Chapter 2.1. Randomized Experiments: Fisher’s and Neyman’s Mode of Inference

Fan Li

Department of Statistical Science
Duke University
Role of Randomization

- In randomized experiments, assignment mechanism is known and controlled by investigators

- Randomization does:
 - balance observed covariates: $Z \perp X$
 - balance unobserved covariates: $Z \perp U$
 - balance potential outcomes, i.e. guarantee ignorability or unconfoundedness (Rubin 1978)

 $$Z \perp (Y(1), Y(0))$$

- Note on terminology: the terms covariates, pretreatment variables, baseline characteristics are used exchangeably in the literature, referring to X
Role of Randomization

- Under randomization, unconfoundedness holds by design (without conditioning on covariates X).
- Causal effects are (nonparametrically) identified, because we can show

$$\Pr(Y_i(z)) = \Pr(Y_i|Z_i = z), \quad z = 0, 1$$

- Under randomization, association does imply causation (of course within the potential outcome framework with assumptions), for example:

$$\tau_{ATE} \equiv \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i|Z_i = 1] - \mathbb{E}[Y_i|Z_i = 0]$$

- Randomization ensures model-free validity for model-based statistics (explain later)
Types of Randomized Experiments

1. Bernoulli trials
2. Completely randomized experiment
3. Stratified (or block) randomized experiment
4. Paired randomized experiment
5. Cluster randomized experiment
Bernoulli Trials

Notation: we use bold font to denote the vector of all units of a variables, e.g. \(\mathbf{Z} = \{Z_1, \ldots, Z_N\} \), \(\mathbf{Y}(0) = \{Y_1(0), \ldots, Y_N(0)\} \)

1. **Bernoulli trials**: for each unit we flip a fair coin to determine their assignment
 - The assignment mechanism is
 \[
 p(\mathbf{Z}|\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = \left(\frac{1}{2} \right)^N
 \]
 - Here \(p(Z_i = 1|\mathbf{X}, \mathbf{Y}(0), \mathbf{Y}(1)) = \frac{1}{2} \)
 - The number of possible assignments is \(2^N \)
2. *Completely randomized experiment*: N_1 out of N units are randomly chosen to receive the treatment ($N_0 = N - N_1$) is the no. of control

- The assignment mechanism is

$$p(Z \mid X, Y(0), Y(1)) = \begin{cases} \left(\frac{N_1}{N} \right)^{-1} \left(\frac{N_1}{N} \right)^{N_1} \left(\frac{N_0}{N} \right)^{N_0} & \text{if } \sum_{i=1}^{N} Z_i = N_1 \\ 0 & \text{otherwise.} \end{cases}$$

- Here $p(Z_i = 1 \mid X, Y(0), Y(1)) = \frac{N_1}{N}$

- Most often $N_1 = N/2$, so that half the units receive the active treatment and half receive the control treatment

- The number of possible assignments is $\binom{N}{N_1}$
Stratified (block) Randomized Experiment

3. **Stratified or block randomized experiment**: First partition into blocks or strata, similar in some sense (e.g. covariates), and then within each block, perform a completely randomized trial
 - Assignments are independent across blocks
 - Example: block 1 - women; block 2 - men
 - “Block what you can; randomize what you cannot” - George Box

4. **Paired randomized experiments**: a special case of stratified trials, with 2 units within each block. Total number of possible assignments - $2^{N/2}$.

5. **Clustered randomized experiments**: treatment assigned at cluster level, all units in one unit get the same treatment (requires additional notations, more later)
Fisher’s Randomization Inference

- Fundamental idea: inference based solely on the assignment mechanism

- $Y(0), Y(1)$ are all fixed, randomness only comes from the assignment of Z

- RA Fisher was the first to grasp the importance of randomization for credibly assessing causal effects (1925, 1935)

- Given data from such a randomized setting, Fisher was intent on testing sharp null hypotheses
Fisher’s Exact Test of Sharp Null Hypothesis

- Null Hypothesis (H_0): An initial supposition regarding the nature of the treatment effect, usually specified to test its consistency against observed data

- Sharp Null Hypothesis: A null hypothesis articulated with specificity sufficient to allow the researcher to fill in a hypothetical value for each unit’s missing potential outcome

- Test Statistic ($T = T(Y(1), Y(0), Z)$): A function of the data that the researcher uses to determine the consistency of the null hypothesis with observed data
Fisher’s Exact Test: Three Steps

1. Specify the null hypothesis
2. Choose the statistic
3. Measure the extremeness by the p-value (under the randomization distribution)
Fisher’s Exact Test of Sharp Null: Example

Imbens and Rubin (2009): A small subset of data from a randomized job training experiment — the Greater Avenues to INdependence (GAIN) programs. Earnings in First Year Post-randomization:

<table>
<thead>
<tr>
<th>Individual</th>
<th>Potential Outcomes</th>
<th>Actual Treatment</th>
<th>Observed Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Y_i(0)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>?</td>
<td>1</td>
<td>607</td>
</tr>
<tr>
<td>6</td>
<td>?</td>
<td>1</td>
<td>436</td>
</tr>
</tbody>
</table>
Fisher’s Exact Test: Example

- We first test the sharp null hypothesis that the program had absolutely no effect on reading scores:

\[H_0 : Y_i(0) = Y_i(1) \text{ for all } i = 1, ..., 6 \]

- Under \(H_0 \), the unobserved potential outcomes are equal to the observed outcomes for each unit

<table>
<thead>
<tr>
<th>Individual</th>
<th>Potential Outcomes</th>
<th>Actual Treatment</th>
<th>Observed Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Y_i(0))</td>
<td>(Y_i(1))</td>
<td>(Y_i)</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>(66)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>(0)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(0)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(607)</td>
<td>607</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(436)</td>
<td>436</td>
<td>1</td>
</tr>
</tbody>
</table>
Fisher’s Exact Test: Example

- Consider testing the null hypothesis against the alternative hypothesis that $Y_i(0) \neq Y_i(1)$ for some units

- We use the difference in average outcomes by treatment status as test statistic:

$$T = T(Z, Y^{obs}) = \frac{1}{3} \sum_{i=1}^{6} Z_i \cdot Y_i^{obs} - \frac{1}{3} \sum_{i=1}^{6} (1 - Z_i) \cdot Y_i^{obs}$$

- For the observed data the value of the test statistic is 325.6

- Under the null hypothesis, we can calculate the value of this statistic under each vector of treatment assignments Z (20 different assignment vectors)
<table>
<thead>
<tr>
<th>Z_1</th>
<th>Z_2</th>
<th>Z_3</th>
<th>Z_4</th>
<th>Z_5</th>
<th>Z_6</th>
<th>levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>325.6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>325.6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-79.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>35.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>325.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-79.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>35.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-79.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>35.0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>369.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>369.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-35.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>79.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-35.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>325.6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-35.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>325.6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>325.6</td>
</tr>
</tbody>
</table>
Fisher’s Exact Test: Example

- How likely is (under the randomization distribution) to observe a value of the test statistic that is as large in absolute value as the one actually observed?

- **Exact p-value:** $\Pr(T \geq T^{obs}) = 8/20 = 0.40$ for our sharp null hypothesis, our test statistic, and our definition of unusual.

- In this example, no difference between one-way and two-way tests. But usually matters.

- Under the null hypothesis of no effect of the program the observed difference could therefore well be due to chance.
Fisher’s Exact Test: Definition

- **Randomization Distribution**: All possible values of the test statistic and the probabilities associated with each such value under the (randomized) assignment mechanism, assuming the null hypothesis to be true.

- **p-value**: Under the assumption that the null hypothesis is correct, the probability of observing a value of the test statistic as extreme or more extreme than the one actually observed.

- **Fisher Interval**: The set of possible values of the causal quantity of interest corresponding to test statistics with p-values that fall within some range set by the researcher; usually interpreted to be a set of plausible values of the average causal effect.
Fisher’s Exact Test: Choice of Statistic

- **t statistic**

\[T = \frac{1}{n_1} \sum_{i=1}^{n} Z_i Y_i - \frac{1}{n_0} \sum_{i=1}^{n} (1 - Z_i) Y_i \]

- **Wilcoxon statistic based on ranks** \(R_i \)'s of \(Y_i \)'s

\[W = \frac{1}{n_1} \sum_{i=1}^{n} Z_i R_i - \frac{1}{n_0} \sum_{i=1}^{n} (1 - Z_i) R_i \]

- **Special case with binary outcome**: equivalent to Fisher’s exact test
Covariate adjustment in randomization test

- What if there is chance imbalance in baseline (pretreatment) covariates?
- Regression adjustment:
 - OLS (or other model) fitting of the Y_i’s on pretreatment covariates
 - obtain residuals ϵ_i’s
- Key facts under the sharp null $Y_i(1) = Y_i(0)$ for all i
 - values of Y_i’s and X_i’s are fixed
 - values of ϵ_i’s are fixed
- Replace Y_i by ϵ_i in the test statistic
- Or replace R_i by the rank of ϵ_i
- Validity of randomization test does not rely on the linear model assumption (Rosenbaum 2002 Stat Sci)
Pros and cons of randomization test

▶ Pros
 ▶ exact, no need for asymptotics
 ▶ works for any test statistic
 ▶ test statistics = any functions of data (fitted parameters of any models)
 ▶ can deal with heavy-tailed data

▶ Cons
 ▶ exact inference is attractive, but sharp null seems dull (and restrictive). Extended to less restrictive null, i.e. $H_0 : Y(1) = Y(0) + \tau$ by Ding et al. (2016), but still dull and restrictive
 ▶ computationally intensive, especially in large experiments
 ▶ often less powerful than methods mentioned later
 ▶ no guidance for choice of test statistic (power?)
 ▶ confidence interval is hard unless constant causal effects
Neyman’s Repeated Sampling Approach

- Focus on methods for estimating *average treatment effects*

- Neyman’s two questions:
 - What would the average outcome be if all units were exposed to the treatment?
 - How did that compare to the average outcome if all units were exposed to the control?

- Neyman’s procedure (classic frequentist’s view):
 1. Find an *unbiased estimator* of the ATE
 2. Obtain variance and interval estimates of the unbiased estimator (derive the estimator’s distribution under *repeated sampling* based on the randomization distribution of the assignment vector Z)
Neyman’s Repeated Sampling: Basic concepts

- **Estimand**: average treatment effects (ATE).
- **Note**: in randomized experiments, ATE is the same as ATT or ATC (average treatment effect for the control). Why?
- **Unbiased estimator of the estimand**: A statistic whose average value over all possible randomizations equals the true treatment effect.
- **Confidence (Neyman) Interval**: An interval which, over all possible randomizations, includes the true value of the quantity of interest at least as often as advertised. For example, a 95% confidence interval includes the true value 95% of the time or more.
- **Variance**: find the *sampling* variance of the unbiased estimator of the effect and an unbiased estimator of this variance.
Estimand: Population Average Treatment Effect (PATE)

- Population Average Treatment Effect (PATE):
 \[\tau^{\text{PATE}} \equiv \mathbb{E}[Y_i(1) - Y_i(0)] \]

- The sample under study is a simple random sample from a super population with sample size \(\tilde{N} \gg N_0 + N_1 \)
Estimand: Sample Average Treatment Effect (SATE)

- Another estimand is Sample Average Treatment Effect (SATE)

\[\tau_{\text{SATE}} \equiv \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) - Y_i(0)\} = \bar{Y}(1) - \bar{Y}(0) \]

- SATE focuses on the sample (size \(N = N_0 + N_1 \)) under study

- SATE is often of interest in randomized trials, but rarely in observational studies

- Subtle theoretical difference between PATE and SATE, see Imbens and Rubin (2015, Chapter 6), but little difference in practice

- We will mostly focus on PATE (referred to simply as ATE)
An unbiased estimator of PATE is the difference-in-means between groups, also known as the unadjusted estimator:

\[
\hat{\tau}_{\text{unadj}} = \sum_{i=1}^{N} \left(\frac{Z_i \cdot Y_i}{N_1} \right) - \sum_{i=1}^{N} \left(\frac{(1 - Z_i) \cdot Y_i}{N_0} \right) = \bar{Y}_1 - \bar{Y}_0
\]

Unbiasedness is with respect to all possible randomization assignments \(Z\) and sampling

\[
\mathbb{E}[\hat{\tau}_{\text{unadj}} | Y(0), Y(1)] = \tau_{\text{PATE}}
\]
PATE: Variance of Unadjusted Estimator

- Variance of the unadjusted estimator $\hat{\tau}^{\text{unadj}}$

$$\nabla [\hat{\tau}^{\text{unadj}}] = \frac{S^2_0}{N_0} + \frac{S^2_1}{N_1} - \frac{S^2_{01}}{\tilde{N}}$$

where \tilde{N} is the size of the super population, and

$$S^2_z = \frac{1}{N - 1} \sum_{i=1}^{N} (Y_i(z) - \bar{Y}(z))^2 \quad z = 0, 1$$

$$S^2_{01} = \frac{1}{N - 1} \sum_{i=1}^{N} (Y_i(1) - Y_i(0) - (\bar{Y}(1) - \bar{Y}(0)))^2$$

- This estimator of the variance is unbiased if the super population size \tilde{N} is infinitely large
(Sample) Estimator of Variance

- Because we never observe both \(Y_i(1)\) and \(Y_i(0)\), \(S_{01}\) is not estimable from data.

- So, as Neyman suggested, usually one just ignores \(S_{01}\) in estimating variance of ATE:

\[
\hat{\sigma}_{\text{Neyman}}^2 = \frac{S_0^2}{N_0} + \frac{S_1^2}{N_1}
\]

- A unbiased estimator of the Neyman variance \(\hat{\sigma}_{\text{Neyman}}^2\) is to replace \(S_Z\) by its sample version

\[
\hat{\sigma}_{\text{Neyman}}^2 = \frac{s_0^2}{N_0} + \frac{s_1^2}{N_1}
\]

where

\[
s^2_Z = \frac{1}{N_Z - 1} \sum_{i: Z_i = 1} (Y_i - \bar{Y}_Z)^2, \quad z = 0, 1
\]
Confidence Interval

- Usually based on a normal approximation to the randomization (and sampling) distribution of the estimate $\hat{\tau}_{\text{unadj}} / \sqrt{V_{\text{Neyman}}}$

- A standard confidence interval of level $(1 - \alpha) \times 100\%$ is

 \[
 CI^{1-\alpha}(\hat{\tau}) = \left(\hat{\tau}_{\text{unadj}} - z_{1-\alpha/2} \cdot \sqrt{\hat{V}}, \hat{\tau}_{\text{unadj}} + z_{1-\alpha/2} \cdot \sqrt{\hat{V}} \right)
 \]

- Can be improved by a t-distribution
References

