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Abstract

Propensity score (Rosenbaum and Rubin, 1983) methods are
being increasingly used as a less parametric alternative to tra-
ditional regression methods in medical care and health policy
research. Data collected in these disciplines are often clus-
tered or hierarchically structured, in the sense that subjects are
grouped together in one or more ways that may be relevant
to the analysis. However, propensity score was developed
and has been applied in settings with unstructured data. In
this report, we present and compare several propensity-score-
weighted estimators of treatment effect in the context of hier-
archically structured data. For the simplest case without co-
variates, we show the “double-robustness” of those weighted
estimators, that is, when both of the true underlying treatment
assignment mechanism and the outcome generating mecha-
nism are hierarchically structured, the estimator is consistent
as long as the hierarchical structure is taken into account in at
least one of the two steps in the propensity score procedure.
This result holds for any balancing weight. We obtain the ex-
act form of bias when clustering is ignored in both steps. We
apply those methods to study racial disparity in the service of
breast cancer screening among elders who participate Medi-
care health plans.

KEY WORDS: double robustness, health policy research, hi-
erarchical data, propensity score, racial disparity, weighting.

1. Introduction

Population-based observational studies often are the best
methodology for obtaining generalizable results on access to,
patterns of, and outcomes from medical care when large-scale
controlled experiments are infeasible. Comparisons between
groups can be biased, however, when the groups are unbal-
anced with respect to measured and unmeasured confounders.
Standard analytic methods adjust for observed differences be-
tween treatment groups by stratifying or matching patients on
a few observed covariates or with regression analysis in the
case of many observed confounders. But if treatment groups
differ greatly in observed characteristics, estimates of treat-
ment effects from regression models rely on model extrap-
olations and the resulting conclusions can be very sensitive
to model mis-specification (Rubin, 1979). Propensity score
methods (Rosenbaum and Rubin, 1983, 1984) have been pro-
posed as a less parametric alternative to regression adjustment
and are being increasingly used in health policy studies (Con-

nors et al., 1996; D’Agostino, 1998, and references therein).
This approach, which involves comparing subjects weighted
(or stratified, matched) according to their propensity to re-
ceive treatment (i.e., propensity score), attempts to balance
subjects in treatment groups in terms of observed character-
istics as would occur in a randomized experiment. Propensity
score methods permit control of all observed confounding fac-
tors that might influence both choice of treatment and outcome
using a single composite measure, without requiring specifi-
cation of the relationships between the control variables and
outcome.

Propensity score methods were developed and have been
applied in settings with unstructured data. However, data col-
lected in medical care and health policy studies are typically
clustered or hierarchically structured, in the sense that sub-
jects are grouped together in one or more ways that may be
relevant to the analysis. For example, subjects maybe grouped
by geographical area, treatment center (e.g., hospital or physi-
cians), or in the example we consider in this paper, health
plan. Generally, subjects are assigned to clusters by an un-
known mechanism that may be associated with measured sub-
ject characteristics that we are interested in (e.g., race, age,
clinical characteristics), measured subject characteristics that
are not of intrinsic interest and are believed to be unrelated to
outcomes except through their effects on assignment to clus-
ters (e.g., location), and unmeasured subject characteristics
(e.g., unmeasured severity of disease, aggressiveness in seek-
ing treatment).

When subjects are hierarchically structured, a number of
issues appear that are not present with an unstructured collec-
tion of subjects. First of all, standard error calculations that
ignore the hierarchical structure will be inaccurate, leading to
incorrect inferences. A more interesting set of issues arises be-
cause there may be both measured and unmeasured factors at
the cluster level that create variation among clusters in quality
of treatment and hence in outcomes. Hierarchical regression
models have been developed to give a more comprehensive de-
scription than non-hierarchical models provide for such data
(e.g., Gatsonis et al., 1993). Despite the increasing popular-
ity of propensity score analyses and the vast literature regard-
ing regional and provider variation in medical care and health
policy research (e.g., Nattinger et al., 1992; Farrow et al.,
1996), however, to our knowledge, the implications of such
data structures for propensity score analyses have been rarely
studied. Huang et al. (2005) applied propensity score methods
to clustered health service data. But their goal was to rank the
performance of multiple health service providers (clusters) in-
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stead of to estimate an overall treatment effect from data with
clustered structure, which is the goal of this paper. Specif-
ically, we will present several propensity score models ana-
logues to many of the commonly used regression models for
clustered data in Section 2; investigate the behavior of those
estimators, especially the bias when clustering information is
ignored in the analysis in Section 3; and apply the methods to
study racial disparities in the service of breast cancer screen-
ing among elders in Section 4. Summaries and remarks will
be provided in Section 5. Our discussion concerns the case
where a binary treatment is assigned at individual level. Also,
to illustrate the major point and yet without loss of generality,
we focus on data with two-level hierarchical structure.

2. Estimators

The class of estimands considered in this paper is generally
referred as a “treatment effect”,

∆ = Ex[E(Y |X,Z = 1)]− Ex[E(Y |X,Z = 0)], (1)

i.e., the average difference in outcome between two treatment
groups that have same distribution of covariates.

The propensity score e is defined as the conditional proba-
bility of being assigned to a particular treatment z given mea-
sured covariates x: e(x) = P (z = 1|x). In most observational
studies, the propensity score is not known and thus needed to
be estimated. Therefore propensity score analysis usually in-
volves two steps. The first step is to estimate the propensity
score, typically by a logistic regression. The second step is to
estimate the treatment effect by incorporating (e.g., by weight-
ing or matching) the estimated propensity score. Hierarchi-
cal structure leads to a range of different choices of modeling
in both steps. In this section, we will introduce several most
widely used models.

Before going into more details, here we make a note regard-
ing the targeted estimand “treatment effect” defined above,
which is slightly different from those “causal treatment effect”
defined using the conventional potential outcomes framework.
The propensity score originated from and has been widely
used in causal inference, but its use is certainly not restricted
to studying causal effects. For instance, in many health pol-
icy studies, the major interest is to compare the difference in
the average of a feature (e.g., access to care) between two
groups (e.g., races, social economical status), rather than to
make a causal statement. Moreover, the “treatment” is often a
non-manipulable variable, e.g., race or gender, which does not
gives a well-defined casual effect in the sense of Rubin (1978)
(more discussion in Section 4). Nevertheless, propensity score
is still a valid and powerful tool to balance the covariates dis-
tribution between groups for studies with non-causal purposes.
Therefore, we avoid the subtle issue of causality throughout
the paper and note the results obtained here are applicable for
studies with more general (non-causal) purposes. For ease of
description, we still refer to our estimands discussed as “treat-
ment effects” even though they are not necessarily causal.

Henceforth, let m denote the total number of clusters; nh
the number of subjects in cluster h; yhk the outcome for sub-

ject k in cluster h (e.g., a clinical diagnosis); xhk the corre-
sponding covariates (typically vector-valued, e.g., age, stage
of detection, comorbidity scores, etc.); vh the cluster-level co-
variates (e.g., teaching status or measures of technical capac-
ity of a hospital); zhk the treatment assignment for the subject,
zhk ∈ {0, 1}; and ehk the propensity score.

2.1 Step 1. Estimating the propensity score

To estimate the propensity score, several logistic regression
models are available with various treatment of the hierarchical
structure.

2.1.1 Marginal model

As the name suggests, marginal regression models ignore clus-
tering information. A typical marginal propensity score model
would be

log
(

ehk
1− ehk

)
= βexhk + κevh, (2)

where ehk = P (zhk = 1 | xhk, vh). This model in fact as-
sumes the treatment assignment mechanism is the same across
all clusters. In other words, it assumes that two subjects are
exchangeable in terms of treatment propensity if they have the
same vector of covariates, whether or not they come from the
same cluster.

This propensity score model can be thought of as a non-
parametric alternative to a regression-based adjustment for in-
dividual and cluster covariates. The analogous marginal re-
gression model would be,

yhk = γzhk + βyxhk + κyvh + εhk, (3)

where εhk ∼ N(0, δ2ε ), and γ is the treatment effect. As
model (2), estimates derived from this regression model rely
on the assumption that the outcome generating mechanism is
the same across all clusters.

Models (2) and (3) have a manifest similarity of form. A
deeper connection is that the sufficient statistics to estimate
the treatment effect that are balanced under propensity score
estimator are the same that must be balanced under model (3).

2.1.2 Pooled within-cluster model

A pooled within-cluster model for propensity score conditions
on both the covariates and the cluster indicators,

log(
ehk

1− ehk
) = δeh + βexhk, (4)

where δeh is a cluster-level main effect, δeh ∼ N(0,∞), and
ehk = P (zhk = 1 | xhk, h). This model implies the treatment
assignment mechanism differs among clusters, and the differ-
ence is controlled by a cluster-level main effect δeh. Model (4)
involves a more general assumption (weaker) on the treatment
assignment mechanism than the marginal model (2), because
the cluster-level covariate vh is a function of the cluster indi-
cator h.
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In the above model, if we assume the cluster-specific main
effects δeh follow a distribution, δeh ∼ N(0, σ2

δ ), then we have
a new propensity score model with random effects,

log(
ehk

1− ehk
) = δeh + βexhk + κevh.

More generally, βe can be allowed to vary across clusters and
follow a distribution. In practice, results from the above ran-
dom effects model are usually similar to those from the pooled
within-cluster model when the number of clusters is big.

A corresponding pooled within-cluster outcome model ad-
justing for cluster-level main effects and covariates is of the
form:

yhk = γzhk + δyh + βyxhk + εhk, (5)

where δyh is a cluster-level main effect, δyh ∼ N(0,∞). Under
this model, all information is obtained by comparisons within
clusters, since the δyh term absorbs all between-cluster infor-
mation.

2.1.3 Surrogate indicator model

When there are a large number of clusters with large sample
size, the computational task of fitting the pooled within-cluster
model can get demanding for standard software. Alternatively,
define dh =

∑
k∈h

zhk
nh

, the cluster-specific proportion of be-
ing treated, we can consider the following propensity score
model

log(
ehk

1− ehk
) = λ log(

dh
1− dh

) + βexhk + κevh. (6)

In the simplest situation where there is no covariates, ehk =
dh for any h, k. Therefore, comparing models (4) and (6), the
logit of dh maybe expected to be a reasonable surrogate for
the cluster indicator in the pooled within-cluster model with
the coefficient λ being around 1. The inference is same as
in the marginal model with an additional covariate logit(dh).
Usually the coefficients of the cluster-level covariates κe are
very small since most of their effects have been absorbed by
λ. The surrogate indicator model reduces the m parameters
(δh’s) in the pooled within-cluster model to a single parameter
λ, thus greatly reducing the computation required for model
fitting. However, this reduction is based on the assumption
that logit of the empirical cluster-specific proportion of be-
ing treated, logit(dh), is linearly correlated with logit of the
true propensity score. When the underlying truth is far from
this assumption, the surrogate indicator model could perform
poorly.

The goodness of fit of these models can be checked by
conventional diagnostic procedures (e.g., Rosenbaum and Ru-
bin, 1984). For example, one can check both the over-
all and within-cluster balance of the distribution of covari-
ates weighted by the estimated propensity score in different
groups.

2.2 Step 2. Estimating the treatment effect

Common approaches estimate treatment effects using propen-
sity score involve weighting, matching and stratification. We
will focus on weighting in this report.

2.2.1 Marginal estimator

Similar to the marginal model in step 1, the marginal estimator
ignores clustering. A specific nonparametric estimator is the
difference of the weighted overall means of the outcome of
two treatment groups,

∆̂.,marg =

∑zhk=1
h,k whkyhk∑zhk=1
h,k whk

−
∑zhk=0
h,k whkyhk∑zhk=0
h,k whk

, (7)

where the weightwhk is a function of the estimated propensity
score. The choice of weight will be discussed in Section 2.3.

Assume yhk is homoscedastic and var(yhk) = σ2, then the
large sample variance of the marginal estimator is,

s2.,marg = var(∆̂.,marg)

=
σ2
∑zhk=1
h,k w2

hk

(
∑zhk=1
h,k whk)2

+
σ2
∑zhk=0
h,k w2

hk

(
∑zhk=0
h,k whk)2

. (8)

In practice σ2 can be estimated from the sample variance of
yhk.

2.2.2 Clustered estimator

A second estimator is to first obtain the cluster-specific
weighted difference and then calculate the weighted average
of these differences based on the sum of weights in each clus-
ter. That is, for cluster h,

∆̂h =
∑zhk=1
k∈h whkyhk∑zhk=1
k∈h whk

−
∑zhk=0
k∈h whkyhk∑zhk=0
k∈h whk

.

The variance of the cluster-specific estimator ∆̂h under the
independent homoscedastic assumption of yhk within cluster
h is

s2h = var(∆̂h)

=
σ2
h

∑zhk=1
k∈h w2

hk

(
∑zhk=1
k∈h whk)2

+
σ2
h

∑zhk=0
k∈h w2

hk

(
∑zhk=0
k∈h whk)2

.

Similarly, σ2
h can be estimated from its empirical counterpart

within each cluster.
Let wh be a function of the weights in cluster h, e.g., the

sum of weights wh =
∑
k∈h whk, or the precision of the esti-

mator ∆̂h, wh = s−2
h . The overall clustered estimator is then

an average of the ∆̂h’s weighted by wh,

∆̂.,clu =
∑
h wh∆̂h∑
h wh

. (9)

And the overall variance is

s2.,clu = var(∆̂.,clu) =
∑
h(
∑
k∈h whk)2s2h

(
∑
h,k whk)2

. (10)

Standard errors of estimators s2.,marg and s2.,clu also be ob-
tained from resampling methods such as the bootstrap.
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2.2.3 Doubly-robust estimators

The weighted mean can be regarded as a weighted regression
without covariates. Therefore in step 2, we can replace the
nonparametric weighted mean (7) or (9) by a parametric re-
gression (e.g., model (3) or (5)) weighted by the estimated
propensity score. And the coefficient of the treatment assign-
ment γ is the targeted estimand of treatment effect. This is
essentially the class of doubly-robust estimators proposed by
Scharfstein et al. (1999). Doubly-robust estimators allow flex-
ible model choices in both steps, which can be very beneficial
in applications. These estimators are coined “doubly-robust”
in the sense that they are proven to be consistent if one but not
necessarily both of the step 1 and 2 models are correctly spec-
ified under the Horvitz-Thompson weight (see below). De-
tailed discussion of this property with hierarchical data is pre-
sented in the next section.

2.3 Choice of weights

We now consider the choice of weights. We call the class of
weights which balances the distribution of covariates between
treatment groups balancing weights. The most widely used
balancing weight is the Horvitz-Thompson (inverse probabil-
ity) weight

whk =
{ 1

ehk
, for zhk = 1

1
1−ehk , for zhk = 0.

The H-T weight is a balancing weight because E
[
XZ
e(X)

]
=

E
[
X(1−Z)
1−e(X)

]
. The H-T estimator compares the expected out-

come of the subjects placed in z = 0 versus that of the subjects
placed in z = 1, averaging over the distribution of covariates
in the combined population. That is,

E

[
Y Z

e(X)
− Y (1− Z)

1− e(X)

]
= E[(Y |Z = 1)− (Y |Z = 0)].

In fact, the doubly-robust estimators in Scharfstein et al.
(1999) are restricted to using the H-T weight because of this
clear causal interpretation. However, the H-T estimator has
been well known to have excessively large variance when
there are subjects with extremely small propensity score. Nev-
ertheless, the same idea is readily extended to any balancing
weight, although alternative weights might define different es-
timands. For example, we can consider the population-overlap
weight,

whk =
{

1− ehk, for zhk = 1
ehk, for zhk = 0.

where each subject is weighted by the probability of being
assigned to the other treatment group. It is also a balancing
weight because E[XZ{1− e(X)}] = E[X(1− Z)e(X)]. In
theory, the population-overlap weight gives the smallest vari-
ance under a homoscedastic model for Y given X . But it
defines a different estimand than the the Horvitz-Thompson
weight. Specifically, we call this the population-overlap
weight because it results in an average treatment effect that is

averaged over the distribution of covariates in the population
where the two treatment groups overlap

E[Y Z{1− e(X)} − Y (1− Z)e(X)]
= E[{(Y |Z = 1)− (Y |Z = 0)}e(X){1− e(X)}].

This population-overlap estimator can be calculated with ac-
ceptable variance when the H-T estimator cannot be practi-
cally estimated, because e(x) can approach 0 or 1 for some
part of x space such that 1

e(x) or 1
1−e(x) would become ex-

tremely large. In effect the H-T estimator attempts to estimate
a treatment effect for types of cases which are essentially un-
represented in one or the other group, while the population-
overlap weighting focuses on the types of cases with a more
balanced distribution of “treatment”. In addition to its statis-
tical advantage, the latter analysis may be more scientifically
relevant since it focuses attention on comparison of outcomes
among the kinds of cases which both “treatments” are cur-
rently observed, for example those in clinical equipoise be-
tween treatments.

3. Bias of Estimators

In this section, we investigate the bias of each of the estimators
proposed in the previous section. We first look at the simplest
case with two level-hierarchical structure and no covariates.

Let nh1(nh0) denote the number of subjects with z =
1(z = 0) in cluster h; and n+1 =

∑
h nh1, n+0 =∑

h nh0, n++ = n+1 + n+0.
Assume the outcome generating mechanism for a continu-

ous outcome follows a random effects model with cluster-level
random intercepts and random treatment effects,

yhk = δh + γhzhk + αdh + εhk, (11)

where δh ∼ N(0, σ2
δ ), εhk ∼ N(0, σ2

ε ), α is the effect of the
cluster-specific proportion of being treated dh on the outcome,
and the true treatment effect is γh with γh ∼ N(γ0, σ

2
γ).

We first look at the situation where clustering information
is ignored in both steps. For the marginal model in step 1,
it is easy to show that the estimated propensity score is the
same for each subject êhk = n+1

n++
. Consequently, the marginal

estimator is

∆̂marg,marg

=

∑zhk=1
h,k yhk

n+1
−
∑zhk=0
h,k yhk

n+0

=
∑
h

nh1
n+1

γh +
∑
h

(
nh1
n+1

− nh0
n+0

)δh

+(

∑zhk=1
h,k εhk

n+1
−
∑zhk=0
h,k εhk

n+0
)

+α
n++

n+1n+0
−
∑
h nhdh(1− dh)
n++

n+1n+0

Assume the common regularity conditions
∑∞
h

n2
h1

n2
+1
<∞ and∑∞

h
n2
h0

n2
+0

< ∞ hold, then by the weak law of large num-
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bers for the weighted sum of independent and identically-
distributed random variables (e.g., Chow and Lai, 1973),∑
h
nh1
n+1

γh converges to γ0 as the number of clusters goes to
infinity, and

∑
h( nh1
n+1
− nh0

n+0
)δh goes to 0, so does the third

term in the above formula. In the fourth term, n++
n+1n+0

is
in fact the variance of the total number of treated subjects,
var(n+1), if all clusters are exchangeable, i.e., if all sub-
jects regardless of the clusters follow the same treatment as-
signment mechanism, z ∼ Bernoulli( n+1

n++
). Furthermore,∑

h nhdh(1 − dh) is the sum of the variance of the number
of treated subjects within each cluster,

∑
h var(nh1), if each

cluster separately follows a treatment assignment mechanism,
zk∈h ∼ Bernoulli(nh1

nh
). Therefore, bias of the marginal

estimator with propensity score estimated from the marginal
model is

Bias(∆̂marg,marg) = α

[
var(n+1)−

∑
h var(nh1)

var(n+1)

]
.

(12)
The size of the bias is controlled by two factors: (1) the ratio of
the variance of the total number of treated subjects under a ho-
mogeneous versus a cluster-heterogeneous treatment assign-
ment mechanism; and (2) the effect that the cluster-specific
proportion of being treated dh has in the response, i.e., |α|.
This is intuitive because the first factor measures the varia-
tion in the treatment assignment mechanism among clusters
and the second measures the variation in the outcome generat-
ing mechanism, both of which are ignored in the analysis with
marginal models in both steps. When either but not necessar-
ily both of the two mechanisms is homogenous across clusters,
the marginal estimator, ∆̂marg,marg , is also consistent. How-
ever, in reality, it is most likely that both of the mechanisms
are heterogenous among clusters.

We now look at the opposite situation where clustering in-
formation is taken into account in both steps. For the pooled
within-cluster model in step 1, it is easy to show that the es-
timated propensity score is êhk = nh1

nh
. Then the clustered

weighted estimator is

∆̂pool,clu

=

∑
h(

∑zhk=1
k∈h

yhk
nh1

)

m
−

∑
h(

∑zhk=0
k∈h

yhk
nh0

)

m

=

∑
h γh

m
+

∑
h(

∑zhk=1
k∈h

εhk
nh1

)

m
−

∑
h(

∑zhk=0
k∈h

εhk
nh0

)

m
nh,m→∞→ γ0 (13)

which is asymptotically unbiased. The result is free of the
form of weight. Simple calculation shows that the clustered
weighted estimator combining the marginal model in step
1, ∆̂marg,clu, is of exactly the same form as that in (13)
and thus also unbiased. Furthermore, the marginal estima-
tor with propensity score estimated from the pooled within-
cluster model, ∆̂pool,clu, follows the same form as in (13),
but only under H-T weight and a balanced design (i.e., each
cluster has same number of subjects). Under H-T weight but
an unbalanced design, the estimator is also consistent (assume

∑∞
h

n2
h

n2
++

<∞) as

∆̂pool,marg =
∑
h nhγh
n++

nh,m→∞→ γ0.

However, the same estimator under the population-overlap
weight is

∆̂pool,marg

=

∑
h nh0(

∑zhk=1
k∈h

yhk
nh

)−
∑
h nh1(

∑zhk=0
k∈h

yhk
nh

)∑
h
nh1nh0
nh

=

∑
h
nh1nh0
nh

(γh +
∑zhk=1
k∈h

εhk
nh1
−
∑zhk=0
k∈h

εhk
nh0

)∑
h
nh1nh0
nh

nh,m→∞→ γ0.

Even though this estimator is also asymptotically unbiased, its
small sample behavior can be quite different from that of the
estimator under H-T weight.

Under the homoscedasticity assumption of outcome, the
three H-T estimators ∆̂pool,marg, ∆̂marg,clu, and ∆̂pool,clu

that take into account clustering in at least one step have the
same variance,

s2 =
∑
h

σ2
εn

2
h

n2
++

(
1
nh1

+
1
nh0

).

Similarly as the discussion on bias, this result is generally not
applicable for other type of weights. Specifically, the vari-
ance of ∆̂pool,marg is usually larger than that of ∆̂marg,clu

and ∆̂pool,clu.
When there are no covariates, the surrogate indicator model

gives the estimated propensity score as the pooled within-
cluster model. Thus the results obtained above regarding the
pooled within-cluster model automatically hold for the surro-
gate indicator model. But this is not the case for the general
situation with covariates.

The proofs are analogous for data with a higher order of
hierarchical levels. For the simplest case without covari-
ates, above we have shown the “double-robustness” of those
propensity score estimators, that is, when both of the true un-
derlying treatment assignment mechanism and outcome gen-
erating mechanism are hierarchically structured, the estima-
tor using a balancing weight is consistent as long as the hi-
erarchical structure is taken into account in at least one of
the two steps in the propensity score procedure. This can
be viewed as both a special case and an extension of the
“double-robustness” property of the estimator in Scharfstein
et al. (1999). The extension lies in that our conclusion is in-
stead free of the form of weight.

In the more general cases with covariates, usually there is no
closed-form solution to the logistic models for estimating the
propensity score. Consequently, there is no closed-form of the
bias of those estimators as above. Nevertheless, this situation
can be explored either by large-scale simulations, or by adopt-
ing a probit (instead of logistic) link for estimating the propen-
sity score. Intuitively, the “double-robustness” property still
holds. But the bias of a marginal estimator ∆̂marg,marg is
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expected to also be affected by the size of the true treatment
effect γ (negative correlated) and the ratio of between-cluster
and within-cluster variance g = σ2

δ

σ2
ε

(positively correlated),

in addition to α and var(n+1)−
∑
h var(nh1)

var(n+1)
in (12). A com-

prehensive discussion is beyond the scope this report and is
subject to further research.

4. Application

We now apply the above methods to study racial disparity in
health services. Disparity refers to racial differences in care
attributed to operations of health care system. Our applica-
tion concerns the HEDIS R©measures of health care provided
in Medicare health plans. Each of these measures is an es-
timate of the rate at which a guideline-recommended clini-
cal service is provided within the appropriate population. We
obtained individual-level data from the Centers for Medicare
and Medicaid Services (CMS) on breast cancer screening of
women in Medicare managed care health plans (Schneider et
al., 2002). Our main interest is the disparity between whites
and blacks, so we exclude subjects of other races for whom
racial identification is unreliable in this dataset. We focus on
plans with at least 25 whites and 25 blacks, leaving 64 plans
with a total sample size of 75012. For practical reasons, we
drew a random subsample of size 3000 from each of the three
large plans with more than 3000 subjects, leaving a total sam-
ple size of 56480.

All the covariates considered in the analysis are binary. The
individual-level covariates xhk include two indicators of age
category (70-80,>80) with reference group being 60-70; eli-
gibility for Medicaid (1 yes); neighborhood status indicator (1
poor). The plan-level covariates vh include nine geographi-
cal code indicators; non/for-profit status (1 for-profit); and the
practice model of providers (1 staff-group model; 0 network-
independent practice model). The outcome y is a binary vari-
able equal to 1 if the enrollee underwent breast cancer screen-
ing and equal to 0 otherwise, and the “treatment” z here is
race (1 black, 0 white). We want to estimate the difference in
the proportion of undergoing breast cancer screening between
whites and blacks. As mentioned before, race is not a valid
“treatment” in conventional sense in causal inference, because
it is not manipulable (Holland, 1986). However, in this par-
ticular application, our goal is not to study the causal pathway
between race and health service utilization, but simply to esti-
mate the magnitude of disparity under balanced distributions
of covariates between the two races. Hence, the propensity
score in this application is merely an analytical tool to achieve
this goal, and it should not be taken as having the explicit
meaning of the probability of being black.

We first estimate the propensity score using the three mod-
els introduced in Section 2.1 with all the above covariates in-
cluded. Details of the fitted models are omitted here since
the focus is the fitted values (estimated propensity score). All
models suggest that living in poor neighborhood, being eligi-
ble for Medicaid and enrollment in for-profit insurance plan
are significantly associated with being black race. Figures 1
and 2 show histograms of the estimated propensity score for

whites and blacks. Different models clearly give quite dif-
ferent estimates of propensity score in this data, where the
marginal model departs mostly from the other two models.
The variance of the estimated propensity score of blacks is
much bigger than that of whites, regardless of the model. We
checked the weighted distributions of covariates. Each model
leads to good balance of the overall weighted covariates distri-
butions between groups. However, the marginal model in gen-
eral does poorly in balancing covariates between races within
each cluster, while the surrogate indicator model does better,
and the pooled within-cluster model does the best. This sug-
gests that there is important between-cluster variation.
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Histogram of Propensity score of Whites Estimated from Pooled Within−Cluster Model
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Histogram of Propensity score of Whites Estimated from Surrogate Indicator Model
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Figure 1: Histogram of propensity score estimated from dif-
ferent models for whites.

Histogram of Propensity score of Blacks Estimated from Marginal Model
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Histogram of Propensity score of Whites Estimated from Surrogate Indicator Model
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Figure 2: Histogram of propensity score estimated from dif-
ferent models for blacks.

Using the estimated propensity score, we estimate racial
disparity in breast cancer screening among the elder women
participating Medicare health plans by the estimators pro-
posed in Section 2.2. Although the outcome is binary in this
case, the probabilities of outcome are in a range where the
linear probability model is an acceptable fit. Hence, for the
doubly-robust estimators, we adopt the combinations of the
three propensity score models (2), (4) and (6) in step 1 and
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the two outcome models (3) and (5) in step 2. Table 1 shows
the estimates using the H-T weight. Each row represents one
step 1 model, and each column represents one type of step
2 model/estimator. Analogous results using the population-
overlap weight are given in Table 2.

weighted doubly-robust
marginal clustered marginal pooled within

marginal -0.050 -0.020 -0.042 -0.021
(0.008) (0.008) (0.004) (0.004)

pooled -0.024 -0.021 -0.018 -0.022
within (0.009) (0.008) (0.004) (0.004)

surrogate -0.017 -0.015 -0.012 -0.015
indicator (0.009) (0.008) (0.004) (0.004)

Table 1: Difference in the proportion of getting breast
cancer screening between blacks and whites using Horvitz-
Thompson weight

All models show the proportion of receiving breast can-
cer screening is significantly lower among blacks than among
whites with similar characteristics. The estimates are simi-
lar except for the analyses that ignore clustering in both steps,
which overestimate the treatment effect. This pattern matches
the double-robustness property. Results from the surrogate in-
dicator model in step 1 are slightly different from the others,
suggesting the cluster-specific proportion of being treated dh
is correlated with certain covariates. The doubly-robust esti-
mates have smaller standard errors because the extra variation
is explained by covariates in step 2. Not surprisingly, the esti-
mates using H-T weight have much larger variances than those
using the population-overlap weight. We also notice that the
estimates incorporating clustering in step 2 have less variation
than those doing so in step 1. This observation suggests, in ap-
plication, modeling the hierarchical structure for the outcome
generating mechanism leads to more stable estimates, even
though in theory correct model specification in both steps are
equivalent in terms of their effect on consistency. A possible
explanation is the impact of misspecifying propensity score is
attenuated through weighting because the ultimate estimand is
a function of the outcome, rather than of the propensity score.

Even though we do not know the underlying truth, the sim-
ilarity of various estimators suggests our analyses capture the
main information regarding disparity in this data. That is,

weighted doubly-robust
marginal clustered marginal pooled within

marginal -0.043 -0.030 -0.043 -0.032
(0.007) (0.008) (0.004) (0.004)

pooled -0.030 -0.031 -0.031 -0.031
within (0.007) (0.008) (0.004) (0.004)

surrogate -0.035 -0.030 -0.031 -0.030
indicator (0.007) (0.008) (0.004) (0.004)

Table 2: Difference in the proportion of getting breast cancer
screening between blacks and whites using population-overlap
weight

among the elders who participate in Medicare health plans,
blacks on average have a significantly lower chance to receive
breast cancer screening than whites, after adjusting for age,
geographical region, social economical status and health plan
characteristics.

5. Summary and Remarks

Since first been proposed twenty-five years ago, propensity
score methods have gained increasing popularity in observa-
tional studies in multiple disciplines. One example is health
care policy research, where data with hierarchical structure
are rule rather than exception nowadays. However, despite
the wide appreciation of propensity score among both statisti-
cians and health policy researchers, there is very limited liter-
ature regarding the methodological issues of propensity score
methods in the context of hierarchical data, which motivates
our exploration in this paper. Specifically, we present three
typical models for estimating propensity score and two types
of nonparametric weighted (by estimated propensity score) es-
timators of treatment effect for hierarchically structured data.
Furthermore, for the simplest (conceptual) case without co-
variates, we show the “double-robustness” of those weighted
estimators: when both of the true underlying treatment assign-
ment mechanism and outcome generating mechanism are hi-
erarchically structured, the estimator is consistent as long as
the hierarchical structure is taken into account in at least one
of the two steps in the propensity score procedure. We also
quantify the bias of the estimator when clustering is ignored
in both steps.

We have focused on the case of treatment being assigned
at the individual level in this paper. Treatment assigned at
the cluster level (e.g., hospital, health care provider) is also
common in medical care and health policy studies, where sev-
eral new challenging issues can arise. First, the number of
clusters is often relatively small despite a large total sample
size. This could lead to poorly estimated propensity scores
with excessively large standard errors. Second, the cluster-
level propensity score only balances the cluster-level covari-
ates and the average individual-level coviariates. What are the
consequences of the possible imbalance in the overall distri-
butions of individual-level covariates? This also has a strong
connection to the ecological inference commonly encountered
in political science (e.g., King, 1997) where the estimand has
an interpretation as an average effect on individual outcomes.
Third, all the nonparametric weighted estimators discussed in
this paper do not make use of the individual-level covariates,
which often contain crucial information. The doubly-robust
estimators with flexible regression model choice in the second
step appear to be preferable in this case. But what specific
regression model to choose greatly depends on the specific
data. Fourth, most interestingly, the foundational stable-unit-
treatment-value assumption (SUTVA) – “the observation on
one unit should be unaffected by the particular assignment of
treatments to the other units” (Cox 1958, 2.4) often no longer
holds under clustered treatment assignment, especially in the
studies with, for instance, behavioral outcomes and infectious
disease. In that case, correct modeling of the interference
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among subjects is crucial for valid analysis. Those issues are
among a range of open questions remained to be explored on
this topic. Further systematic research efforts are desired to
shed insight to the methodological issues and to provide guide-
lines for practical applications.
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