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ABSTRACT

We consider the problem of variable selection in regression modeling in high-dimensional

spaces where there is known structure among the covariates. This is an unconventional vari-

able selection problem for two reasons: (1) The dimension of the covariate space is compa-

rable, and often much larger, than the number of subjects in the study, and (2) the covariate

space is highly structured, and in some cases it is desirable to incorporate this structural in-

formation in to the model building process. We approach this problem through the Bayesian

variable selection framework, where we assume that the covariates lie on an undirected graph

and formulate an Ising prior on the model space for incorporating structural information. Cer-

tain computational and statistical problems arise that are unique to such high-dimensional,

structured settings, the most interesting being the phenomenon of phase transitions. We pro-

pose theoretical and computational schemes to mitigate these problems. We illustrate our

methods on two different graph structures: the linear chain and the regular graph of degree

k. Finally, we use our methods to study a specific application in genomics: the modeling of

transcription factor binding sites in DNA sequences.

Key words: Bayesian variable selection, undirected graph, Ising model, Markov chain Monte

Carlo, motif analysis, phase transition
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1 Introduction

Consider the standard multiple regression problem

Y = Xβ + ε, (1)

where Y is n× 1 variable response, X = (X1, . . . ,Xp) is a n× p matrix of covariates, and ε

is a n× 1 error term and ε ∼ N(0, σ2I). In this paper, we focus on variable selection for this

model with (a) a very large number of covariates, possibly much larger than the sample size

(i.e., the “large p” paradigm (West, 2003)), and (b) information about substantial structure

among covariates which can help us in the model building process.

This scenario of variable selection in a high-dimensional structured covariate space ap-

pears often in modern applied statistics. Here we list a few motivating examples:

1. In cancer genomics, mutations and DNA copy number aberrations can now be detected

in high throughput fashion along the genomic sequence. A common goal is to link

certain features of the genomic profile (X) to clinical phenotypes (Y ). Regression

models, if employed for this task, would face thousands of covariates (the mutations

along the genome sequence) with possibly only hundreds of patient samples. However,

the fact that these noisy mutation measurements are spaced linearly along the genome

sequence provides location information that should be considered in the model building

process. It is often reasonable, for example, to assume that adjacent measurements on

the chromosome are both assaying the same underlying genetic defect, and thus should

be grouped when added to the model.

2. In functional MRI (fMRI) studies of the brain, fMRI images are collected while sub-

jects are assessed in the performance of tasks (Y ). Then, the 2- and 3-d images are

scanned for regions of the brain that are associated with task performance. The images

are often very large, containing more than thousands of voxels. The covariates in this
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case are voxel intensities, and in variable selection, our goal is to select voxels that are

associated with Y . Since true signals usually represent connected regions in the brain.

the smoothness of the signal in space should be incorporated into the variable selection

process.

3. Gene expression can now be quantified at the genomic scale using technologies such as

microarrays. With this data and available genomic sequence data, there has been much

effort in the statistical modeling of the dependence of gene expression on promoter

sequence composition. Linear regression models have been applied to this problem,

with the response being gene expression, and the covariates being the counts of certain

word patterns in the upstream promoter sequence of the gene. The words that are

selected in the model may be binding sites for transcription factors. If we let the set

of potential covariates be all L length words, then p = 4L, which, for example, would

be 16384 for L = 7. Usually, n would be a subset of all of the genes in the genome,

which is usually comparable to p. In this problem, we are also aided by the fact that,

due to the degeneracy of transcription fact binding sites, true motifs can be represented

by words that are clustered by Hamming distance. Similar words often have similar

effects on expression. It is this information that we would like to incorporate into the

model building process.

In all of the above examples, the known structure among the large number of covariates

can be represented by an undirected graph: the structure in the DNA copy number data can be

represented by a 1-dimensional linear chain; that in the fMRI data by a 2- or 3-dimensional

lattice; and that in the motif data by regular graph of degree L (more detailed discussion is

given in Section 5). Bayesian paradigm is a natural choice to incorporate such prior graphical

structure. For example, Bayesian multivariate sparse latent factor model (West, 2003) pro-

vides a flexible platform for introducing prior design-dependent covariate structure in feature

selection in high-dimensional settings. Our focus is to identify important covariates instead
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of latent factors in this paper, and thus we adopt the Bayesian “spike and slab” approaches to

variable selection (e.g, George and McCulloch, 1993,1997; Brown et al., 1998; Ishwaran and

Rao, 2003, 2005a; Clyde and George, 2004; and reference therein). The basic idea behind

this framework is to define latent variables γ = (γi : 1 ≤ i ≤ p), where γi is the indicator

of whether covariate i is included in the model. Then, Markov chain Monte Carlo (MCMC)

methods are used to stochastically approximate the posterior distribution of γ given the data.

For a detailed comparison of Bayesian and frequentist penalized regression approaches, see

Ishwaran and Rao (2005a). These MCMC based procedures involve extensive computing

and have been traditionally applied to regression problems where p is not too large, although

recently they have been applied with some success to high-dimensional problems (Ibrahim et

al., 2002; Ishwaran and Rao, 2003, 2005b; Tadesse et al., 2005). The small sample size and

the high dimensionality in these problems render the variable selection problem difficult. In

this paper, we introduce dependence in the γ’s, with the effect of guiding the Markov chain

to effectively search over a smaller set of configurations in the γ’s – configurations that are

smooth with respect to an underlying graph. Thus, instead of the set of 2p possible models,

the search is biased for a much smaller subset, depending on the graph structure. The main

thrust of this paper is to use a class of Ising priors for the latent variables γ to flexibly incor-

porate the covariate space structure and improve stochastic model selection, and to provide

guidance on how to avoid some of the consequent complications when p is large.

Graphical models have been extensively used in Bayesian methodology for other types

of problems, such as segmentation and smoothing. For example, hidden Markov models

assume a linear graph, and are very useful for segmentation of one-dimensional data. Two

to three dimensional lattices have been used for the smoothing of fMRI data (Smith and

Fahrmeir, 2007). Informative priors for related covariates (e.g., interactions, grouped covari-

ates), which can be viewed as overlaying on undirected acyclic graphs were also discussed

before by Chipman (1996). However, formal methods for graphical representation of sub-

stantive structural information among covariates in Bayesian variable selection, especially in
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high-dimensional settings, have since received relatively little attention. When p becomes

large, i.e. in the thousands, many new theoretical and computational issues arise, the most

interesting and problematic of which is the phenomenon of phase transitions: Certain global

characteristics of the distribution of γ, such as the model size γ1+· · ·+γp, undergo a dramatic

change given an infinitesimal change in the hyperparameters. Since the computational effi-

ciency of the MCMC algorithm in Bayesian variable seleciton depends heavily on the model

size, it is critically important to understand the phase transition behavior of the distribution of

γ, and to avoid it. Such phase transition behavior in Ising models has been explored at great

length in statistical physics. To our knowledge, this issue has not been previously studied in

the context of Bayesian variable selection. In Section 3, we give guidance for choosing the

hyperparameters to avoid the phase transition behavior in high dimensions when the prior

distribution on γ is exchangeable. This method can be applied to problems where there is

underlying symmetry in the covariate space, such as the three examples listed at the begin-

ning of this section. Exchangeability in prior covariate structure is often desirable, because a

priori we do not want to bias our procedure towards the inclusion of any particular covariate.

As one may expect, in high-dimensional settings one of the most important determining

factors in the practicality of a Monte Carlo algorithm is its computational efficiency. In this

paper, we adopt the Gibbs sampling algorithms, as first suggested by George and McCulloch

(1993). We discuss the computational challenges that arise in this method, and implement an

efficient algorithm which we use to analyze a high-dimensional data set where p > 8000 in

Section 5.

The rest of the paper is organized as follows. Section 2 describes the formulation of the

general Ising prior. Section 3 discusses the issue of hyperparameter selection, with emphasis

on phase transition behavior. Section 4 presents simulation studies under a linear chain prior.

Section 5 presents a real application to the modeling of transcription factor binding sites in

DNA sequences. Section 6 concludes with a discussion.
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2 Formulation of General Model

2.1 Ising Prior for Covariate Spaces

Let the observed data be X and Y for which we assume the simple linear model (1) as

described in the introduction. As mentioned before, the Bayesian variable selection method

relies on introducing a latent variable γi ∈ {0, 1} for each covariate that indicates whether

this covariate is included in the model. The prior distribution for the regression parameters

β is assumed to depend on γ = (γ1, . . . , γp)
′ as follows: given γ, βi are independent with

conjugate Gaussian mixture priors

βi|γi ∼ (1− γi)I0 + γiN(0, σ2v2), (2)

where I0 is a point mass at 0. For the residual variance σ2, the inverse gamma (IG) conjugate

prior is often assumed

σ2|γ ∼ IG(ν/2, νλ/2).

When ν = 0, the IG prior reduces to a flat prior, which is adopted in this paper. With certain

prior being further assumed for γ, the variable selection is then based on a stochastic search

in the posterior covariate spaces γ|Y ∈ {0, 1}p given the data. The prior for γ is traditionally

assumed to be i.i.d. Bernoulli, which is equivalent to assuming the covariates are independent

a priori. In other words, the prior information of structure in X is not incorporated. Intuitively,

proper incorporation of such information would improve stochastic search of the covariate

spaces. In this paper, we propose a general Ising prior for γ and investigate its consequences

under the high-dimensional scenario.

We assume that the covariates i = 1, . . . , p lie in an undirected graph which can be

represented by an edge set E = {(i, j) : 1 ≤ i 6= j ≤ p}. Given this graph, let a =

(a1, . . . , ap)
′ be a vector and B = (bi,j)p×p be a symmetric matrix of real numbers where
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bi,j = 0 for all (i, j) /∈ E . Then, we assume the Ising prior distribution for γ:

P (γ) = ea
′γ+γ′Bγ−ψ(a,B), (3)

where ψ(a,B) is the normalizing constant:

ψ(a,B) = log(
∑

γ∈{0,1}p
ea
′γ+γ′Bγ).

The constant ψ(a,B) is referred to as the partition function in statistical physics. Without

loss of generality we assume that ai < 0. IfB were 0, then ψ(a,0) =
∑p

i=1 log(1 + eai), but

in general there is no closed form for ψ.

In the Ising prior (3), the hyperparameters a control the sparsity of γ and the entries in

B control the smoothness of γ over E . Often, there is underlying symmetry in the covariate

space such that the prior distribution on γ should be exchangeable, i.e. for any permutation

π of {1, . . . , p}, the law of γ is equal to the law of γ(π) = (γπ1 , . . . , γπp). Under this setting,

we do not favor a priori the inclusion of any covariate into the model. Thus, the graph must be

regular, i.e., each vertex has the same degree, and a = a(1, 1, . . . , 1). The hyperparameters

{bij} represent the prior belief on the strength of coupling between the pairs of neighbors

(i, j). Larger bij means tighter coupling. When B = 0, the prior is back to i.i.d. Bernoulli.

Further restrictions on bij are often placed to reduce the number of hyperparameters. For

example, with lack of specific prior information on the strength of connection between each

pair of neighbors, it is natural to assume bij’s to be constant. Then (a,B) reduce to two

hyperparameters (a, b). In many problems, bij is not constant, but exchangeability implies

that
∑

j bij is constant across vertices. An example of non-constant bij is given in Section 5.

The utility of this general Ising model owes to the fact that it is easily adaptable to a wide

variety of problems. We will illustrate this by presenting two examples with different graph

(covariate) structure in Sections 4 and 5.
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2.2 Gibbs Sampling of f(γ|Y)

To sample from f(γ|Y), we adopt the Gibbs sampling scheme that samples directly from the

ergodic Markov chain: γ0,γ1,γ2, . . . . When the average model size is sparse, each update

sweep of γ in this scheme can be accomplished in linear time.

Let γ(−i) = {γj : j 6= i}; I(−i) be the set of indices {γj = 1 : j 6= i}; Ii = I(−i)
⋃
{i};

pi = |Ii| and p(−i) = |I(−i)|. For the prior distribution (3), there is a simple form for the

conditional distribution

P (γi|γ(−i)) =
e
γi(a+b

∑
j∈I(−i)

γj)

1 + e
a+b

∑
j∈I(−i)

γj
.

The posterior distribution of γ given the data can be decomposed by Bayes formula,

P (γi = 1|γ(−i),Y) =
P (γi = 1|γ(−i))

P (γi = 1|γ(−i)) + F (i|γ(−i))−1 · P (γi = 0|γ(−i))
(4)

where F (i|γ(−i)) =
P (Y|γi=1,γ(−i))

P (Y|γi=0,γ(−i))
is the Bayes factor and can be explicitly computed for the

linear regression model under the priors β and σ specified in the previous section. Specifi-

cally, integrating out β and σ, we have

F (i|γ(−i)) = v−1 ·
|A(−i)|

1
2

|Ai|
1
2

·

(
Y ′Y − Y ′XI(−i)

A−1
(−i)X

′
I(−i)

Y

Y ′Y − Y ′XIiA
−1
i X ′IiY

)n
2

, (5)

where Ai = X ′IiXIi + v−2Ipi
and A(−i) = X ′I(−i)

XI(−i)
+ v−2Ip(−i)

.

Hence, one can sample directly from the posterior distribution of γ by constructing a

Markov chain on {0, 1}p where at each iteration, an index is picked, say i, and γi is sampled

from P (γi|γ(−i),Y) using equation (4). The index i can either be picked in a fixed order, or

randomly.

Evaluating F (i|γ(−i)) in (5) is the computationally intensive step during each iteration,

because it involves inverting and calculating the determinant of the pi by pi matrix Ai. Note

that one of the matrices A−1
(−i) and A−1

i is in fact always available from the last iteration, and
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that A−1
i can be obtained from A−1

(−i) by a low-rank update, which is an O(p2
i ) operation.

Then, each sweep through all of the γi’s would be O(pp2
i ) operation. This underlies the

importance of limiting the size of the model during the sampling of γ: even though the

Bayesian formulation does not limit the model size in each iteration, it is desirable in the

interest of computation for the model to be sparse. The model size is greatly affected by

the choice of the hyperparameters, which will be discussed intensively in the next section.

Various low-rank update algorithms can be developed using the numerical methods such as

the Cholesky or LU decomposition of matrix. Details of the algorithm we used is given in

the appendix.

3 Hyperparameter Selection

Hyperparameter selection is an important part of any type of Bayesian inference. In partic-

ular, for regression problems when p is large, the selection of hyperparameters need to be

based not only on prior beliefs but also on considerations of computational efficiency. In

this section, we focus on exploring two aspects of hyperparameter selection for the general

model: (1) phase transition of the Ising prior, which induces critical slow down of the MCMC

and dramatic change in model behavior; and (2) the influence of hyperparameter choice on

the average size of the selected model, which dictates the computation time of Gibbs sampler.

3.1 Phase Transition of Ising Model

Under the general model (2) and (3), three hyperparameters need to be specified: the shrink-

age v, the sparsity a and the smoothness b. In this paper, we focus our attention on the setting

of the sparsity a and smoothness b of the underlying Ising model. The hyperparameter v is

the prior variance of βi given that γi = 1, and should be set based on expectations on the

magnitude of βi if covariate i were indeed a true predictor. Usually this information is not

available, but we find that the following procedure yields satisfying results in practice: For
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every covariate, perform a single linear regression Y ∼ Xi to obtain a naive estimate of the

coefficient β̂i, and then choose v based on the variance of the β̂i’s. Alternatively, one can

adopt the approach of Ishwaran and Rao (2005a), which assumes a hierarchical model where

v itself follows a bimodal distribution with a spike at 0 and a continuous right tail. This gives

a more adaptive model that removes subjectivity in the choice of v, and is shown by Ishwaran

and Rao (2005a) to have a desired “selective shrinkage” property when used in combination

with a rescaled spike and slab model. The hierarchical model for v should give better results

in practice, but in this paper we choose the simpler prior which allows a more transparent

study of the effects of the hyperparameters a and b.

The choice of hyperparameters (a,B) must consider any possible phase transition points

in the Ising prior. It is widely known, for example, that Ising models on lattices of dimension

≥ 2 undergo transition between an ordered and a disordered underlying state at or near the

phase transition boundary in terms of (a,B), leading to various dramatic consequences such

as critical slow down of the MCMC. One immediate consequence in Bayesian variable selec-

tion for large p is the drastic change in the proportion of γi = 1, e.g., from < 1% to > 90%

near the phase transition boundary. This is illustrated by a simple example in Figure 1, which

assumes that bij = b and shows the expected proportion of γi = 1 versus b of an Ising model

defined on a 6 degree regular graph with p = 8192 vertices and a fixed at 4. As one can see,

the model size increases gradually from 150 to 200 as b increases until b reaches 1.35, where

the model size suddenly jumps to over 8000 with small change in b. After b passes 1.4, the

model size becomes stable again at around 8000. That is, the Ising model undergoes phase

transition near the pair of hyperpameters (a, b) = (−4, 1.35). Since the computational cost

of sampling from the posterior of γ is of quadratic order of the model size, (a, b) must be

chosen to avoid the phase transition point and guarantee a small average model size.

The main difficulty in analyzing a high-dimensional Ising model lies in the analytical

intractability of the partition function ψ(a,B), due to the many combinatorial interaction

terms when summing over all states, i.e.,
∑

(i,j)∈E γiγj . Nevertheless, the behavior of an
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Figure 1. Phase transition (in terms of model size) of Ising model

Ising model on a wide class of regular graphs can be approximated by mean field theory (for

a nice overview, see Yedidia (2001)), which are useful in providing ballpark estimates of

certain quantities, such as model size, clumping behavior (i.e. E[
∑

(i,j)∈E γiγj]), and phase

transition point. The main idea of mean field theory is to replace all interactions to any γi with

an average interaction, which becomes exact as the dimension of the graph goes to infinity.

This yields useful approximations for the partition function, which, as the normalizing factor

of an exponential family, encodes many properties of the joint distribution of γ. For example,

the derivative of the partition function with respect to a gives the mean of γ. As shown in

Appendix B, the phase transition boundary of the Ising model with exchangeable distribution

can be studied by examining the set of mean field approximations to the partition function

ψ(a,B), which can be expressed as mint φ(t), where

φ(t) = log(1− t)−
(
a+ log

1− t
t

)
t− kbt2, 0 < t < 1, (6)

where k =
∑

j bij , which, due to exchangeability, does not rely on i. To minimize φ(t), we

look for solutions t̂ to
dφ

dt
= − log

(
1− t
t

)
− a− 2kbt = 0, (7)
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that satisfy d2φ
dt2

= 1
t(1−t) − 2kb > 0. These solutions can be easily found numerically. To

study them qualitatively, the left panel of Figure 2 shows the two sides of equation (7) for

varying kb. The intersection of the lines and the logit function are possible solutions t̂ for

given values of (a, kb). The nature of the solutions are can be described as follows:

1. When a > −2: there is one minima of φ(t).

2. When a = −2: there is one inflection point (i.e., d
2φ
dt2

= 0), t∗ = 1
2
.

3. When a < −2: let the two solutions to equation logit(t) = a + 1
1−t be t∗1(> 1/2)

and t∗2(< 1/2). Then when 1
t∗2(1−t∗2)

< 2kb < 1
t∗1(1−t∗1)

, there are two minima and one

maxima of φ(t); when 2kb = 1
t∗2(1−t∗2)

or 1
t∗1(1−t∗1)

, one minima and one inflection point;

when 2kb < 1
t∗2(1−t∗2)

or 2kb > 1
t∗1(1−t∗1)

, one minima.

0.0 0.2 0.4 0.6 0.8 1.0

−
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−
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−
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Graphic illustration of equation logit(t)=a+2kbt
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Figure 2. Phase transition boundary of Ising model

Therefore, for any given a < −2, the mean field approximate φ(t) transits between uni-

modal and multi-modal states at b∗i = 1
2kt∗i (1−t∗i )

, (i = 1, 2), which are the phase transition

points. The right panel of Figure 2 shows these regions in the (a, 2kb∗) plane. In theory, for

any given a, any b that is above the solid line (> b∗1(a)) or below the dashed line (> b∗1(a))

avoids phase transition in the Ising model. However, the model is only sparse for b below the
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dashed line. Thus, because of our a priori belief in a sparse model, and to limit the model size

for computational efficiency, we always choose b that is below the dashed line in applications.

We have derived a ballpark estimate of the phase transition boundary for exchangeable

Ising prior defined on regular graphs using mean field approximation. There is no analytical

solution for the phase transition points for the posterior distribution. In the next section, we

derive some heuristic guidelines for choosing hyperparameters to avoid the phase transition

point when sampling from the posterior distribution in the scenario where the sample size is

large and the true model is sparse.

3.2 Posterior model size

We now examine the influence of hyperparameter choice on the posterior model size, which

depends not only on a and b but also on the hyperparameter v, the number of data points n,

and the correlation structure within X,Y. Taking the log of the Bayes factor (5), we have

logF (i|γ(−i)) = − log v +
1

2
log(|A(−i)|/|Ai|) +

n

2
log(1 + ∆/nσ̂2),

where ∆ = Y ′(XIiA
−1
(i)X

′
Ii
− XI(−i)

A−1
−iX

′
I(−i)

)Y is the difference in sum of squared error

between the posterior mean fit of the smaller model and that of the larger model, and σ̂2 =

Y ′(I −XIiA
−1
i XIi)Y is an estimate of the variance σ2. The second term log(|A(−i)|/|Ai|) =

log n + Cv(X), where Cv(X) = O(1) depends on the correlation structure within X. For

large n, and assuming that the true βi = 0, the third term ∆/σ̂2 is approximately chi-square

distributed, giving us the approximation

log
P (γi = 1|γ(−i),Y)

P (γi = 0|γ(−i),Y)
≈ a+ b

∑
(i,j)∈E

γj − log v − log n+ Cv(X) + Z2(X,Y)/2, (8)

where Z(X,Y) ∼ N(0, 1). The terms Cv(X) and Z(X,Y) introduce higher than second

order interactions among γi, making it difficult to analyze the phase transition behavior in
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the posterior distribution of γ. However, (8) still gives useful insights, the most important

of which is the following: Let n → ∞, and a, b, v remain fixed. If the true model contains

c � p predictors, then phase transition will not occur. This is because in the right hand side

of (8), a− log v− log n→ −∞while the interaction terms remain bounded for all but c of the

predictors. However, when sample size n is moderate and p is large, log n is often not large

enough to preclude phase transition behavior, in which case we have found the following

heuristics to be useful:

1. The posterior model size decreases with increasing v, with aC-fold increase in v equiv-

alent to a logC decrease in a.

2. The posterior model size decreases with increasing sample size, with a C-fold increase

in sample size equivalent to a logC decrease in a.

When the number of covariates is large, we assume that the bulk of them follow the null

model. Such sparse models are easier to interpret, and makes Gibbs sampling in spike and

slab model selection procedures computationally feasible for high-dimensional data. Thus,

the above approximation provides useful guidelines in quantifying the effect of v and n,

relative to (a, b), on the posterior distribution of γ. We found the following to be a good

strategy: First choose v based on the expected signal magnitude β, then choose b based on

desired smoothness. Finally, based on v, b, and n, choose a based on (1-2) above and the

mean field approximations in Section 3.1 to avoid phase transition and obtain the desired

posterior model size.

4 Simulations: linear chain prior

The linear chain prior, where P (γi|γ(−i)) = P (γi|γi−1), is a simple example of the general

model (3). Smoothness of models along the linear chain prior can be easily visualized by

plotting the posterior marginal distribution P (γi = 1|Y) versus the linear ordering i. It is
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Scenario 1: Xi has a di-
rect effect on Y , with
the effect being smooth
in i.

Scenario 2: X and Y
related through Z. X is
smooth in i.

Figure 3. Design of simulation studies.

well known that phase transition does not occur under this setting (see, e.g., Busch, 1967).

Also, closed form formulas are available for marginal probabilities on γi’s. Due to its sim-

plicity and convenience for visualization, we start with simulations under the linear chain

prior assumption to examine the basic question: When and how does graph-based smoothing

improve the accuracy of variable selection in regression models?

We will simulate the data (X,Y) from two different models, summarized in Figure 3.

Under the first model, X has a direct effect on Y , with the effect being smooth along the

underlying graph. We will see that, not surprisingly, our method produces more accurate

model estimates than the independent prior assumption. In the second simulation study, X

does not have a direct effect on Y , but the two are related through a latent variable Z. X

itself, rather than the relationship between X and Y , is smooth. We will see that under this

second, more subtle scenario, the Ising prior improves accuracy if the smoothness in X is

strong compared to the strength of the effect of Z on Y .

4.1 The Linear Chain Prior

First, we quantify the effects of the hyperparameters in the linear chain prior in more detail.

In a linear chain, each vertex γi has two neighbors γi−1 and γi+1. To make this model ex-
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changeable, we circularize the chain by adding an edge between γ1 and γp+1. To reflect the

linear ordering of the covariates, we assume that γ is Markov with transition matrix

Q =

 q0 1− q0

1− q1 q1

 ,

and that γ1 ∼ π, where π =
(

1−q1
2−q0−q1 ,

1−q0
2−q0−q1

)
is the stationary distribution with regards to

Q. The above formulation is equivalent to the following 1D Ising model

P (γi = 1|γi−1, γi+1) =
ea+b(γi−1+γi+1)

1 + ea+b(γi−1+γi+1)
, (9)

where a = log(r/w2
0), b = log(w1w0), and

r =
1− q0
1− q1

=
π1

π0

, w0 =
q0

1− q1
, w1 =

q1
1− q0

. (10)

This parameterization has an intuitive interpretation: r is the prior odds of γi = 1, w0 reflects

the increase in probability of γi = 0 if we knew that γi−1 = 0, and w1 is the increase in

probability of γi = 1 if we knew that γi−1 = 1. Note that if w1 = 1, then the γi’s would be

i.i.d.. The pair (r, w1) completely specifies the model. With r kept fixed, the expected size of

the model (i.e. pP (γi = 1)) remains fixed. In our simulations, we compare between models

with fixed size and varying smoothness, and thus use (r, w) for parameterization instead of

(a, b).

4.2 Simulation model 1: Smooth in γ

First consider the following simulation model:

Yk =
∑
i

Xk,iβγi + εk,i, i = 1, . . . , p; k = 1, . . . , n; (11)
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where εi ∼ N(0, 1). We let p = 1000 and n = 100, and set γ to be the piecewise constant

vector γi = I(i ∈ [245, 260]∪ [745, 760]). The true β is between (0.1, 1) and can vary within

a block. In particular, we explore the mixture of strong and weak signals: the signals at

even indices (β1) are strong and at odd indices (β2) are weak. For covariates X, we assume

Xi ∼ N(0, 1) and study two correlation structures: (1) independent X: Xi are i.i.d.; (2)

correlated X: in the blocks [241, 265] and [741, 765], let cor(Xi, Xj) = 0.75−0.03|i−j|, i.e.,

the piece-wise correlation between two covariates is negatively proportional to their distance

(maximum 0.75). To add noise, we also let X be correlated as cor(Xi, Xj) = 0.4−0.02|i−j|,

in two blocks that do not contain true signal: [41, 60] and [941, 960]. We varied v, r, and w

while keeping the stationary distribution π fixed. For each setting of hyperparameters, we ran

the Gibbs sampler 10 times with random start in γ. Each run has 2,000 iterations with the first

1,000 iterations as burn-in. It takes 2 minutes to run 2,000 iterations with average posterior

model size of 40 on a Sun Unix V880 with 1200Mhz CPU. In all of our experiments, the 10

simulations lead to highly similar posterior summary statistics.

For high-dimensional covariate spaces, the traditional posterior summary statistics of

counting the occurrence of each particular posterior model is infeasible because any model

is most likely to be sampled only once in a MCMC with workable length. So here we focus

on the posterior marginal probabilities P (γi = 1|Y), an approach used by Smith and Kohn

(1996), Ibrahim et al. (2002) among others. These posterior marginals are obtained by di-

viding the number of iterations where γi = 1 over the total number of iterations excluding

the burn-in period. This choice is motivated by its simplicity of interpretation and the fact

that the posterior of γ is a natural by-product of our Gibbs sampler, which marginalizes over

β. Even though there is no rigorous way to threshold the posterior marginals, we choose to

select the variables corresponding to the top M (e.g., 100) marginals in our application, a

common procedure that appears to give satisfying results.

With 2,000 iterations, the marginal posterior probabilities in our simulation are very stable

over random restarts, implying convergence. To better visualize and summarize the compar-
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ison between models, we further compute the ROC curve as follows: only those covariates

i with P (γi = 1|Y) greater than a threshold are deemed positives, and those below the

threshold are deemed negatives, then the ROC curve reflects the pair of (true positive rate,

false positive rate) achieved by varying the calling threshold. The bigger area under the ROC

curve (maximum 1), the better the discriminating power of the model.

The posterior marginal probability of γ of a representative simulation under the inde-

pendent X model (true signal (β1, β2) = (0.8, 0.4)) is shown in Figure 4, where the true

γi = 1 is labeled by lines. The corresponding ROC curves are shown in left panel of Fig-

ure 5 (only ROC curves are presented hereafter). The hyperparameters are fixed v = 1,

r = π1/π0 = 0.03, and varying w1 = 1, 5, 7, where w1 = 1 corresponds to the indepen-

dent Bernoulli prior. It is clear that in the simple independent X case the assumed Markov

chain prior indeed yields significantly better results. The improvement becomes even more

pronounced for harder tasks with weaker signal (smaller β). This pattern is consistently

observed in each of our simulations under various settings of hypeparameters and signals.

Under the correlated X model, performance of the Markov chain prior is similar to that of

the independent prior for moderate to strong signal (max(β1, β2) > 0.3), but consistently

better for weak signal (max(β1, β2) < 0.3). The ROC curves of a representative simulation

under the correlated X model with (β1, β2) = (0.2, 0.1) are shown in the right panel of Figure

5, where the gain from the Markov chain prior is evident. We also experimented with other

patterns of signals, e.g., all β’s in the same block are the same. The results are similar to what

is represented above.

4.3 Simulation model 2: Smooth in X

It is intuitively obvious that in simulation model (11), a smoothed model fit performs better:

The truth agrees with the model! We now study a more complicated scenario where the

relationship between consecutive covariates is more subtle. We let Xk = (Xk,1, . . . , Xk,p) be
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Figure 4. Marginal probability of γ under simulation model (11) and independent X

piecewise continuous:

Xk,i = δZkI(i ∈ [i∗ − Lk,1, i∗ + Lk,2]) + ξk,i, (12)

where ξk,i ∼ N(0, 1), Zk ∼ Bernoulli(1/2), and Lk,1 and Lk,2 are independent Poisson

random variables with mean µL. Thus, with probability 1/2, Xk has a jump of magnitude δ

centered at location i∗. The length of the jump in Xk is a Poisson random variable. Then, let

the response Y depend only on whether a jump occurred at i∗:

Yk ∼ βZk + εk.

Hence, Y is related to X only through the latent variableZ, the indicator for a jump centered

at i∗. The goal is to locate i∗ by regressing Y and X .

Model (12) poses a much harder variable selection task than model (11) because the effect
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Figure 5. ROC curves under simulation model (11): independent X (left) and correlated X (right)

is indirect (goes through Z). This means that a small underlying effect size (β) usually leads

to poor performance of the Baysian variable selection procedure with any w. However, our

simulations show that setting w > 1 consistently improves performance over w = 1. Figure 6

shows the covariate matrix X and its correlation structure (heatmap) for a typical simulation

run.

Figure 6. The heatmap on the left displays, in rows, the values of covariates X for simulation model
2 (n = 100, p = 1000). Notice the smoothness in X along the rows. The heatmap on the right displays
the correlation structure in X.

We present the results under model (12) with δ = 0.35, β = 3.5, and 10 jump locations
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in X , i∗ = (50, 150, · · · , 950). Figure 7 shows the ROC curves of the posterior marginal

probability of γ with fixed v = 1, r = 0.02 and varying w = 1, 5, 7. We can see that the

smoothed prior for γ always outperforms the i.i.d. prior. The jump size at δ = 0.35 is small,

and pooling information across neighboring covariates in this case can help significantly in

identifying the location of i∗. Here larger w (w > 1) does not necessarily result in better per-

formance, which is not surprising because the extra signal gained from pooling information

over a large neighborhood is countered by the extra noise introduced into the model.
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Figure 7. ROC curves under simulation model (12)

5 Application to DNA motif finding: hypercube prior

5.1 Background and Motivation

Transcription factors are proteins that regulate gene expression by binding to its surrounding

sequence in the genome. Transcription factor binding sites (TFBS) usually contain low-

entropy patterns called motifs. An important problem in biology is the modeling of the re-

lationship between expression level of genes and the repertoire of motifs in their promoter

sequences. Regression models have been applied to this problem in studies such as Busse-

maker et al. (2001), Conlon et al. (2003), Tadesse et al. (2004), and Zhang et al. (2007).
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Transcription factors are usually degenerate, in the sense that words which are close to-

gether in Hamming distance are more likely to be alternative binding sites for the same tran-

scription factor. The degeneracy of transcription factor binding sites have been modeled in

a variety of ways, such as using position specific scoring matrices (PSSMs) and consensus

sequences. Usually, a binding site is composed of one or multiple core sequences, which can

tolerate very little variation, and flanking sequences which can take on different values. The

strength of attraction of the transcription factor to the binding site depends on the flanking

sequence. An example is the MCB motif, which regulates gene expression at the start of the

S-phase in the yeast cell cycle. Its most common form is ACGCGT. The core sequence is the

four bases in the center, CGCG, which can not be changed. However, the flanking bases are

allowed to wobble, with variants of MCB including TCGCGA and CCGCGT. Even though dif-

ferent transcription factor binding sites have different position specific base patterns, existing

studies have shown that they share position-specific entropy patterns (Mirny and Gelfand,

2002; Schneider et al., 1986; Moses et al., 2003). That is, if each position in the motif is

modeled as an independent multinomial distribution over the alphabet {A,C,G, T}, then the

entropy of this distribution is low in the middle 3-4 positions and high in the flanking se-

quence. This is due to the fact that each turn of the DNA helix encompasses 3.6 bases, and

transcription factors usually contact DNA in its major or minor groove, which limits the size

of the core sequence. Work by Kechris et al. (2004) have incorporated such prior knowledge

on position-specific entropy to raise the sensitivity in algorithms for motif identification.

We will use linear regression models to find words whose presence in the promoter se-

quence is associated with various gene expression patterns. The response variable is a mea-

surement of the strength of the expression pattern of each gene. The covariates are the counts

of all words of length L in the promoter sequence of that gene. Therefore, the number of

predictors are on the order of 4L, and the genes used in the analysis usually number in the

thousands. To reflect the fact that motifs should be clustered in Hamming distance, we model

the words as vertices on a L-dimensional hypercube, with the edge weights bij chosen based
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on position-specific entropy obtained from previous studies. Below we give a detailed de-

scription of the model.

5.2 Model Description

Let A = {A,C,G, T} be the DNA alphabet, and let L be a fixed word length. We denote by

W =WL = AL the set of all words of length L on A. For any pair of words w,w′ ∈ W , let

d(w,w′) be their Hamming distance, i.e.

d(w,w′) =
L∑
i=1

I(wi 6= w′i).

Based on the studies of Schneider et al. (1986) and Kechris et al. (2004), we formulate the

matrixB in the Ising prior based on the Hamming distance and the location of the mismatches

between the pairs of words:

Bw,w′ =

 0, d(w,w′) > D

b
∑L

i=1 giI(wi 6= w′i), d(w,w′) ≤ D.
, (13)

where gi > 0 is a weight corresponding to the i-th position. The above model defines a L-d

hypercube on vertices V =WL, where there is an edge between two words if they are within

D of each other in hamming distance. If the two words are connected by an edge, then the

weight on that edge depends on the position(s) of mismatch. As the studies Schneider et al.

(1986), Kechris et al. (2004), Mirney and Gelfand (2002) and Moses et al. (2003) show, gi

should be small in the middle of the motif, and large in the flanking regions. The parameter

b controls the strength of the clustering effect.

In the example below we let L = 7, which is long enough to cover the core region (3-4
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bases) and a few flanking bases, but still allow computational tractability. We let D = 1 and

gi =

 1, i ∈ L1;

0, i ∈ L2.
, (14)

where L1 = {1, 2, 6, 7} are the “flanking positions” and L2 = {3, 4, 5} are the “core posi-

tions”. Thus, no mismatch is allowed in the core positions, and only 1 mismatch is allowed

in the flanking positions. We chose this model because it is the simplest model that distin-

guish between core and flanking regions, and we show in the next section that these simple

structural information already substantially improve detection accuracy over the independent

prior.

5.3 Analysis of Spellman et al. (1998) Data

As an illustration, we analyze the α-arrest yeast sporulation experiment of Spellman et al.

(1998) to find motifs that are related to the cell cycle. This is a classic data set that has been

analyzed previously by many motif finding methods (Bussemaker et al., 2001; Zhang et al.,

2007; Tadesse et al., 2004). Previous regression based approaches have used as covariates

either nondegenerate words, degenerate words on the IUPAC alphabet, or a known set of pre-

curated PSSMs. A reliable list of pre-curated PSSMs is not always available, and the set of

degenerate words using the IUPAC alphabet is too large (the IUPAC alphabet consists of 17

letters, thus the set of all words of length 7 on the IUPAC alphabet is 177 = 410, 338, 673

instead of 47 = 16384). Thus, we find the approach of starting with nondegenerate words

and using a graphical model to borrow strength between “neighboring” words to be more

attractive.

This data set consists of samples taken at 18 timepoints spanning two cell cycles. Using

any single timepoint as the response variable in the regression is not sufficient in capturing the

complexity of the experiment. We follow the approach suggested in Zhang et al. (2007) and
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Figure 8. Loadings of the first principal component for yeast cell cycle data set.

use the scores of the first principal component of the data, the loadings of which are plotted

versus time in Figure 8. We used a list of 1600 genes in the regression, which includes the

original 800 “cell cycle genes” identified by Spellman et al. (1998) as well as 800 control

genes that are not differentially expresses across time. A minor technical detail is that in

yeast, a word and its reverse complement should be considered the same motif. Thus, there

are 8192, instead of 47 = 16384, covariates, with each being the pair of words {w,wRC}

where wRC7−i is the complement base of wi for i = 1, . . . , 7. It is straightforward to show that

for length 7 words, these 8192 covariates still lie on a hypercube with degree k = 6 (a regular

graph). Thus, its phase transition boundary can be directly obtained from the general results

in Section 3.1. Specifically, we use the model in (14) with a = −5, 2kb = 10 (i.e. b = 0.83),

and v = 1. By (8), this is equivalent to a sparsity parameter of a′ = − log n − log v − 5 =

-8.2 for the posterior model, which gives a posterior model size of ∼ 47 ± 5. These values

lie within the phase transition boundary.

Although yeast is one of the most well studied organisms in terms of transcription regu-

lation, much is still unknown about the possible forms of cell cycle motifs. Unless otherwise

noted, we use as gold standard the set of experimentally validated motifs in the Sachromyces

cerevisiae Promoter Database (Zhu and Zhang, 1999).

Figure 9 shows the histogram of the marginal probabilities log10 P (γi = 1|Y). Due

to the large size of the covariate space, and the sparsity of our model, most of the motifs
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Independent Model: Hypercube Model:

P (γi = 1|Y) Name P (γi = 1|Y) Name
Island 1, 5 words: Island 1, 5 words:

GACGCGT 1 MCB GACGCGT 1 MCB
TACGCGT 0.7876 MCB TACGCGT 0.9262 MCB
GGCGCGT 0.711 GGCGCGT 0.7691
TTCGCGT 0.1529 TTCGCGT 0.2284
TTCGCGA 0.0982 TTCGCGA 0.1554

Island 2, 2 words: Island 2, 2 words:
GCTGGTT 0.9418 Swi5 GCTGGTT 0.9589 Swi5
GCTGGAT 0.0916 GCTGGAT 0.2477

Island 3, 2 words: Island 3, 4 words:
TTTCGCG 0.8678 SCB GCCCGTT 0.9547 MCM1
TTTCGTG 0.6117 SCB GCCCGAT 0.1062

Island 4, 2 words: GTCCGAT 0.0633 MCM1
CTGCGCT 0.3865 GTCCGCT 0.097
CTGCGTT 0.0962 RME1 Island 4, 2 words:

Island 5, 2 words: TGTTTGT 0.8589
TCGCGTC 0.2053 TGTTTTT 0.1202 STE12
GCGCGTC 0.2017 Island 5, 2 words:

Island 6, 2 words: TTTCGCG 0.8318 SCB
TTGGTCG 0.1029 TTTCGTG 0.79 SCB
TCGGTCG 0.0742 MCM1 Island 6, 2 words:

Island 7, 2 words: CTGCGCT 0.4159
GCCGACT 0.0992 BAS1 CTGCGTT 0.1423 RME1
GCCGACG 0.0541 BAS1 Island 7, 2 words:

Island 8, 2 words: TAGCCAG 0.3352
TTGTTTA 0.0941 SFF, ROX1 TAGCCGG 0.1142
TTGTTTT 0.064 ROX1 Island 8, 2 words:

TCGCGTC 0.2332
GCGCGTC 0.1932

Island 9, 2 words:
GAGAACG 0.1483
GCGAACG 0.063 ABF1,BAF1

Island 10, 2 words:
TTGTTTA 0.1409 SFF, ROX1
TTGTTTT 0.0861 ROX1

Island 11, 2 words:
TTGGTCG 0.1394
TCGGTCG 0.0958 MCM1

Island 12, 2 words:
GCCGACT 0.1135 BAS1
GCCGACG 0.0743 BAS1

Table 1. Islands in top 100 motifs ranked by P (γi = 1|Y) from hypercube model.
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(including some that are known to be biologically relevant to the cell cycle) have very low

log10 P (γi = 1|Y). However, many known cell cycle related motifs are ranked high in the

list. Thus, as for the previous example, we find that it is more meaningful to filter motifs

based on ranking or relative (rather than absolute) posterior marginal probability. For exam-

ple, in the top M = 100 motifs, 29 have a neighboring motif in the hypercube that is also

selected. We call such clusters of more than one selected motif that are connected in the

hypercube graph islands. There are 12 islands in the top 100 motifs, listed in Table 1. Almost

all known cell cycle regulatory motifs are part of an island, including MCB (ACGCGT), SCB

(TTTTCGTG), SFF (TTGTTT), and SWI5 (GCTGG). The words that are grouped together in

the same island are also known variants of the same TRBS. For example, it is known that

TTTCGTG and TTTCGCG are the two most common alternative forms of the SCB motif,

and that the first ‘A’ in the MCB motif ACGCGT can be replaced by other letters, such as a

‘T’. Other than the known motifs, a few interesting candidates also appear in Table 1. The is-

land of 4 motifs comprising GCCCGTT, GCCCGAT, GTCCGAT, GTCCGCT are a putative

MCM1 domains (Zhang et al., 2007). MCM1 is an important regulator in the cell cycle, but

due to the high degeneracy of its binding sites it is often missed by existing motif finding al-

gorithms. For example, Bussemaker et al. (2001), which is the first paper on regression based

modeling of this problem, can only detect this motif by considering motif pairs rather than

singletons. However, due to the hypercube graphical structure, this cluster has quite a strong

signal. Another interesting cluster is GAGAACG, GCGAACG, which contains the ABF/BAF1

site. BAF1 is known to be a regulator of genes involved in the cell cycle, including CDC19.

It is meaningful to compare the results obtained from the hypercube model to results ob-

tained from the model that assumes prior independence of γ. Out of the top 100 motifs in the

independent model, there are 8 islands comprising 19 different motifs, which are also listed

in Table 1. The fact that these islands appear in the independent model, and that they include

many of the known motifs of the cell cycle (MCB, SCB, SFF, and SWI5), is independent

evidence that the graphical model based on Hamming distance is appropriate for analysis
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Figure 9. Histogram of log10 P (γi = 1|Y) for Spellman et al. yeast cell cycle data set.

of motif data. However, without the underlying graphical model, weaker signals, such as

the MCM1 cluster and the ABF/BAF1 site, are lost. The effect of the hypercube model can

also be seen in the relative magnitude of the marginal probabilities. Known motifs, such

as TACGCGT (MCB), TTTCGTG (SCB),TTGTTTA (SFF), TTGGTCG (MCM1) have a large

increase in marginal probability under the hypercube model, the set of motifs that have a

decrease in marginal probability are not enriched with known cell cycle regulatory motifs.

6 Discussion

Model building in high-dimensional covariate spaces with a priori known structure is a fre-

quently met problem in modern statistics. In this paper, we have explored the use of Ising

priors on the latent indicator variables γ under the framework of Bayesian variable selection.

We proposed a general framework that can flexibly adapt to a large variety of problems. As

illustration, we studied two scenarios in Sections 4 and 5. In both scenarios the assumed

structure on the covariate space can be encoded into graphs, but the different nature of the

graphs called for different approaches to hyperparameter selection. In the first example, the

graph is a linear chain, which allows easy plotting and closed-form analysis. Of particular

interest is the second example involving the hypercube prior, where the selection of hyperpa-

rameters need to take into consideration the phase transition behavior induced by the graph.
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We have found that mean field approximations are useful in this context. Avoiding phase

transition and controlling the posterior model size is crucial for computational feasibility of

Bayesian variable selection algorithms in high dimensions, which is a main concern dictating

the methods in this paper.

The inference in this paper is based on the latent variables via thresholding the poste-

rior inclusion probabilities P (γi = 1|Y), where the coefficients β is integrated out, an ap-

proach advocated first by Smith and Kohn (1996). Barbieri and Berger (2004) proposed

to use instead the posterior median model (the model consisting of those variables with

P (γi = 1|Y) ≥ 50%), which they showed is predictively optimal. Under the spike and

slab regression setting, the median model is equivalent to the posterior model (Barbieri and

Berger, 2004). Alternatively, Ishwaran and Rao (2005a) and Dey et al. (2008) proposed a

procedure based on rescaling the responses Y , which is shown to have better finite sample

performance. Furthermore, approaches based on thresholding posterior values of β’s (which

are not integrated out) (e.g., Ishwaran and Rao, 2003, 2005a, 2005b), has also been shown to

be very useful in high-dimensional settings.

Introducing the smoothing parameter b in the prior distribution for γ also increases the

stickiness of the Markov chain, and thus causes slower mixing rate. However, in both the

simulation and the real data example that we explored, the effect on mixing rate was not sig-

nificant even for very large values of the smoothing parameter. Block-wise updating schemes,

or modifications of the Swendsen-Wang algorithm proposed by Nott and Green (2004) for

variable selection, can be applied and may be useful when mixing rate becomes a concern.

L1 penalized regression methods such as the fused Lasso (Tibshirani et al., 2005) and the

group Lasso (Yuan and Lin, 2006), as well as markov random field models on the regression

parameters β (Wei and Pan, 2009; and Wei and Li, 2007) have been proposed for structured

variable selection in high-dimensional settings. However, the underlying model assumptions

of these methods are very different than those proposed in this paper: Their methods assumes

smoothness inβ while ours assumes dependency in γ. These methods would not work well in
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the simulation setting of Section 4.2, where the true β’s are not smooth. This easily dismissed

but not-too-subtle distinction might be important in some applications. For example, in the

application to transcription factor binding site prediction described in Section 5.3, there is no

reason to expect that the true values for β are piece-wise constant.

Ising priors do not enforce directionality on the underlying graph. Prior information often

comes in the form of constraints, such asXi must be selected ifXj is in the model, where one

can set P (γj = 1|γi = 0) = 0. These constraints can be easily modeled via a directed acyclic

graph (DAG). The class of priors proposed in Chipman (1996) can be viewed as a special

case of general DAG priors. Another applicable situation is when there is prior information

for causal relationships among the covariates. Computation under the DAG prior in high-

dimensional regression settings is a challenging but exciting area of future research.

We focus on linear regression for continuous outcomes in our discussion. The methods

can be readily extended, with care taken in computational efficiency, to nonlinear regres-

sion for binary and categorical outcomes, and accelerated failure time models for survival

outcomes.

The R and Fortran code are available at by request from the authors.
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8 Appendix

A. Fast updating of A−1
i from A−1

(−i). To simplify discussion, consider the case first where

D = 0, so Ai = X ′IiXIi . The case where D 6= 0 is analogous. Define A(−i) = X ′I(−i)
XI(−i)

,

ΣI(−i),i = X ′I(−i)
Xi, σii = X ′iXi. The matrix Ai can be expressed in the following partitioned
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forms:

Ai =

 A(−i) ΣI(−i),i

Σ′I(−i),i
σii

 .

Then, the matrix A−1
i can be computed as:

A−1
i =

 A11 A12

A21 A22

 , (15)

where 

A11 = (A(−i) − ΣI(−i),iσ
−1
ii Σ′I(−i),i

)−1 def
= (A11·2)

−1

A12 = −(A11·2)
−1ΣI(−i),iσ

−1
ii

A21 = −σ−1
ii Σ′I(−i),i

(A11·2)
−1

A22 = σ−1
ii + σ−1

ii Σ′I(−i),i
(A11·2)

−1ΣI(−i),iσ
−1
ii .

Of the four quantities above, the computation ofA12, A21, A22 areO(p2
(−i)). The explicit form

of A11 is

A11 = A−1
(−i) +

1

σii(1− Σ′I(−i),i
A−1

(−i)ΣI(−i),i/σii)
A−1

(−i)ΣI(−i),i(A
−1
(−i)ΣI(−i),i)

′. (16)

Thus the computation of A11 can be done via a low rank update of A−1
(−i), available from the

previous iteration, and thus would also be O(p2
(−i)).

Calculating the determinant of a matrix is computationally equivalent to obtaining its

Cholesky factor. So now we describe the fast updating of the Cholesky factor of A−1
i . Let

A11 = L̃(−i)L̃
′
(−i),A

−1
(−i) = L(−i)L

′
(−i), andA−1

i = LiL
′
i. Notice the right side of equation (16)

is also of the form A + vv′, the computation of L̃(−i) thus can be done via a low rank update

of the Cholesky factor of A−1
(−i), L(−i). The lower triangular matrix Li has the following
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partitioned form

Li =

 L̃(−i) 0

L(−i),i lii

 ,

where L(−i),i is 1× p(−i), and 0 = (0, ..., 0)′p(−i)
. This implies

A−1
i =

 A11 L̃(−i)L
′
(−i),i

L(−i),iL̃
′
(−i) L(−i),iL

′
(−i),i + l2ii

 . (17)

Comparing expressions (15) and (17), we have A12 = L̃(−i)L
′
(−i),i, and A22 = L(−i),iL

′
(−i),i +

l2ii. The vector L(−i),i thus can be obtained from solving an upper triangular linear system, the

computation of which is O(p2
(−i)).

B. Mean field approximation for exchangeable Ising models. For a general Ising model

on γ, let E(γ) be the energy function, defined as E(γ) = −(
∑

i aiγi +
∑

ij bijγiγj), and let

ψ(λ) = − log

[∑
γ

e−E0(γ)−λ(E(γ)−E0(γ))

]
,

whereE0 is a “simple” energy function which we will define later. Then, ψ(a, b) = ψ(1). One

can verify that ψ(λ) is concave in λ, which gives us the inequality ψ = ψ(1) ≤ ψ(0) + ψ̇(0),

and thus

ψ(1) ≤ − log

[∑
γ

e−E0(γ)

]
+ E0[E(γ)− E0(γ)].

By E0, Var0, or P0, we mean expectation, variance, and probability under the density p(γ) =

e−E0(γ)/
∑
γ e
−E0(γ). The above inequality is true for every energy function E0, and hence it

is still true when we optimize over E0:

ψ(1) ≤ min
E0∈F

{
− log

[∑
γ

e−E0(γ)

]
+ E0[E(γ)− E0(γ)]

}
. (18)
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The idea in mean field approximations is to choose a class of energy functions F simple

enough so that the minimization in (18) is analytically tractable. Often, the choice is the class

of linearly additive energy functions:

E0(γ) = −
∑
i

hiγi, (19)

with hi being freely varying parameters. With this parameterization, optimization over F is

equivalent to optimization over h = (h1, . . . , hm).

Let φ(h) be the function being minimized in (18) for F defined as in (19):

φ(h) = − log

[∑
γ

e
∑

i hiγi

]
−
∑
i

(ai − hi)E0(γi)−
∑
ij

bi,jE0(γiγj).

Since E0(γi) = P0(γi = 1) = ehi

(1+ehi )
, and E0(γiγj) = ehi+hj

(1+ehi )(1+ehj )
, we have:

φ(h) = −
∑
i

log(1 + ehi)−
∑
i

(ai − hi)
1

1 + e−hi
−
∑
ij

bi,j
1

(1 + e−hi)(1 + e−hj )
.

Since we assume that the vertices are exchangeable, the optimizing h must have hi = h, and

hence, we have a one dimensional optimization problem:

φ(h) = −n log(1 + eh)− n(a− h)(1 + e−h)−1 −Nb(1 + e−h)−2,

where N is the total number of edges. We let N = kn, where k =
∑

j bij is the sum of

weights for edges coming out of each vertex in the graph, and to make things simpler we

reparameterize t = (1 + e−h)−1. With a slight abuse of notation, this gives us:

φ(h)

n
= φ(t) = log(1− t)−

(
a+ log

1− t
t

)
t− kbt2. (20)

For any given a, the phase transition points are the b∗’s that introduces a change in the nature
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of the minimizer t of equation (20), as discussed in Section 3.1.
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