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Sensitivity analysis for unmeasured
confounding in principal stratification
settings with binary variables
Scott Schwartz,a*† Fan Lib and Jerome P. Reiterb

Within causal inference, principal stratification (PS) is a popular approach for dealing with intermediate vari-
ables, that is, variables affected by treatment that also potentially affect the response. However, when there
exists unmeasured confounding in the treatment arms—as can happen in observational studies—causal esti-
mands resulting from PS analyses can be biased. We identify the various pathways of confounding present in
PS contexts and their effects for PS inference. We present model-based approaches for assessing the sensitiv-
ity of complier average causal effect estimates to unmeasured confounding in the setting of binary treatments,
binary intermediate variables, and binary outcomes. These same approaches can be used to assess sensitivity to
unknown direct effects of treatments on outcomes because, as we show, direct effects are operationally equiv-
alent to one of the pathways of unmeasured confounding. We illustrate the methodology using a randomized
study with artificially introduced confounding and a sensitivity analysis for an observational study of the effects
of physical activity and body mass index on cardiovascular disease. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Intermediate variables are posttreatment variables potentially affected by treatment and affecting
response. Regardless of whether the study design is randomized or observational, intermediate variables
are frequently present, for example, in settings involving noncompliance, missing data, and surrogate
endpoints. Under such circumstances, standard intention-to-treat analyses may not be sufficient to esti-
mate treatment efficacy so that intermediate variables must be dealt with for causal inference. However,
it is well documented that applying standard methods of pretreatment variable adjustment to intermedi-
ate variables, such as regression or per-protocol analysis, can result in posttreatment selection bias (e.g.,
[1]). To illustrate, let Yi .Zi / and Di .Zi / be respectively the potential outcomes [2] of the response of
interest and the intermediate variable for unit i under an assigned binary treatment,Zi D 0; 1. In general,
the comparison between fYi .0/ W Di .0/ D dg and fYi .1/ W Di .1/ D dg for all i D 1; : : : ; n units in the
study is not a causal effect when Zi affects Di because fi WDi .0/D dg ¤ fi WDi .1/D dg.

A principled approach to handling intermediate variables in causal inference is principal stratification
(PS), in which one compares fYi .1/ W Si D sg and fYi .0/ W Si D sg [3]. Here, Si D .Di .1/;Di .0// is
called a principal stratum. The key insight is that Si is invariant under treatment assignment so that the
principal strata may be used as pretreatment variables. That is, comparisons within Si D s, known as
principal effects (PE), are well-defined causal effects. Specifically, PEs in strata fSi W Di .0/ D Di .1/g
can be interpreted as direct effects of treatment on response, whereas PEs in strata fSi WDi .0/¤Di .1/g
can be interpreted as the effects of treatment mediated through the intermediate variable response plus
any direct effects of treatment on response [4].

Because S is not fully observed, the identifiability of PEs usually relies on a set of structural assump-
tions, for example, no unmeasured confounding and an exclusion restriction (ER) (Section 2). These
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assumptions may not be true, particularly in observational studies, such as, for example, the Swedish
National March Cohort (NMC). Sjölander et al. [5] previously examined this data set, and we reanalyze
it in Section 5. In the NMC, Z is one’s physical activity (PA) level, D is one’s body mass index (BMI),
and Y is the event of cardiovascular disease (CVD). Interest lies in the roles of PA and BMI in influenc-
ing CVD risk. It is known that BMI is directly affected by PA, and obesity is highly correlated with CVD
risk, making BMI a possible intermediate variable on the causal pathway between PA and CVD. How-
ever, the treatment variable PA is self-selected by participants, and this selection could be confounded
with other healthy lifestyle practices that are not observed in the data. Furthermore, PA could improve
CVD outcomes directly, which would violate the ER.

When identifying assumptions are suspect, it is prudent to examine the sensitivity of results to vio-
lations of the assumptions [6]. For example, analysts can remove identifying assumptions and derive
bounds for PS estimands [7,8]. Alternatively, analysts can encode identifying assumptions as sensitivity
parameters that are included in models for causal effects [5, 9]. To do so, expert opinion can be used to
specify plausible values of the sensitivity parameters and examine how PS estimates change over those
plausible values. We note that limits on the values of plausible sensitivity parameters imply bounds for
PS estimands as well.

Following [5] and [9], we present a sensitivity analysis framework that encodes unmeasured con-
founding as continuous sensitivity parameters. We identify two types of (simultaneous) unmeasured
confounding in PS: (1) S -confounding, which affects the estimation of principal strata; and (2) Y -
confounding, which affects the estimation of effects on the response within principal strata. For the
setting of binary treatment, binary intermediate variable, and binary outcome, we develop a nonparamet-
ric expression for the bias in standard PS estimators without covariate adjustment. For the same setting,
we also present an approach to sensitivity analysis using model-based inference with covariate adjust-
ment. Both strategies can also be used to assess sensitivity to unknown direct effects because, as we
show, direct effects are operationally indistinguishable from Y -confounding in this PS context.

Although the general considerations apply to any PS estimand, we focus on the complier average
causal effect (CACE) [10], also known as the local average treatment effect [11]. CACE is the PE in the
principal stratum fSi WDi .0/¤Di .1/g. In randomized trials with noncompliance, CACE represents the
efficacy of the treatment (e.g., [12]). In mediation studies, CACE represents the average causal effect
for the units in the latent subpopulation whose intermediate variable would change because of the treat-
ment; this includes the effects that the treatment has on the response both mediated and not mediated
via the intermediate variable of interest. Elliott et al. [13] and Griffin et al. [14] have studied the CACE
in observational settings, and Sjölander et al. [5] and Egleston et al. [15] have considered alternative
PEs in the observational settings. All of these analyses were based on the assumption of no unmea-
sured confounding. Small and Rosenbaum [16] have examined sensitivity to unmeasured confounding
in instrumental variables settings, which are closely related to PS CACE analysis. They use a permuta-
tion distribution to determine the level of unmeasured confounding that discounts a significant treatment
effect. The key differences between the methods of [16] and our framework include the following: (1)
we explicitly identify and parameterize confounding pathways via a model-based approach; and (2) we
examine settings predicated on the possibility of direct effects.

We organize the remainder of the article as follows. In Section 2, we review the standard PS assump-
tions, clarify the role of the assumption of no unmeasured confounding, and demonstrate the effects
of confounding on the CACE estimate using the nonparametric method of moments. In Section 3,
we present a general parametric approach to sensitivity analysis for CACE estimation that addresses
unmeasured confounding (and direct effects). We provide inferences from both frequentist and Bayesian
paradigms. In Section 4, we illustrate the ability of the parametric approach to recover the CACE in the
presence of confounding in a constructed observational study. In Section 5, we demonstrate how one
can apply sensitivity analyses using the NMC study. Finally, in Section 6, we provide a few closing
comments.

2. Confounding in principal stratification

When Zi and Di are binary, the principal strata are Si 2 f.0; 0/; .1; 0/; .1; 1/; .0; 1/g. In noncompliance
contexts, the Si are often called, in the order shown, never-takers .Si D n/, compliers .Si D c/, always-
takers .Si D a/, and defiers .Si D d/, as in [17]. Principal strata can be defined in settings other than
noncompliance; for instance, PA as a treatment, obesity .BMI > 30/ as a binary intermediate variable,
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and the event of CVD as a response. We use the familiar nomenclature of noncompliance to generically
refer to Si .

To identify the PEs, we often make the following assumptions:

A1. Stable unit treatment value assumption (SUTVA) [18]. There are no different versions of any
single treatment arm and no interference between units.

A2. Monotonicity. Di .1/>Di .0/ for all i , ruling out the principal stratum of defiers.
A3. Exclusion restriction. If Di .1/ D Di .0/, then Yi .1/ D Yi .0/ for all i , implying that compliers,

always-takers, and never-takers experience no direct effect of treatment on response.
A4. No unmeasured confounding. .Yi .0/; Yi .1/; Si / ?? Zi jXi for all i and observed covariates X .

This is referred to as strong ignorability of assignment [19].

In randomized experiments, analysts can assume A4 by design, but A3 may not hold because of direct
effects of treatment on response; in observational studies, neither A3 nor A4 is guaranteed. We assume
A1 and A2 for the remainder of the article. However, we depart from the classical PS setup by not assum-
ing A3 and A4. As we show in Section 2.2, the effects of violations of the ER are not distinguishable
from the effects of Y -confounding so that we examine the consequences for inference when both A3
and A4 are incorrect but applied regardless. We begin by characterizing unmeasured confounding.

2.1. Characterizing unmeasured confounding

The no unmeasured confounding assumption A4 can be expressed as

Pr.Yi .0/; Yi .1/; Si jZi D 1;Xi /D Pr.Yi .0/; Yi .1/; Si jZi D 0;Xi /; (1)

for all i . We do not condition on D in Equation (1) because it is completely determined given S and
Z. Under Equation (1), the PS setting may be represented graphically by Figure 1(a). Unmeasured con-
founding arises and Equation (1) fails when some possibly multidimensional variable U that effects
.Yi .0/; Yi .1// and S—after adjustment for X—also affects Z, as represented in Figure 1(b).

Figure 1. Directed acyclic graphs illustrating the relationships among the variables in various principal stratifi-
cation scenarios. An arrow between two variables denotes that the initial variable influences the one it points to,
with dashed lines indicating a relationship that is non-negligible but not observed. The relevant structures are as
follows: (a) no unmeasured confounding, (b) unmeasured confounding, (c) S -confounding, (d) Y -confounding,
and (e) no unmeasured confounding but a direct effect of Z on Y , which is operationally indistinguishable from

Y -confounding in (d).

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 949–962
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When such a U exists, we can rewrite Equation (1) as

Pr.Yi .0/; Yi .1/; Si jZi ; Xi ; Ui /D Pr.Yi .0/; Yi .1/jZi ; Si ; Xi ; U
Y jS
i /Pr.Si jZi ; Xi ; U

S
i /:

Here, we partition the unmeasured confounders into U Y jS and U S , which are the possibly overlapping
subsets of U that affect each component of the likelihood. This factorization suggests that unmeasured
confounding can arise via two pathways.

1. S-confounding: the distribution of S varies with Z because of U S (Figure 1(c)), that is,

Pr.Si jZi D 1;Xi / ¤ Pr.Si jZi D 0;Xi /I

2. Y-confounding: within S , the distribution of .Y.0/; Y.1// varies with Z because of U Y jS

(Figure 1(d)), that is,

Pr.Yi .0/; Yi .1/jZi D 1; Si D s; Xi / ¤ Pr.Yi .0/; Yi .1/jZi D 0; Si D s; Xi /:

When S -confounding or Y -confounding exists, Equation (1) no longer holds, and inferences predicated
on this assumption can be biased.

2.2. Implications of unmeasured confounding and a false exclusion restriction

We can illustrate the role of A3 and A4 in the simple setting of no covariates, binary outcomes, and an
additive treatment effect. Here, the CACE is

��c D Pr.Yi .1/jSi D c/� Pr.Yi .0/jSi D c/:

Under A1–A4, the CACE is identifiable and equal to

O�obs
c D Pr.Yi .1/jSi D c;Zi D 1/� Pr.Yi .0/jSi D c;Zi D 0/

D
.p11�11 � p10�10/C .p01�01 � p00�00/

1� �01 � �10
: (2)

Here, pd´ D Pr.Y obs
i D 1jDi D d;Zi D ´/ and �d´ D Pr.Di D d jZi D ´/ for d D 0; 1 and

´D 0; 1, where Y obs
i DZiYi .1/C .1�Zi /Yi .0/ [17]. All quantities in Equation (2) are estimable from

the observed proportions. The value of p11 results from a mixture of compliers and always-takers, and
the value of p00 results from a mixture of compliers and never-takers. A1–A4 identifies the complier
contribution in each mixture.

The ER implies that, for always-takers and never-takers, there is no direct effect of treatment on
response, that is, Pr.Yi .1/ D 1jSi D s; Zi D ´/ D Pr.Yi .0/ D 1jSi D s; Zi D ´/, where s 2 fa; ng.
If, instead, there is an unknown direct effect of treatment on response (as in Figure 1(e)) for the
always-takers or never-takers, then for some s 2 fa; ng, we have

��s D Pr.Yi .1/D 1jSi D s; Zi D ´/� Pr.Yi .0/D 1jSi D s; Zi D ´/ 6D 0; for ´D 0; 1:

The direct effect ��s is constant across treatment arms ´ for s 2 fa; ng for coherency. We do not define
an analogous ��c as it equals ��c ; hence, the CACE includes both direct effect of treatment on response
and indirect effects carried through the intermediate variable.

No unmeasured confounding implies that the principal strata distributions are the same across treat-
ments so that Pr.Si D a/ D Pr.Si D ajZi D 0/ D �10 and Pr.Si D n/ D Pr.Si D njZi D 1/ D �01.
This is false if there is S -confounding, where for some s 2 fa; ng (c stratum is automatically determined
by a and n), we have

��s D Pr.Si D sjZi D 1/� Pr.Si D sjZi D 0/ 6D 0:

With the ER, no unmeasured confounding further implies that the distribution of outcomes for the
always-takers and never-takers are the same across treatments so that

p10
A2
D Pr.Y obs

i D 1jSi D a;Zi D 0/
A4
D Pr.Yi .0/D 1jSi D a/

A3
D Pr.Yi .1/D 1jSi D a/;

p01
A2
D Pr.Y obs

i D 1jSi D n;Zi D 1/
A4
D Pr.Yi .1/D 1jSi D n/

A3
D Pr.Yi .0/D 1jSi D n/:
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It also implies that Pr.Yi .0/; Yi .1/jSi D c;Zi D 1/ D Pr.Yi .0/; Yi .1/jSi D c;Zi D 0/. These fail in
the presence of Y -confounding because, even with the ER, for some s 2 fa; n; cg, we have

��s D Pr.Yi .´/D 1jSi D s; Zi D 1/� Pr.Yi .´/D 1jSi D s; Zi D 0/ 6D 0; for ´D 0; 1:

For coherency, the ��s is constant across potential outcomes Y.´/ for each s 2 fa; n; cg.
When A3 and A4 fail, that is, ��

fa;ng
¤ 0; ��

fa;n;cg
¤ 0, and ��

fa;ng
¤ 0, Equation (2) is a biased esti-

mator of ��c because, letting ps´ D Pr.Yi .´/ D 1jSi D s; Zi D ´/ and �s´ D Pr.Si D sjZi D ´/,
we have

1. p10 D pa1 � ��a � �
�
a rather than pa1 when ��a ; �

�
a 6D 0,

2. p01 D pn0C ��n C �
�
n rather than pn0 when ��n ; �

�
n 6D 0,

3. �10 D �a1 � ��a rather than �a1 when ��a 6D 0,
4. �01 D �n0C ��n rather than �n0 when ��n 6D 0, and
5. Pr.Yi .1/jSi D c;Zi D 1/� Pr.Yi .0/jSi D c;Zi D 0/D ��c C �

�
c , when ��c 6D 0.

We can use these facts to define a new estimator of ��c when A3 and A4 do not hold, namely

O� adj
c D ���c C

p11�11 � .p10C �
�
a C �

�
a/.�10C �

�
a /

1� �01 � .�10C ��a /
�
p00�00 � .p01 � �

�
n � �

�
n/.�01 � �

�
n /

1� �10 � .�01 � ��n /
: (3)

A key observation from this formulation is that, for s 2 fa; ng, observable direct effects ��s and Y -
confounding effects ��s are not distinguishable because both always appear together as a sum. This is
apparent in Figure 1(d) and (e), which is indistinguishable as data-generating mechanism. Thus, opera-
tionally, for s 2 fa; ng, ��s and ��s can be treated as a single parameter. For example, in Equation (3), we
can define ı�s D �

�
s C �

�
s to represent the direct effect plus Y -confounding.

2.3. Illustration of confounding

Applying Equation (2) in the presence of S -confounding and Y -confounding can result in invalid conclu-
sions. However, adjusting for confounding using Equation (3) can correct these problems. To illustrate
this, we use the data in Table I, which mimics the observed �d´ and pd´ data from a flu vaccine
trial described in [20], ignoring covariates. For now, the response and treatment are left context free
to emphasize the generality of these issues.

Because we only see D and not S , many population proportions consistent with the data in Table I
exist. For example, the topmost example in Table II has no confounding: the proportions of always-takers
and never-takers and the proportions of Y obs D 1 within these two strata do not change with Z. The true
��c D 0:001 � 0:117 D �0:116, and O�obs

c correctly estimates ��c . Alternatively, the middle of Table II
shows one S -confounding example where the proportions of principal strata differ across Z (��a D 0:13
and ��n D �0:09). Finally, the bottommost example in Table II is a Y -confounding example, where the
outcome proportions differ across Z within the always-taker and never-taker strata (ı�a D �0:019 and
ı�n D�0:020).

Regardless of which population proportions from Table II are true, O�obs
c D�0:116. However, the true

��c for the various settings from Table II are approximately �0:116, �0:053, and 0:023. Clearly, O�obs
c is

biased for ��c in cases of S -confounding and Y -confounding. The bias is striking when interpreted as
proportion change from baseline: The true ��c values represent a 99% reduction, a 54% reduction, and
a 230% increase in rates. Using Equation (3) with correctly specified values of ı�

fa;ng
and ��

fa;ng
(and

��c D 0) implied by Table II appropriately adjusts O� adj
c so that it is consistent for ��c . This holds for

simultaneous S -confounding and Y -confounding as well.
In practice, ı�s and ��s are not known, so analysts should examine the sensitivity of conclusions to a

range of their plausible values. For example, ��a D 0:13 implies an additional 13% more always-takers

Table I. Observed marginal proportions in the
influenza study, that is, ignoring covariates [20].

p00 = 0.088 p10 = 0.112 p01 = 0.083 p11 = 0.069
�00 = 0.88 �10 = 0.12 �01 = 0.69 �11 = 0.31

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 949–962
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Table II. Example of population probabilities with various
forms S -confounding and Y -confounding or lack thereof.

Z D 0 Z D 1 Z D 0 Z D 1

No S -confounding and no Y -confounding
S D n �n0 D 0:69 �n1 D 0:69 pn0 D 0:083 pn1 D 0:083

S D c �c0 D 0:12 �c1 D 0:12 pc0 � 0:117 pc1 � 0:001

S D a �a0 D 0:19 �a1 D 0:19 pa0 D 0:112 pa1 D 0:112

S -confounding and no Y -confounding
S D n �n0 � 0:56 �n1 D 0:69 pn0 D 0:083 pn1 D 0:083

S D c �c0 � 0:25 �c1 � 0:21 pc0 � 0:099 pc1 � 0:046

S D a �a0 D 0:19 �a1 � 0:10 pa0 D 0:112 pa1 D 0:112

Y -confounding and no S -confounding
S D n �n0 D 0:69 �n1 D 0:69 pn0 � 0:102 pn1 D 0:083

S D c �c0 D 0:12 �c1 D 0:12 pc0 � 0:010 pc1 � 0:033

S D a �a0 D 0:19 �a1 D 0:19 pa0 D 0:112 pa1 � 0:092

for units with ´ D 1 than with ´ D 0; and, ��a D �0:019 implies that, among always-takers, the proba-
bility of Yi .´/D 1 is about 2% smaller for units with ´D 1 than with ´D 0. Analysts can determine the
values of ı�s and ��s that alter conclusions on the basis of O�obs

c and judge the plausibility of those values.
We do not present examples of these approaches here, preferring instead to illustrate sensitivity analysis
for model-based application of PS.

3. Sensitivity analysis using parametric models

3.1. Parametric models

The nonparametric estimator O� adj
c is useful when observed covariatesX are deemed not to cause bias, for

example, when they are finely balanced across treatment groups and are not strongly predictive of S . In
settings where this is not the case, it may be possible to stratify samples by X (or perhaps by percentiles
of propensity scores) and use O� adj

c separately in each stratum. When this is not possible, analysts can
control for X using parametric models for PS. This has several potential advantages over the nonpara-
metric approach, including the following: (1) parametric modeling readily adjusts for multiple observed
covariates, which can reduce bias and improve precision; and (2) parametric modeling offers conceptu-
ally straightforward ways to incorporate complexities like multilevel structure, multiple outcomes, and
latent variables. A disadvantage of parametric approaches is the risk of model misspecification, making
it essential for analysts to employ model checking procedures, for example, posterior predictive checks
in the Bayesian paradigm, and examine alternate model specifications.

Typically, two models are specified in PS analysis: one for the marginal distribution of Si given
.Zi ; Xi / and one for the conditional distribution of Yi .´/ given .Si ; Zi ; Xi /. When both Zi and Di
are binary, a natural and common choice for the Si model is the multinomial logit regression model
[12]. Using compliers as the reference group, we have

log
Pr.Si D sjZi ; Xi /

Pr.Si D cjZi ; Xi /
DXiˇs CZi�s; s 2 fa; ng; (4)

where X includes an intercept term and Pr.Si D cjZi ; Xi / D 1�
P

s2fa;ng

Pr.Si D sjZi ; Xi /. As with ��s

in Section 2.2, �s in Equation (4) represents S -confounding; however, �s is a different parameter than ��s
defined on a multiplicative scale. Specifically, for s 2 fa; ng, we have

exp.�s/D
Pr.Si D sjZi D 1;Xi D x/=Pr.Si D cjZi D 1;Xi D x/

Pr.Si D sjZi D 0;Xi D x/=Pr.Si D cjZi D 0;Xi D x/
: (5)

Each �s is assumed to be constant across x. Thus, �s is the conditional odds ratio for being in stratum
s 2 fa; ng versus being a complier when going from Z D 0 to Z D 1, given X . For instance, the
middle example of Table II was created using exp.�a/ D 1=1:5 and exp.�n/ D 1:5 so that the ratio of
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never-takers to compliers within each level of X increases by a factor of 1.5 when going from Z D 0 to
Z D 1. Because there are no covariates, this corresponds to ��a D 0:13 and ��n D �0:09 in the notation
of Section 2.2.

For sensitivity analysis in practice, it is convenient to select the range of �a and �n to be examined on
the basis of the observed principal strata probabilities, �d´, resulting from aggregating the data across
the levels of X . For example, in Table I, �01 D �n1 D 0:69 and �01 D �a0 D 0:12. To examine a level
of confounding that could potentially result in, say, �n0 D 0:69˙ 0:1 and �n0 D 0:12˙ 0:05, we could
first create a grid of ��a and ��n sensitivity specifications (as defined in Section 2.2) that produced the
values of �n0 and �a1 under consideration and convert that grid to �a and �n values to be subsequently
used in model-based sensitivity analysis. A complementary approach is to specify bounds for each �s
using observed covariate magnitudes. For example, researchers may hypothesize that the magnitude of
�n could be up to twice the magnitude of the largest (standardized) estimated ˇn. Finally, one could set
each �s via interpretations of the odds ratios, for example, set exp.�a/D 2 so that the odds of never-takers
to compliers within each level of X doubles when going from Z D 0 to Z D 1.

Binary potential outcomes Yi .´/ can be modeled using a logistic regression,

logit Pr.Yi .´/D 1jZi D ´; Si ; Xi /DXi˛x C ISiDcZi .�c C �c/C
X

s02fa;ng

ISiDs0.˛s0 CZiıs0/; (6)

where ISiDs0 is an indicator function that equals one if Si D s0 and equals zero otherwise. We take the
CACE to be

�c D logit Pr.Yi .1/D 1jZi D ´; Si D c;Xi /� logit Pr.Yi .0/D 1jZi D ´; Si D c;Xi /; (7)

which is fixed to be the same value for all compliers regardless of ´. We also define

�c D logit Pr.Yi .´/D 1jZi D 1; Si D c;Xi /� logit Pr.Yi .´/D 1jZi D 0; Si D c;Xi /: (8)

for all compliers for any ´. Similarly to �c , for s 2 fa; ng, we have

exp.ıs/D logit Pr.Yi .1/D 1jZi D ´; Si D s; Xi /� logit Pr.Yi .0/D 1jZi D ´; Si D s; Xi /: (9)

For computational convenience, we assume that .�c ; �c ; ıa; ın/ are constant across x. As with
.��c ; �

�
c ; ı
�
a ; ı
�
n/, .�c ; �c ; ıa; ın/ represent respectively a CACE, Y -confounding for compliers, and Y -

confounding plus direct effect for always-takers and never-takers. However, as a result of the noncollapsi-
bility of logistic regression models [21], .�c ; �c ; ıa; ın/ in Equation (6) must be interpreted conditional
on Z and X in contrast to the interpretations of .��c ; �

�
c ; ı
�
a ; ı
�
n/. This issue relates to another poten-

tial disadvantage of the parametric approach compared with the nonparametric one: one must consider
parameterized estimands and corresponding parameterized sensitivity parameters that are natural to scale
imposed by the parametric model (e.g., log-odds ratio in logistic regression), whereas with the nonpara-
metric approach, there is no such constraint and one can consider a range of estimands such as difference
or relative risk.

The sensitivity parameters can be interpreted via odds ratios. For instance, the bottommost exam-
ple of Table II was created using exp.ıa/ D exp.ın/ D 1=1:25 so that the odds of Yi .´/ D 1 are
1.25 times greater when ´ D 0 than when ´ D 1 for both always-takers and never-takers. These
correspond to ı�a D �0:019 and ı�n D �0:020 (with difference due to rounding). The CACE, �c , is
indistinguishable from the Y -confounding effect in the compliers strata; however, it is identifiable after
specification of �c (and the other sensitivity parameters). For instance, in the bottommost example in
Table II, exp.�c C �c/ D .0:033=0:967/=.0:01=0:99/ D exp.1:21/ so that �c is not identified until �c
is specified.

Specification of ıfa;ng and �c can be based on subject-matter knowledge. For �c , this involves the
extent to which the odds for Yi .´/D 1 within the complier strata could change across ´ as a result of Y -
confounding only. For ıfa;ng, interpretation involves the extent to which the odds for Yi .´/D 1within the
always-taker and never-taker strata could change across ´ as a result of direct effects or Y -confounding.
If helpful, analysts can decompose ıs into its components from Y -confounding and direct effects. If the
scientific experts do not suspect direct effects, ıs could reflect only the effects of confounding. Absent
or as a complement to subject-matter knowledge, analysts can specify �c and ıfa;ng via methods similar
to those for setting �s . We demonstrate such methods in Section 5.
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The models in Equations (4) and (6) use additive effects of Z and sensitivity parameters that do
not vary with X . It is possible to include interactions of Z and X in the predictor functions and use
the methodology as indicated. However, this presumes that the confounding effects are constant (on
the log-odds scale) across all levels of X , which may not be sensible if one presumes that treatment
effects differ with X . Arguably, in scenarios with interactions of Z and X , analysts should specify
sensitivity parameters for each level of X that is interacted with Z. This can create a large number of
sensitivity parameters, making computation and interpretation cumbersome. Hence, the sensitivity anal-
ysis approach here is most appropriate for settings with additive treatment effects. Similarly, because
the sensitivity parameters do not depend on X , they represent overall effects of confounding (averaged
across covariates) across treatment groups. When confounding does not vary within the levels of X , this
specification is completely adequate. When there are differences in confounding, the sensitivity analyses
may be too coarse, resulting in inaccurate results. The nature of this inaccuracy and its dependence on
X is uncertain and a subject for further research.

3.2. Estimation of complier average causal effect with sensitivity parameters

Given Zi and Xi , the analyst can model Y obs
i and Di with

Pr.Y obs
i ;Di D di jZi D ´i ; Xi /D

X

s2S.´i ;di /
Pr.Y obs

i jSi D s; ´i ; Xi /Pr.Si D sj´i ; Xi /; (10)

where S.´i ; di / denotes the set of all possible principal strata that are consistent with the observed ´i
and di . The two distributions on the right side of Equation (10) are specified by Equations (6) and (4).

As illustrated by an example in Section 4, without any further constraints, the sensitivity parameters
are not identifiable from the data because there is no observed information in the data informing the
confounding structure underlying Equation (10). We thus recommend the following multistep sensitivity
analysis procedure. First, specify �s and ıs for S 2 fa; ng and estimate �c C �c . Second, specify �c to
identify �c . The estimation process is repeated for the range of plausible values of �s , ıs , and �c .

For any fixed set of sensitivity parameters, the estimation of �cC�c can proceed using an expectation–
maximization (EM) algorithm [22] or Bayesian data augmentation [10]. EM finds posterior modes
comparatively quickly, whereas full Bayesian inference automatically provides measures of inferen-
tial uncertainty (given the values of the sensitivity parameters). The EM algorithm alternately replaces
the unobserved Si with their expected values given current draws of the parameters and maximizes the
parameters given the expected values of all Si . For the Bayesian analysis, after first specifying prior
distributions—we use the added data conjugate prior distribution of Hirano et al. (2000)—analysts can
sample from the posterior distributions of � D .ˇa; ˇn; ˛x; ˛a; ˛n; �c C �c/ using Metropolis proposals
within a Gibbs sampler. To accomplish this, one must sample the posterior distributions of each Si , each
instance of which results in new covariate matrices and response vectors in Equations (6) and (4), respec-
tively. Because a given imputation of Si may result in a likelihood that is maximized on the boundary of
the parameter space (e.g., �c C �c D�1), the prior distributions play a key role in stabilizing the sam-
pling. Mixing can be improved by parameterizing Equation (6) without an intercept [12] and by using a
Metropolis subchain rather than a single proposal for � to better follow the fast mixing principal strata.
We recommend that analysts obtain maximum-likelihood estimations (MLEs) from EM and initialize
the Gibbs sampler with the MLEs to obtain point and interval estimates.

4. Demonstration using introduced confounding in a randomized study

In this section, we show that unadjusted model-based PS estimation of �c is biased in the presence of
S -confounding and Y -confounding, but analysts can recover the truth using the sensitivity methodol-
ogy. To do so, we manipulate data from a randomized experiment to induce unmeasured confounding in
known ways and examine EM point estimates using the known correct sensitivity parameter specifica-
tions. To streamline the presentation, we postpone full Bayesian analysis to Section 5. We assume A1
and A2. SUTVA can be tenuous in infectious disease contexts, but we do not deal with the complication
in this article. Monotonicity is plausible in this setting.

We use data from the second year (1979–1980) of the study carried out by [20], which is a randomized
encouragement design in which Zi D 1 if person i is encouraged to take an influenza vaccine by his or
her physician and Zi D 0 otherwise. The intermediate variable is the actual receipt of the vaccine, with
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Di D 1 if person i indeed takes the vaccine and Di D 0 otherwise. The response, flu-related hospital-
ization, is Y obs

i D 1 if person i gets the flu and Y obs
i D 0 otherwise. The randomization is carried out at

the level of the physician rather than the patient so that the data are actually clustered. We ignore this
feature of the data for illustrations.

The available covariates comprise age in years, sex, race (white/non-white), chronic obstructive
pulmonary disease (COPD), heart disease (HD), diabetes, renal disease, and liver disease for 2901 partic-
ipants. The covariates are closely balanced across encouragement arms. Regression analyses indicate that
higher age and COPD are predictive of taking the vaccine, whereas HD and COPD are predictive of get-
ting the flu. The predictive role of these three variables closely mirrors that of the first three eigenvectors
of a principal components analysis of the covariates, which capture age, an approximate COPD/sex/race
relationship, and an approximate HD/diabetes relationship. The variation captured in the remaining com-
ponents does not provide any further predictive benefit. We transform age to a four-level factor (<40;
.40; 60�; .60; 80�; >80) on the basis of the observed relationship between age and taking the vaccine.
Alternative covariate specifications would not entail a different model fitting approach. Restriction to
complete cases using age, COPD, and HD yields 2893 participants.

Adopting a naive interpretation, we found that the observed relationships suggest that (1) older pop-
ulations generally have more always-takers and compliers comparable with younger populations, that
is, the distribution of Si varies with age; and (2) HD-pervasive populations generally have greater flu
prevalence comparable with heart-healthy populations, that is, the distribution of .Yi .0/; Yi .1// varies
with HD prevalence. Thus, in a similar but hypothetical observational study, if elderly people are more
likely to receive encouragement but age was not controlled for, there would be a higher proportion of
compliers and always-takers in the treatment arm, resulting in S -confounding. Likewise, if HD patients
are more likely to receive encouragement but HD was not controlled for, there would be a greater propor-
tion of individuals at risk for flu in the same arm, resulting in Y -confounding. The operational distinction
between S -confounding and Y -confounding is not clear cut because age and HD have some association.
Indeed, the example of COPD directly suggests that S -confounding and Y -confounding may be inti-
mately connected. Nonetheless, separating S -confounding and Y -confounding offers both operational
and conceptual convenience in sensitivity checks, as we shall discuss. In fact, when there is indeed an
overlap between S -confounding and Y -confounding, a reduced representation of Y -confounding (e.g.,
sharing a single Y -confounding sensitivity parameter across all principal strata) will generally result in
higher sensitivity responses and hence lead to more conservative conclusions.

For our demonstration, we use discretized age and COPD in the submodel for Si and COPD and HD
in the submodel for Yi .Zi /. We use the data with complete cases, except we discard two more observa-
tions (with Z D 0,D D 1, Y D 1, ageD 1, COPDD 1, and HDD 0=1) so that a no S -confounding and
no Y -confounding specification is consistent with the observed data. Without this adjustment, a specifi-
cation of no S -confounding and no Y -confounding results in an MLE that lies on the boundary of the
parameter space, that is, Pr.Yi .1/ D 1jSi D c;Zi D 1;Xi D xi / D 0. We refer to this reduced dataset
as the test data. In practice, if a given sensitivity parameter specification results in extreme estimates of
Pr.Yi .´/D 1jSi D s; Zi D ´;Xi D xi /, for example, 0 or 1, it is likely not consistent with the observed
data.

We take the truth to be the estimated coefficients in Equation (10) for the test data without any sensi-
tivity adjustments, that is, all sensitivity parameters equal zero. The MLE for the CACE in the test data

is O�c D�1:87.
We introduce S -confounding by removing half of the observed never-takers in theZi D 1 arm and half

of the observed always-takers in the Zi D 0 arm. Removal was carried out randomly but ensuring that
Pr.Yi .0/ D 1jSi D a;Zi D 0/ and Pr.Yi .1/ D 1jSi D n;Zi D 1/ were not changed from the observed
probabilities in the test data. This guards against inadvertently inducing Y -confounding and ensures
that the covariate and flu outcome relationships are not changed. Observed covariate balance remains
good for age, COPD, and HD after this manipulation. Because half of the never-takers in the Zi D 1

arm and half of the always-takers in the Zi D 0 arm have been removed, and Pr.Y obs
i D 1jSi ; Zi ; Xi /

does not change, the S -confounding sensitivity parameters for this manipulation are exp.�a/ � 2 and
exp.�n/� 1=2.
Y -confounding is introduced by keeping only HDD 1 individuals in the Ti D 1 arm and not using HD

as a covariate so that HD is an unmeasured confounder. After the manipulation, 56:2% of individuals has
HDD 1 in the Ti D 0 arm, and 100% of individuals has HDD 1 in the Ti D 1 arm. The distributions of
age and COPD remain balanced in the treatment arms after the manipulation. This was applied on top of
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the S -confounding manipulation, but because HD does not strongly associate with D, we suspect that
it will not drastically alter the previously induced S -confounding of exp.�n/ � 1=2. However, if HD is
more prevalent among compliers than always-takers, or vice versa, then exp.�n/ � 1=2 will no longer
hold. The log-odds ratios of the outcomes without covariate adjustment before and after the manip-
ulations were �0.163 and 0.086, respectively, which correspond to approximately correct sensitivity
parameters for the Y -confounded data of ıa D �a D ın D �n D �c � 0:25.

We fit the model implied by Equation (10) to the confounded data with a variety of possible values
for the sensitivity parameters. Figure 2 displays the results in two panels. The top panel shows con-
tour plots for O�c across a variety of combinations of exp.�a/ 2 Œ1=3; : : : ; 3� and exp.�n/ 2 Œ1=3; : : : ; 3�
with �c D ıa D ın D 0. The bottom panel shows the contours for the same range for �a and �n with
�c D ıa D ın D 0:25.

As seen in the top panel of Figure 2, fitting PS in the confounded data ignoring unmeasured confound-
ing results in a biased estimate of the CACE. Correctly specifying exp.�a/ D 2 and exp.�n/ D 1=2 but
wrongly setting �c D ıa D ın D 0 also results in a biased estimate. As evident in the bottom panel of Fig-
ure 2, using the approximately correct sensitivity specifications for S -confounding and Y -confounding
nearly recovers the CACE estimate. Examinations of the ˛ and ˇ parameters show similar results. Allow-
ing sensitivity parameters to be estimated by the data rather than be prespecified results in the EM

Figure 2. Illustrations of sensitivity contour plots for manipulated McDonald data. The top plot shows MLE
contours for O�c across the possible combinations of �s with �c D ıfa;ng D 0. The bottom plot shows the same
when �c D ıfa;ng D 0:25, which are the true values. The dashed cross hairs are at the approximately correctS -
confounding sensitivity parameter values, exp.�a/D 2 and exp.�n/D 1=2. The dashed curve in the bottom plot
indicates where O�c equals �c ; this curve does not appear in the top plot because it is off the graph. The plots
show that standard PS estimates of �c are biased in the presence of unmeasured confounding, and it is possible

to recover the true �c when correct sensitivity parameters are used.

958

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 949–962



S. SCHWARTZ, F. LI AND J. P. REITER

algorithm finding O�a D O�n D 0:027, O�a D 1:42, and O�n D 0:80. These result in O�c D 0:128 (with �c D 0).
Estimation when allowing O�a ¤ O�n resulted in O�a D �0:32; O�n D 0:011; O�a D 1:77; O�n D 0:88, and
O�c D 0:42. Hence, in all cases, using MLE with free sensitivity parameters results in biased estimates.

Figure 2 provides a visualization of the topographical nature of the potential confounding. The primary
benefit of these plots, however, is to provide a diagnostic alternative to careful bound specification for
�fa;ng, �c , and ıfa;ng. Analysts instead can consider large spaces of potential values for the parameters,
construct plots like Figure 2, and identify the levels of confounding that would alter study conclusions.
These values can be interpreted using Equations (5) and (9) so that scientific experts can decide if
the identified levels are plausible enough to cast doubt on conclusions. This approach is related to the
sensitivity checks carried out by [23] in observational study contexts that do not involve PS.

5. Application to the Swedish National March Cohort data

We now apply the sensitivity methodology to the observational Swedish NMC study. The NMC was
conducted in year 1997, when 300,000 Swedes participated in a national fund-raising event organized
by the Swedish Cancer Society. Each participant was asked to complete a questionnaire that included
items on known or suspected risk factors for cancer and CVD. These individuals were followed from
year 1997 to 2004 using the Swedish patient registry, and each cancer and CVD event was recorded. We
seek to investigate the causal effect of PA on CVD mediated through BMI. By following Sjölander et al.
[5], our analysis assumes that PA drives BMI and does not examine possible reverse causality. We can
find further details on the NMC in [24].

For each subject i , Zi D 1 if he or she reported having low PA and Z D 0 otherwise; Di D 1 if he
or she had BMI greater than 30 in the baseline year and Di D 0 otherwise; and Yi D 1 if he or she
had at least one recorded CVD event during follow-up and Yi D 0 otherwise. We can find PS analysis
of the same dataset with BMI being treated as a continuous immediate variable in Schwartz et al. [25].
Among all subjects, 38,349 reported high PA and 2956 reported low PA. The former included 2262 cases
of CVD and the latter 172 cases. By adapting the noncompliance language, in this setting, the always-
takers and never-takers are the subjects who would be obese and not obese, respectively, regardless of
their PA level; the compliers are the subjects who would be obese if they did not exercise and not obese
otherwise. We believe that SUTVA and monotonicity are plausible in this setting.

In the data we analyzed, the only available covariate is age recorded in days. It is well known that age
is highly predictive of CVD and PA so that we should control for age in the analysis. We first balance the
covariate distribution of age in the treatment groups by conducting one-to-one nearest neighbor match-
ing without replacement on age. This results in 2956 pairs of high and low exercisers with 111 and 172
CVD cases, respectively.

We fit the models in Equations (4) and (6) on the matched dataset, including age as a covariate, to
estimate �c . We examined models including an interaction between treatment and age, but the interac-
tion coefficient was insignificant and the estimated treatment effect did not change substantially, so we
chose not to include the interaction. This model check, although not conclusive, suggests that the treat-
ment effect does not vary across the levels of X . We use the Bayesian analysis described in Section 3
to estimate a posterior mode for �c of 4.9; the 95% credible interval does not include zero, indicating a
higher risk of CVD among low exercisers whose weight would be impacted by exercise. However, even
for the matched dataset, the assumption of no unmeasured confounding is questionable because people
with high PA differ from those with low PA in ways that are related to CVD risk, for example, diet and
lifestyle. In addition, it is widely accepted in the medical community, for example, [26], that PA has
direct effects on CVD, implying that the ER is not applicable. Because of these potential violations, we
perform sensitivity analysis for �c .

To propose a range for potential S -confounding sensitivity, we consider the observed principal strata
probabilities aggregated over age, that is, Pr.D D 1jZ D 0/ D �a0 D 073 and Pr.D D 0jZ D 1/ D
�n1 D 0:869. We posit that S -confounding could result in �a1 D 0:073˙ 0:02 and �n0 D 0:869˙ 0:02,
which implies values of .�c0; �c1/ 2 Œ0:04; 0:08�. Thus, we allow for up to a twofold difference (in either
direction) in the percentage of compliers in the treatment arms, which seems a reasonably strong amount
of S -confounding. We proceed by making a grid of values .�a1; �n0/ 2 Œ�0:02; 0:02� � Œ�0:02; 0:02�,
each entry of which, when combined with the observed �a0 and �a1, identifies �c0 and �c1. Each point
in this grid is converted to specifications for �a and �n using Equation (5) without covariates resulting
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in .�a; �n/ 2 Œ�0:66; 0:66� � Œ�0:90; 1:00�. These bounds are crude because the principal strata proba-
bilities actually vary with age, but they enable sensible assessments of the effects of S -confounding on
estimation of �c .

To propose a range for Y -confounding and direct effects sensitivity, we make the simplifying assump-
tion that ıa D ın, that is, always-takers and never-takers share the same Y -confounding plus direct
effect, so that it can be represented by one coefficient in Equation (6). In the language of the NMC,
setting ıa D ın implies that the difference between those who exercise frequently and those who do not
are the same for people whose BMI is always low and for people whose BMI is always high (regardless
of exercise). Sjölander et al. [5] used a similar assumption in their estimation of direct effects of PA on
CVD. Setting ıa D ın is largely motivated by parsimony: it enables us to explore a three-dimensional
sensitivity space as opposed to a four-dimensional one. In principle, when the equality is far from plau-
sible, analysts could conduct the four-dimensional sensitivity analysis, although this can be unwieldy.
Alternatively, analysts could identify the maximum ı effect for the always-takers and never-takers and
set both ıa and ın equal to that maximum as a ‘worse-than-expected’ scenario.

We expect any direct effects to increase CVD incidence because the treatment is low PA. Furthermore,
potential Y -confounding most likely would increase CVD incidence because the high exercisers may
maintain other CVD-protective habits beyond regular PA. Therefore, we examine the sensitivity param-
eters ıa D ın 2 Œ0; 1:1� and �c 2 Œ0; 0:5�. The former corresponds to a maximum threefold .e1:1 D 3:0/
increase in the odds of getting CVD due to direct effect and Y -confounding for individuals whose BMI
is not affected by PA, and the latter corresponds to a maximum 1.7-fold .e0:5 D 1:7/ increase in the odds
of getting CVD due to direct effect and Y -confounding for individuals whose BMI is affected by PA.
We note that ıa and ın are interpreted as the effects of unmeasured confounding only when the ER is
assumed to hold.

Figure 3 shows the sensitivity of CACE estimates from the logistic regression to these levels of poten-
tial S -confounding and Y -confounding plus direct effect, including uncertainty in the CACE estimates
via ‘maximal’ pointwise 95% credible intervals. As seen in Figure (3), there is little sensitivity to �n,
larger �a implies slightly larger �c , and the sign of the estimated �c is sensitive to ıa D ın. Thus,
for ıa D ın < 0:4, that is, 1.5-fold increase in odds, .�a; �n/ 2 Œ�0:66; 0:66� � Œ�0:90; 1:00�, and
�c 2 Œ0; 0:5�, there is a significant and large protective-of-benefit PA, mediated through the effect on
BMI on CVD. Evidence for a negative significant effect requires ıa D ın approximately larger than 0.9,
indicating a e0:9 D 2:5-fold increase in the odds of getting CVD due to Y -confounding plus direct effect
for individuals whose BMI is not affected by PA.

Using the same data, Sjölander et al. [5] found evidence of a significant direct effect of PA, with a
point estimate of 0.26 and standard error of 0.085. They suggested that this estimate was conservative
and the true effect could be larger. Our analysis suggests that evidence for a protective indirect effect
of reduced BMI on CVD as a result of PA depends primarily on the strength of ıa (and ın). Scientific
experts who believe that the direct protective benefits of PA and the effects of unmeasured confounders
produce greater than a 1.5-fold decrease in the odds of CVD should be skeptical of the beneficial effect
on CVD of reducing BMI via PA, whereas those who believe that such ratios are unlikely can feel
confident in the unadjusted PS conclusions.

6. Concluding remarks

While facilitating rich investigations of the robustness of results to unmeasured confounding, conducting
a full sensitivity analysis involves specification of many parameters. Analysts may choose to reduce the
number of free parameters for rougher but faster checks. For example, setting ıa D ın D �c will collapse
Y -confounding to one parameter. This implies that the unobserved confounders are distributed uniformly
across the strata, that is, that Y -confounding does not vary by S , which may be a useful simplification
even if not strictly true.

Although the interpretation of each sensitivity parameter does not depend on the settings of the other
sensitivity parameters, the parameters are not variation independent. For example, the effects of setting
ın D 1 differ when �n D 1 than when �n D �1, and some combinations actually cannot be possible
given the data. This motivates why we recommend that analysts examine plots like Figure 2 for a wide
array of combinations of parameters to identify scenarios in which S -confounding and Y -confounding
alter study conclusions. Scientific experts then can evaluate the plausibility of those sensitivity regions
taking the subject matter into account. Impossible combinations are indicated by nonsensible results,
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Figure 3. Estimates—and uncertainty assessment—of the sensitivity of the complier average causal effect in
the National March Cohort data to potential S -confounding and Y -confounding. In all panels, for each level of
ıa D ın, the highest and lowest lines trace the maximum and minimum endpoints of pointwise 95% credible
intervals for all values of �a and �n examined in the plot. The top-left panel shows the overall sensitivity to con-
founding for ıa D ın 2 Œ0; 1� and .�a; �n/ 2 Œ�0:66; 0:66�� Œ�0:90; 1:00�. The remaining five panels decompose
the top-left panel into its five primary trajectories corresponding to �a D�0:66;�0:33; 0; 0:33; 0:66 and re-plots

sensitivity to �n and ıa D ın. For �c > 0, the results in the figure are shifted down by �c .

such as parameter estimates going off to infinity or negative estimates of various probabilities. Although
not pursued in this article, it would be possible to produce an algorithm to find sensitivity parameter
bounds on the basis of consistency of MLE or posterior sampling results.

The methods proposed here readily extend to the case of nonbinary outcomes. Further development is
required to adapt the methods to continuous intermediate variables, such as BMI in its original scale (e.g.,
as in [25]). Moreover, we did not explore sensitivity to model misspecification in PS analysis, which can
be as crucial as the structural assumptions because model-based PS inference usually involves weakly
identified models. Under the Bayesian paradigm, this can be examined via tools like posterior predictive
checks; this is a subject for further investigation.

The MATLAB code of the EM algorithm and Bayesian data augmentation are available at www.stat.
tamu.edu/~scott/PSsensitivity.
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