure 6 not only because the prior for \(\delta_{\text{new}} \) is used rather than the posterior for the tested vehicle, but also because these are predictions of field runs (instead of reality).

Figure 8: Predictions for a new vehicle of the same type. Solid black line is bias-corrected prediction, dashed black lines are 90% tolerance bands, grey line is pure model prediction, and yellow lines are field runs.
5.4.3 New Vehicle with New Nominals

The primary engineering use of computer models is to extrapolate to a system with new nominals when there is no new field data. This will require strong assumptions, especially about the bias. The simplest assumption about the bias, which we make here, is that the new system has the same bias function as the old system. The calibration parameters u^* are also assumed to remain the same. We use the joint – and highly dependent – posterior distribution of the bias and u^* from the original system extensively in what follows.

The new system has the same I/U map as the original system, but with new nominal values x_{nom}^B (which we refer to as Condition B). The new δ’s are taken to have the same priors as for Condition A. The same 65 point design on (δ, u) was used as before with the addition of one central value. Again one run failed, leaving 65 usable model runs. Registration of the output curves is unnecessary because there are no field data and the computer runs are assumed to be inherently registered. The resulting computer runs were passed through the same wavelet decomposition as before retaining only those coefficients that appeared earlier. The resulting GASP for the i^{th} wavelet coefficient is

$$w_i^{BM}(z) \mid w_i^{BM}, \theta_i^{BM} \sim N \left(\hat{m}_i^{BM}(z), \hat{V}_i^{BM}(z) \right)$$

(27)

exactly as in equation (11).

This new GASP analysis is done only with Condition B data. A GASP analysis combining the model runs for Condition B and the model runs for the original system is not used because the changes in the nominals are too large to safely assume connections between the computer model runs for the two systems.

The situation now is analogous to that of the previous argument for new vehicles of the
same type with the same nominals. In the current case, again using the independence of δ^B from the other unknowns, the predictive (posterior) distribution of the relevant unknowns can be written as

$$\pi(w_{BM}^B(z^B), w^b, \delta^B, u^*, \sigma^2, \tau^2 \mid D)$$

$$= \pi(w_{BM}^B(z^B) \mid w^b, \delta^B, u^*, \sigma^2, \tau^2, D) \times \pi(\delta^B) \times \pi(w^b, u^*, \sigma^2, \tau^2 \mid D)$$

$$= \pi(w_{BM}^B(z^B) \mid \delta^B, u^*, D) \times \pi(\delta^B) \times \pi(w^b, u^*, \sigma^2, \tau^2 \mid D);$$

here $\pi(w_{BM}^B(z^B) \mid \delta^B, u^*, D)$ is just the GASP distribution in equation (27) and $\pi(\delta^B)$ is the prior for B inputs from the I/U map. Draws of $w^b, u^*, \sigma^2, \tau^2$ are made from the old posterior distribution for the original system. Because w^b and u^* are highly dependent in the posterior, they must be jointly sampled for the extrapolation; naive approaches – such as simply trying to add the bias from Figure 5 to the pure model prediction – will not succeed.

The “carry-over” assumptions for the bias and the field variances lead to draws from the posterior distribution of the wavelet coefficients for B to be

$$w_i^{BFh}(z^{Bh}) = w_i^{BM}(z^h) + w_i^{bh} + \varepsilon_i^h$$

where $\varepsilon_i^h \sim N(0, \sigma_i^{2h}).$

In the left of Figure 9 the prediction for B is presented. Actual field data (8 replicate runs for B) were afterwards available (not used in constructing the predictions and tolerance bands) and they are superimposed (in yellow) on the plots in the left of Figure 9; grey curves represent model runs. The effectiveness of carrying over the assumptions from A to B is apparent.

If a strong assumption, such as the constancy of bias, is to be made it is best to be
extremely careful about implementing the assumption. Here, for instance, physics consider-ations might suggest that an assumption of constant multiplicative bias is more sensible than an assumption of constant additive bias. (Use of a multiplicative bias is mentioned in Fuentes et al. (2003)). A standard way of implementing multiplicative bias is to repeat the above analysis using the log of the various curves. A simpler alternative is to transform the additive biases obtained above into multiplicative biases, and apply these multiplicative biases to the GASP draws under Condition B. Bias in the additive system can be written

\[b^h(t) = y^{Rh}(t) - y^{Mh}(t) ; \]

the corresponding multiplicative representation of the bias is

\[b^h_{\text{mult}}(t) = \frac{y^{Rh}(t)}{y^{Mh}(t)} - 1 , \]
which would lead to draws from the posterior for reality under Condition B of

\[y^{BRh}(t) = y^{BMh}(t) \times (1 + b^t_{mult}(t)). \]

The right panel of Figure 9 presents the analogue of the left using the multiplicative bias. The additive and multiplicative predictions are not much different. The next section discusses another site in the suspension system for which the analysis in the paper was implemented, called Site 2. For this site, the multiplicative predictions under Condition B were noticeably better than the additive predictions, as indicated in Figure 10.

Figure 10: Prediction at Site 2 of a new vehicle under Condition B in Region 1. Left: additive bias. Right: multiplicative bias. Solid black line is bias-corrected prediction, dashed black lines are 90% tolerance bands, and grey lines are model runs; the yellow lines are the field runs later provided and not used in the analysis.
6 Site 2 Analyses

Analyses for Site 2 of the system proceed in exactly the same way as those for Site 1. The posterior distributions for the calibration parameters \((u_1, u_2)\) as well as for \(\delta\) are in Figure 11. These are somewhat different than those for Site 1 in Figure 4. These parameters are, of course, the same for either site, but the limited data available at each site lead to somewhat different posterior distributions. In particular, \(x_5\) no longer seems to be used as a tuning parameter, but it is possible that \(u_2\) is being so used. A natural solution to help reduce such potential over-tuning is to do a bivariate functional analysis of the two sites jointly. This is being pursued separately.

Figure 12 presents the estimated bias function and Figure 13 the bias corrected and pure model predictions, along with the corresponding tolerance bounds. The presence of bias can be clearly seen, as well as the noticeably improved performance of the bias corrected prediction over the pure model prediction. Other figures for Site 2 are omitted since, with the exception of Figure 10, they do not provide further insight.

Acknowledgement

This research was supported in part by the National Science Foundation (Grant DMS-0073952) to the National Institute of Statistical Sciences, National Science Foundation Grant DMS-0103265 and Spanish Ministery of Education Grant MTM2004-03290. Any opinions, findings and conclusions or recommendations expressed in this publication are entirely those of the authors and do not necessarily reflect the views of the National Science Foundation nor the Spanish Ministry of Education.
Figure 11: Posterior distributions for the unknown input parameters for Site 2 of the system.
Figure 12: Bias estimate with 90% tolerance bounds for Site 2 at Region 1.

References

36
Figure 13: Bias-corrected prediction of reality with 90% tolerance bands for Site 2 at Region 1.

A Data Registration and Wavelet Decomposition

For the wavelet representations of the output curves it is important that the same wavelet basis elements simultaneously represent the important features of all curves. In the test bed problem the heights of the peaks and valleys of the curves from the field data are of primary importance but their locations are not the same across the curves, due to random fluctuations in the tests. Thus we first align the curves so that the major peaks and the major valleys occur at the same location. In other applications, alignment would likely be based on other key features of the curves. (In the test bed, the timing of the major events is not of concern - only the forces at these events are of interest. If it were important for the computer model to accurately reflect timing, as in the analysis of airbag deployment in Bayarri et al. (2005b), this mode of registration could not be used.)

We did not try to align the curves from the computer model runs, since variation in these curves could not be ascribed to random fluctuation. (One might think that the computer model curves would be automatically aligned but, surprisingly, in the test bed they did show some misalignment, perhaps due to differences in the damping parameters.) We construct a reference curve (for alignment of the field curves) by averaging the model-run curves and use piecewise linear transformation to align the peaks and valleys of the field curves to this reference curve. The details are as follows:

Step 1. Construct a dyadic grid (points of the form $j/2^q$ on the interval where the function is defined. For the test bed, the interval [0, 65] covered the range of importance and $q = 12$). For each computer run extract the output values on the dyadic grid. Construct a pseudo output for points not in the grid by linear interpolation and treat
them as actual outputs.

Step 2. From the K computer runs (there $K = 65$ in the test bed, define the reference curve as $\bar{y}^M(t) = \frac{1}{K} \sum_{k=1}^{K} y^M(x_k, u_k; t)$.

- For the first major event, located in the region $6 < t < 11$, define
 * $A = \text{location (value of } t\text{) of the maximum of the reference curve } \bar{y}^M(t)$;
 * $A_r^F = \text{location of the maximum of } y_r^F$;
 * $a = \text{location of minimum of } \bar{y}^M(t)$;
 * $a_r^F = \text{location of minimum of } y_r^F$;

- For the second major event, located in the region $37 < t < 41$, define B, B_r^F, b, b_r^F analogously. Assume $a < A < b < B$.

Step 3. For each r, match a_r^F, A_r^F with a, A by transforming t in $[a_r^F, A_r^F]$ to

$$t' = a + (t - a_r^F) \frac{A - a}{A_r^F - a_r^F}.$$

Now define the registered y_r^F on the interval $[a, A]$ as \textit{registered } $y_r^F(t') = \text{original } y_r^F(t)$, where t' and t are connected as above.

Step 4. Assume that $b < B$. As in Step 3, register y_r^F on the interval $[A_r^F, b_r^F]$ by mapping $[A_r^F, b_r^F]$ into $[A, b]$ via $t' = A + (t - A_r^F) \frac{b - A_r^F}{b_r^F - A_r^F}$. Similar registrations are done for the intervals $[0, a_r^F], [b_r^F, B_r^F]$ and $[B_r^F, 65]$.

Figure 1 shows the registered data for Site 1 of the suspension system. “Time” in the figures is not literal time, but is a convenient scaling of the realigned time.

The wavelet decompositions are described in part in Section 3.2. The basis functions are such that at “level” 0 there is a scaling constant and for level $j = 1, \ldots, 12$ there are 2^{j-1}
basis functions. To balance the need for approximation accuracy with the need to minimize the number of terms for computational feasibility, we considered each model-run and field curve and retained all coefficients at levels 0 through 3; for levels $j > 3$, we retained those coefficients that, in magnitude, were among the upper 2.5% of all coefficients at all levels for the given function, according to the R \textit{wavethresh} thresholding procedure. We then took the union of all resulting basis functions for all the model-run and field curves. For the test bed there were 231 retained elements for the output from Site 1 on the system, and 213 for the output from Site 2. The combined (from both sites) number of retained elements was 289 and we used these for all analyses. The indices attached to these 289 retained basis elements are denoted by I.

\section*{B The MCMC Algorithm}

Step 1: For $h = 1, \ldots, 1000$, sample the σ^2_i from the following distribution:

$\text{InverseGamma}\left(3, \frac{2}{s_i^2}\right) \left(\text{shape} = 3, \text{scale} = \frac{2}{s_i^2}\right)$.

Step 2: For $h = 1, \ldots, 1000$, make draws $\delta^{*h}, u^{*h}, \tau^{2h}$ from the posterior distribution in equation (18). (This is complicated – the process is described last.)

Step 3: Given $\delta^{*h}, u^{*h}, \sigma^{2h}, \tau^{2h}$ draw w^{*h} from the distribution in equation (17). (This is simply done by making a draw, for each i, from a normal distribution with the specified means and variances).

Step 4: Given $\delta^{*h}, u^{*h}, \sigma^{2h}, \tau^{2h}, w^{*h}$, make a draw of w^{Mh} from the distribution in equation (16). (Again this is simply done by draws from normal distributions).
For Step 2, we use a Metropolis-Hastings scheme to generate the \((h + 1)^{st}\) sample. We break this up into two sub-steps.

Step 2.1 Propose \(\tau^2\) by generating from
\[
q_i(\tau^2_i | \tau^{2h}_i) = \frac{1}{\tau_i^2} \text{ if } \tau^2_i \in [\tau_i^{2h} e^{-0.7}, \tau_i^{2h} e^{0.7}]
\]
\[0 \text{ otherwise.}
\]

The posterior density of \(\tau^2\) is not very spiked, so this type of fairly broad local proposal works well. Finally, form the Metropolis-Hastings Ratio
\[
\rho = \frac{\pi(\delta^h, u^h, \tau^2 | \sigma^{2h}, D) q(\tau^{2h} | \tau^2)}{\pi(\delta^h, u^h, \tau^{2h} | \sigma^{2h}, D) q(\tau^2 | \tau^{2h})}
\]
and define \(\tau^{2(h+1)} = \tau^2\) with probability \(\min(1, \rho); \tau^{2(h+1)} = \tau^{2h}\) otherwise.

Step 2.2 Let \(T^\delta_k = [a^\delta_k, A^\delta_k]\) and \(T^u_k = [a^u_k, A^u_k]\) denote the intervals on which the prior densities for the corresponding variables are nonzero, and define
\[
T^{\ast\delta h}_k = [\max(a^\delta_k, \delta^h_k - 0.05), \min(A^\delta_k, \delta^h_k + 0.05)]
\]
\[
T^{\ast u h}_k = [\max(a^u_k, u^h_k - 0.05), \min(A^u_k, u^h_k + 0.05)].
\]

Propose \(\delta, u\) from
\[
g(\delta, u | \delta^h, u^h) = \prod_{k=1}^7 \left(\frac{1}{2} U(\delta_k | T^\delta_k) + \frac{1}{2} U(\delta_k | T^{\ast\delta h}_k) \right) \prod_{k=1}^2 \left(\frac{1}{2} U(u_k | T^u_k) + \frac{1}{2} U(u_k | T^{\ast u h}_k) \right).
\]

The logic here is that the posterior densities for some of the parameters is quite flat, so that sampling uniformly over their support \((T^\delta_k \text{ or } T^u_k)\) would be quite reasonable as a proposal. On the other hand, some of the posteriors are quite concentrated, and for these it is effective to use a locally uniform proposal, centered around the previous
value and with a maximum step of 0.05; this leads to uniforms on $T_k^*\delta_h$ or T_k^*uh, which are the regions defined by the intersection of the local uniforms and the support of the priors. Since the goal here was to create a procedure that can be automatically applied for this type of problem, 50-50 mixtures of the two proposals were adopted.

Finally, form the Metropolis-Hastings Ratio
\[
\rho = \frac{\pi(\delta, u, \tau^{2(h+1)} | \sigma^{2h}, D) g(\delta^h, u^h | \delta, u)}{\pi(\delta^h, u^h, \tau^{2(h+1)} | \sigma^{2h}, D) g(\delta, u | \delta^h, u^h)}
\]
and set $(\delta^{(h+1)}, u^{(h+1)}) = (\delta, u)$ with probability $\min(1, \rho)$, and equal to (δ^h, u^h) otherwise.

These Metropolis-Hastings steps typically yield highly correlated iterations, so we actually cycle through them 200 times (with fixed σ^{2h}) before saving the variable values for feeding into Steps 3 and 4.