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Motivation

▶ Acknowledgement: Large part of this lecture is written by Joey
Antonelli of University of Florida

▶ There is huge interest in understanding whether a treatment or
policy affects certain individuals more than others
▶ Referred to as treatment effect heterogeneity or heterogeneous

treatment effects

▶ Personalized medicine is a huge area of interest
▶ What treatment should an individual get
▶ Physicians are implicitly considering how treatment effects vary

when determining what treatment to assign a patient
▶ Given their characteristics, treatment history, etc.
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Motivation

▶ There are countless other applications for which heterogeneity of
the treatment effect is of scientific interest

▶ Many cancer treatments only work on a subset of the population
▶ Why? What subsets of the population?

▶ Limited resource settings where not everyone can be assigned
treatment
▶ Give it to those individuals most likely to benefit

▶ Helps to transport causal effects from one population to another
▶ Two populations might have different characteristics and therefore

different ATEs
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Motivation

▶ An additional issue is that sometimes average or marginal
treatment effects can mask the effect of a policy

▶ What if a policy has a positive impact on some individuals and a
negative impact on others?
▶ ATE will likely be very close to zero
▶ Hypothesis tests indicate no treatment effect
▶ In truth the treatment is very important

▶ Looking at heterogeneous treatment effects provides more
scientific information than marginal effects alone
▶ Immediately recover marginal effects from heterogeneous ones
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Motivation

▶ There are many questions one can answer in a study of
heterogenous treatment effects
▶ Which covariates modify the treatment effect?
▶ Is there any heterogeneity whatsoever?
▶ For a given 𝑋 , what is the expected treatment effect (CATE)
▶ For a given individual, what is their treatment effect (ITE)

▶ Choice of statistical approach will depend on the goals of the
study
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Estimands of interest

▶ The most common target estimand is the conditional average
treatment effect

CATE = 𝜏(𝑥) = E[𝑌 (1) − 𝑌 (0) |𝑋 = 𝑥]

▶ Note the ATE is simply the average CATE

ATE = E[𝑌 (1) − 𝑌 (0)] =
∫
𝑥

𝜏(𝑥) 𝑓𝑋 (𝑥)𝑑𝑥

▶ This shows how the CATE provides additional information over
the ATE
▶ Once we know the CATE, we immediately know the ATE
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Estimands of interest

▶ Another relevant estimand refers to subgroup analysis

▶ Assume we have a subset of the covariate space defined by C,
e.g. specific age or gender or medical history

▶ A subgroup specific estimand is given by

E[𝑌 (1) − 𝑌 (0) |𝑋 ∈ C]

▶ Commonly we will have non-overlapping regions given by
C1, . . . , C𝐺 , and we estimate

E[𝑌 (1) − 𝑌 (0) |𝑋 ∈ C𝑔] for 𝑔 = 1, . . . , 𝐺

▶ And again we can easily recover the ATE by marginalizing over
these
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Estimands of interest

▶ Sometimes the CATE is not of interest, but focus is on a subset of
predictors given by 𝑉 ⊂ 𝑋:

E[𝑌 (1) − 𝑌 (0) |𝑉 = 𝑣]

▶ Maybe we simply care whether a particular covariate modifies
the treatment effect

▶ This construction is really useful in high-dimensional settings
where 𝑋 is high-dimensional, but we care more about
heterogeneity by certain covariates
▶ Still need to account for 𝑋 when adjusting for confounding, but

not when estimating heterogeneous treatment effects
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Estimands of interest

▶ Individual treatment effects (ITE) are also of concern

𝜏𝑖 = 𝑌𝑖 (1) − 𝑌𝑖 (0)

▶ For example, this is the question that personalized medicine
looks to address
▶ How will the treatment affect this particular individual

▶ Generally speaking, these are much harder to estimate
▶ More uncertainty
▶ Prediction intervals are wider than intervals for a mean
▶ Stronger assumptions
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Estimands of interest

▶ The literature often conflates the ITE and the CATE

▶ Clearly, we have that

𝑌𝑖 (1) − 𝑌𝑖 (0) ≠ E[𝑌 (1) − 𝑌 (0) |𝑋 = 𝑋𝑖]

▶ Related concepts, and certainly the CATE evaluated at 𝑋𝑖 is a
good point estimate for the ITE of individual 𝑖

▶ Under outcome modeling approach, all estimands are estimated
in the same fashion
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Identifying assumptions

▶ Estimation of heterogeneous treatment effects (HTE) differs from
that of marginal treatment effects, but identification is effectively
the same

▶ Easy to see that under SUTVA and unconfoundedness we have

𝜏(𝑥) = E[𝑌 (1) − 𝑌 (0) |𝑋 = 𝑥]

= E[𝑌 (1) |𝑋 = 𝑥] − E[𝑌 (0) |𝑋 = 𝑥]

= E[𝑌 (1) |𝑍 = 1, 𝑋 = 𝑥] − E[𝑌 (0) |𝑍 = 0, 𝑋 = 𝑥]

= E[𝑌 |𝑍 = 1, 𝑋 = 𝑥] − E[𝑌 |𝑍 = 0, 𝑋 = 𝑥]

▶ Unconfoundedness allows us to use data with 𝑍𝑖 = 0 to estimate
E[𝑌 (0) |𝑋 = 𝑥] in the whole population
▶ Same for 𝑌 (1)

11 / 26



Identifying assumptions

▶ Overlap is still a fundamental assumption for heterogeneous
treatment effects as well
▶ With little overlap, causal inference is problematic conceptually

and has large uncertainity operationally

▶ Suppose we have certain regions of the covariate space that are
always treated

▶ We have to then extrapolate our estimates of E[𝑌 |𝑍 = 0, 𝑋 = 𝑥]
to these individuals with different covariate values
▶ Heavily reliant on model specification
▶ Difficult to understand the degree of extrapolation
▶ Unclear impacts on uncertainty quantification

▶ We will discuss overlap a bit more in subgroup analysis
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Identifying assumptions

▶ In this section, we will mostly cover estimation issues
▶ There are a lot!

▶ A lot of other issues inherent to a causal analysis apply here as
well
▶ Considering plausibility of causal assumptions
▶ Sensitivity analysis (to be covered in a couple of weeks)
▶ Overlap and balance checks

▶ When these issues differ in ways unique to heterogeneous
treatment effect estimation, we will cover them as they come up

13 / 26



Subgroup analysis

▶ This sub-chapter focuses on the simplest form of HTE: subgroup
analysis

▶ The simplest form of heterogeneity is subgroup analysis (SGA)

▶ Again suppose we have non-overlapping subsets of the covariate
space given by C1, . . . , C𝐺

▶ Our goal is estimation of

E[𝑌 (1) − 𝑌 (0) |𝑋 ∈ C𝑔] for 𝑔 = 1, . . . , 𝐺

▶ We will see that many of the same estimation strategies we’ve
already learned about can be utilized here analogously
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Subgroup analysis

▶ Important that these groups are chosen beforehand, often in a
one-variable-at-a-time fashion
▶ Might look old-fashioned, by still informative and widely used in

practice, e.g. medical research

▶ There are data-driven approaches for finding the subsets of the
population that benefit from treatment

▶ Generally speaking using the data to find subgroups complicates
analyses
▶ Valid inference becomes challenging
▶ Post selection inference issues
▶ Can use data splitting to alleviate these issues

▶ We will focus for now on situations where these groups are
known beforehand 15 / 26



Subgroup analysis (SGA): weighting

▶ All balancing weights can be directly applied to SGA. Below we
will focus on IPW for simplicity

▶ Recall the original IPW estimator of the ATE

1
𝑁

{
𝑁∑︁
𝑖=1

𝑌𝑖𝑍𝑖

𝑒(𝑋𝑖)
−

𝑁∑︁
𝑖=1

𝑌𝑖 (1 − 𝑍𝑖)
1 − 𝑒(𝑋𝑖)

}
which is used as a sample estimate of

E

[
𝑍𝑌

𝑒(𝑋) −
(1 − 𝑍)𝑌
1 − 𝑒(𝑋)

]
▶ We are using the empirical distribution from the sample to

approximate this expectation that is with respect to the overall
target population
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Subgroup analysis: weighting

▶ Now our target population is the subset of individuals within C𝑔:

E[𝑌 (1) − 𝑌 (0) |𝑋 ∈ C𝑔] = E
[
𝑍𝑌

𝑒(𝑋) −
(1 − 𝑍)𝑌
1 − 𝑒(𝑋)

����𝑋 ∈ C𝑔

]
so a natural estimator of this is simply

1
𝑁𝑔


∑︁

𝑖:𝑋𝑖∈C𝑔

𝑌𝑖𝑍𝑖

𝑒(𝑋𝑖)
−

∑︁
𝑖:𝑋𝑖∈C𝑔

𝑌𝑖 (1 − 𝑍𝑖)
1 − 𝑒(𝑋𝑖)


where 𝑁𝑔 =

∑𝑛
𝑖=1 I(𝑋𝑖 ∈ C𝑔)
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Subgroup analysis: weighting

▶ We simply use the IPW estimator but instead average over just
the individuals in the desired subgroup

▶ The same procedure applies to other balancing weights, e.g.
overlap weights, ATT weights

▶ Can apply this procedure separately within each subgroup to
estimate subgroup specific effects

▶ Remember that balancing weights are intended to construct a
weighted population for which the covariates are balanced across
treatment groups
▶ Does that happen here?
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Subgroup analysis: variance-bias tradeoff

▶ An important question is how the PS is estimated
▶ Using the entire sample
▶ Using just the individuals in C𝑔

▶ Using the full sample aims to ensure balance in the entire target
population, not the subgroup specific one

▶ Nonetheless, if the PS is correctly specified, using the full sample
should work well

▶ Using just the individuals in C𝑔 will improve balance within the
subgroup
▶ Less efficient. Bias/variance trade-off

▶ A simple logistic propensity score model with only main effects
of all covariates is not usually adequate in SGA
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Subgroup analysis: outcome modeling

▶ Similar issues occur for outcome modeling or doubly robust
estimators

▶ Recall the outcome modeling estimator

1
𝑁

{ 𝑛∑︁
𝑖=1

𝜇̂1(𝑋𝑖) − 𝜇̂0(𝑋𝑖)
}

▶ Can similarly replace this with

1
𝑁𝑔

{ ∑︁
𝑖:𝑋𝑖∈C𝑔

𝜇̂1(𝑋𝑖) − 𝜇̂0(𝑋𝑖)
}

in order to estimate the subgroup effect
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Subgroup analysis

▶ Similar decisions need to be made here

▶ Fitting the outcome model only on individuals with 𝑋𝑖 ∈ C𝑔 is
more flexible, but also less efficient

▶ One alternative is to fit a model on the full sample, but include
interactions between covariates and indicators of subgroup index
▶ Similar to fitting separate regression models
▶ Can use penalization on interaction terms to shrink/regularize

towards the standard model fit on the full data
▶ Balance bias and variance concerns

▶ One solution is the subgroup balancing propensity score (Dong
et al. 2020): estimating PS that reaches a comprise between
global and subgroup balance

▶ In general, cumbersome to implement 21 / 26



Post-LASSO Algorithm to Balance Bias-Variance Tradeoff

▶ Yang et al. 2021 (SIM) proposed to use post-LASSO estimate
PS. The procedure is:
S1. Fit a logistic PS model with all pre-specified covariates and

subgroup variables along with pairwise covariate-subgroup
interactions, and perform LASSO to select covariate-subgroup
interactions (without penalizing the main effects in the model).

S2. Estimate PS by refitting the logistic regression with all main
effects and selected covariate-subgroup interactions from S1.

S3. Calculate a chosen type of weights (e.g. IPW or OW) based on
the PS estimated from S2, and check subgroup balance before and
after weighting.

S4. Estimate the causal effects for all prespecified subgroups using
the Hajek estimator within subgroup with the weights from S3.
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Visualizing Subgroup Balance: Connect-S plot

▶ Difficult to visualize subgroup balance. For 𝐾 subgroups and 𝑝
covariate, there are 𝐾𝑝 standardized differences

▶ One can draw 𝐾 love plots, each for 𝑝 covariates, but still
cumbersome

▶ Connect-S plot (Yang et al. 2021) visualizes 𝐾𝑝 balance
statistics all at once
▶ each row represents a subgroup variable, (e.g. a race group)
▶ each column represents a confounder/covariate that we want to

balance (e.g. age).
▶ Each dot corresponds to a specific subgroup and confounder, and

the shade of the dot is coded based on the corresponding balance
statistics, with darker color meaning more severe imbalance.
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Connect S plot: example of COMPARE UF
Yang et al. 2021
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Case study of subgroup analysis - COMPARE UF
Yang et al. 2021

▶ Goal: determine whether certain patient subgroups should
receive myomectomy versus hysterectomy (two treatments)

▶ Pre-specified 35 subgroups: categories of 16 variables including
race, age, and baseline symptom severity

▶ 20 covariates/confounders: including demographics, disease
history, quality of life and symptoms

▶ Total sample size: 1430, 567 in the myomectomy group and 863
patients in the hysterectomy group

▶ Outcome: quality of life score after 1 year

▶ Connect-S plot shows imbalance in many subgroup-confounder
combinations 25 / 26



Case study of subgroup analysis - COMPARE UF
Yang et al. 2021
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