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Instrumental Variables

▶ Unmeasured confounding, i.e. unmeasured factors that affect
both treatment assignment and outcome, is the major challenge in
causal inference

▶ Instrumental variables (IV) is a main method in handling
unmeasured confounding, essentially a natural experiment

▶ Originated from economics (bread and butter) and widely
adopted in social sciences and recently genetics

▶ Main idea
1. Find a variable (i.e. IV) that influences treatment assignment but

is independent of unmeasured confounders and has no direct
effect on the outcome except through its effect on treatment;

2. Use this variable to extract variation in the treatment that is free
of the unmeasured confounders;

3. Use this confounder-free variation in the treatment to estimate the
causal effect of the treatment
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Instrumental Variables: DAG

Notations:
▶ IV 𝑍; treatment 𝐷; outcome 𝑌 ; covariates 𝑋; unmeasured

confounder𝑈
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Example of IV: distance to speciality care provider

▶ A classic example is McClellan et al. (1994, JAMA): study the
effect of cardiac catheterization (treatment) for patients suffering
a heart attack

▶ IV: the differential distance the patient lives from the nearest
hospital that performs cardiac catheterization to the nearest
hospital that does not perform

▶ Rationale: how close one lives to an advanced hospital is largely
random (natural experiment), but it affects whether a patient got
the treatment and thus outcome.

▶ More generally, for emergent conditions, proximity to a specialty
care provider particularly enhances the chance of being treated
by the specialty care provider.
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Brief review of econometric approach to IV
Wooldridge, 2002; Imbens, 2014

▶ Traditional linear model of an outcome 𝑌 being related to a scalar
treatment (i.e. endogenous variable) 𝐷 given a set of covariates
(i.e. exogenous variables) 𝑋:

𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝛽′2𝑋𝑖 + Y𝑖 (1)

where the estimand is the coefficient 𝛽1
▶ Note: we no longer assume unconfoundedness
▶ Challenge: the error term Y𝑖 is dependent of treatment variable
𝐷𝑖 (confounded). Direct OLS estimator of 𝛽1 is biased

▶ IV: a vector of dimension 𝐾 of IVs 𝑍 , which satisfies (1) Y𝑖 ⊥ 𝑋𝑖 ,
(2) Y𝑖 ⊥ 𝑍𝑖 |𝑋𝑖 . Together

Y𝑖 ⊥ (𝑍𝑖 , 𝑋𝑖)

▶ When the dimension of IV 𝐾 > 1, over-identified; when 𝐾 = 1,
just-identified
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Case of just-identified, no covariates

▶ The IV estimator of 𝛽1 is the ratio of covariance:

𝛽1,iv =
Ĉov (𝑌𝑖 , 𝑍𝑖)
Ĉov (𝐷𝑖 , 𝑍𝑖)

=

1
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where 𝑌, �̄� are the sample means

▶ With a binary IV 𝑍 , this is the Wald estimator:

𝛽1,iv =
𝑌1 − 𝑌0

�̄�1 − �̄�0

where 𝑌𝑧 , �̄�𝑧 are the sample means within group 𝑧(= 0, 1)
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Interpretation I: indirect least squares

▶ Two interpretations of the IV estimator 𝛽1,iv.
▶ Interpretation I: indirect least squares. Two reduced forms of

regressions:

𝑌𝑖 = 𝜋10 + 𝜋11 · 𝑍𝑖 + Y1𝑖

𝐷𝑖 = 𝜋20 + 𝜋21 · 𝑍𝑖 + Y2𝑖

▶ The indirect least squares (ILS) estimator is the ratio of the least
squares estimates of 𝜋11 and 𝜋21: 𝛽1,ils = �̂�11/�̂�21

▶ In the case of randomized trial with binary treatment, 𝛽1,ils is the
ratio of the ITT estimates (Angrist, Imbens, Rubin, 1996)
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Interpretation II: two stage least squares (2SLS)

▶ Stage 1: predict treatment value from IV via OLS:

�̂�𝑖 = �̂�20 + �̂�21 · 𝑍𝑖

▶ Stage 2: plug in the predicted treatment in Stage 1 in the outcome
model:

𝑌𝑖 = 𝛽0 + 𝛽1�̂�𝑖 + [𝑖
▶ Estimate 𝛽1 from Stage 2 via OLS to obtain the 2SLS estimator

of 𝛽1: 𝛽1,2sls

▶ Intuition: 𝐷 is confounded, but we can use the IV to recover the
“unconfounded portion" of 𝐷 and plug into the outcome model

▶ Easy to verify
𝛽1,iv = 𝛽1,ils = 𝛽1,2sls

8 / 42



Case of just-identified, with covariates

▶ The above discussion is straightforward to extend to the case with
covariates

▶ Indirect LS: two reduced-form regressions

𝑌𝑖 = 𝜋10 + 𝜋11 · 𝑍𝑖 + 𝜋′12𝑋𝑖 + Y1𝑖

𝐷𝑖 = 𝜋20 + 𝜋21 · 𝑍𝑖 + 𝜋′22𝑋𝑖 + Y2𝑖

ILS estimator: 𝛽1,ils = �̂�11/�̂�21

▶ 2SLS:

�̂�𝑖 = �̂�20 + �̂�21 · 𝑍𝑖 + �̂�′22𝑋𝑖

𝑌𝑖 = 𝛽0 + 𝛽1�̂�𝑖 + 𝛽′2𝑋𝑖 + [𝑖

2SLS estimator: OLS estimator of 𝛽1 in Stage 2
▶ 𝛽1,iv = 𝛽1,ils = 𝛽1,2sls
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Variance estimation

▶ The standard error for 2SLS estimate 𝛽1,2sls is NOT the standard
error of coefficient of �̂� from Stage 2, because one also needs to
account for the sampling uncertainty in using �̂� (𝐷 |𝑍) as an
estimate of 𝐸 (𝐷 |𝑍)

▶ Assume homoskedasticity of the residuals in the IV model
Y𝑖 ∼ 𝑁 (0, 𝜎2

𝜖 )

▶ In large samples the distribution of the IV estimator 𝛽iv is
approximately normal, centered around the true value 𝛽, with
variance (Wooldridge, 2002):

V̂ = �̂�2
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2SLS with non-linear models: Forbidden regressions

▶ The relation 𝛽1,iv = 𝛽1,ils = 𝛽1,2sls holds under OLS models in
both stages

▶ How about non-linear model? Two examples
▶ First example

i Non-linear 2nd stage, e.g., the outcome 𝑌 is a quadratic function
of the treatment 𝐷: 𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝛽2𝐷

2
𝑖
+ 𝜖𝑖

▶ Can we simply run a single first stage model, obtain an estimated
(instrumented) �̂� and plug it into the second stage?

i fit a linear 1st stage regression of 𝐷 on 𝑍 , an fit an OLS of 𝑌 on
(1, �̂�𝑖 , �̂�

2
𝑖
)

▶ Unfortunately, the answer is NO. In fact, “forbidden” by MIT
professor Jerry Hausman in 1975 (Angrist and Pischke, 2009)

▶ What is the correct way? Run a separate 1st stage regression for
𝐷 and 𝐷2, respectively, obtain separate estimates, �̂� and 𝐷2,
respectively, and then plug these into second stage,
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2SLS with non-linear models: Forbidden regressions
Angrist and Pischke, 2009, page 190
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2SLS with non-linear models: binary treatment and 2SRI

▶ A second example of the forbidden regression is with a
non-linear 1st stage, e.g. when the treatment 𝐷 is binary

▶ One might be tempted to fit a logistic model in 1st stage and plug
the predicted �̂�𝑖 into the second stage, so-called two-stage
predictor substitution (2SPS) approach

▶ This is also wrong and forbidden

▶ A correct way is the two-stage residual inclusion (2SRI):
1. Stage 1: Fit a logistic model of 𝐷 on 𝑍:
𝑙𝑜𝑔𝑖𝑡 (Pr(𝐷𝑖 = 1|𝑋, 𝑍) ∼ 𝑍𝑖 + 𝑋𝑖 and obtain the residual in
predicting 𝐷: 𝑟𝑖 = �̂�𝑖 − 𝐷𝑖

2. Stage 2: Regress 𝑌 on treatment 𝐷, covariates 𝑋 and the residuals
from Stage 1: 𝑌𝑖 ∼ 𝐷𝑖 + 𝑋𝑖 + 𝑟𝑖

▶ Terza, Basu, Rathouz (2008, J health Econ) showed: coefficient
of 𝐷 in Stage 2 of 2SRI is consistent for 𝛽1 in the IV model 1,
but 2SPS is not
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IV/2SLS: open questions

▶ What if the true outcome model has interactions between 𝑋 and
treatment 𝐷, i.e. heterogeneous treatment effect? What is the
estimand? How to estimate?

▶ What if the data is clustered, e.g. patients clustered in hospitals?
Should we use random effects models in both stages? What is
exactly the 2SLS estimator now? Is it still consistent?

▶ A key feature: the IV/2SLS approach, including causal estimand
is tied with a specific outcome model, i.e. an OLS model with
homogeneous treatment effects.

▶ Inflexible to extend to more complex settings

▶ Distinct from the model-free causal estimands in the potential
outcome framework

▶ General question: is there model-free interpretation or
formulation in terms of potential outcomes?

14 / 42



History of IV

▶ Earliest concept of IV is usually attributed to Philip G. Wright
and/or his son Sewall (Appendix B of The Tariff on Animal and
Vegetable Oils, 1928)

▶ IV has since became a central technique of modern econometrics

▶ Classic econometric formulation of IVs is in terms of structural
equations and assumptions about the IV being uncorrelated with
structural error terms

▶ In a series of landmark papers in 1990’s, Angrist, Imbens and
Rubin connected IV to the potential outcomes framework in
causal inference

▶ In statistics literature, IV was later extended to principal
stratification (Frangakis and Rubin, 2002) for handling general
post-treatment confounding
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IV: potential outcomes and assumptions

▶ Below we discuss IV using the potential outcome notation,
focusing on the case of binary treatment and IV

▶ IV 𝑍 = 0, 1; treatment 𝐷 = 0, 1; outcome 𝑌 ; covariates 𝑋
▶ Potential outcomes: 𝐷 (𝑧), 𝑌 (𝑧, 𝑑)
▶ Assumptions:

A1 SUTVA
A2 IV is positively correlated with treatment: 𝑐𝑜𝑟 (𝑍𝑖 , 𝐷𝑖) > 0

(usually the higher correlation the better)
A3 IV is independent of unmeasured confounders (conditional on

covariates X): {𝑌 (𝑧, 𝑑), 𝐷 (𝑧)} ⊥ 𝑍 |𝑋 , for all 𝑧, 𝑑
A4 Exclusion restriction (ER): the IV affects outcomes only through

its effect on treatment received: 𝑌 (𝑧′, 𝑑) = 𝑌 (𝑧, 𝑑) for all units.
Under ER, 𝑌 (𝑧, 𝑑) ≡ 𝑌 (𝑑) for 𝑧 = 0, 1

▶ For point identification of a causal effect, Angrist et al. (1996)
imposed an additional assumption
A5 Monotonicity: 𝐷𝑖 (1) ≥ 𝐷𝑖 (0) for all 𝑖
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Motivating Context: randomized experiments with
noncompliance
Angrist, Imbens, Rubin (1996, JASA)

▶ Noncompliance: units take treatment different from the assigned
one

▶ Random treatment assigned: 𝑍𝑖
▶ Actual treatment: 𝐷𝑖

▶ Noncompliance: 𝑍𝑖 ≠ 𝐷𝑖 for some units
▶ Noncompliance can arise because, e.g. side effects, perception of

the effectiveness of the treatment or control
▶ Noncompliance is self-selected: breaks the initial randomization
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Big aside on noncompliance

▶ Two types of noncompliance
▶ One-sided compliance: the control group is restricted access to

treatment, so that noncompliance is only on the treatment group.
Example: trials on a new drug

▶ Two-sided compliance: both groups have access to treatment.
Example: randomized encouragement trials

▶ Two naive approach:
▶ Per-protocol: discarding non-complying units {𝑖 : 𝑍𝑖 ≠ 𝐷𝑖}
▶ As-treated: ignoring the initial random assignment, comparing

units per their actual treatment status
▶ Both approaches are invalid. Why?

▶ Per-protocol: compliance is self-selected, the remaining
subsample is not representative of the whole study population

▶ As-treated: randomization is broken
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Intention-to-Treat (ITT) Approach

▶ The standard analysis for randomized studies with
noncompliance is called Intention to Treat (ITT)

▶ ITT: ignores observed compliance information and compares
those assigned to treatment to those assigned to control

▶ ITT estimand: 𝜏𝐼𝑇𝑇 = E[𝑌𝑖 (1) − 𝑌𝑖 (0)], essentially ATE of the
assigned treatment 𝑍 on outcome

▶ Estimator of the ITT effect:
�̂�𝐼𝑇𝑇 =

∑
𝑖 𝑌𝑖𝑍𝑖/

∑
𝑖 𝑍𝑖 −

∑
𝑖 𝑌𝑖 (1 − 𝑍𝑖)/

∑
𝑖 (1 − 𝑍𝑖)

▶ Rationale: preserve the randomization

▶ ITT procedure gives a valid estimate of the causal effect of the
assignment on outcome (effectiveness), but not the effect of the
treatment received on outcome (efficacy)
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Effectiveness and Efficacy

▶ Effectiveness: the effect of a treatment work in practice

▶ Efficacy: the effect of a treatment in ideal situations

▶ Example: In the clinical development of a vaccine, an efficacy
study asks the question, “Does the vaccine work?" In contrast, an
effectiveness study asks the question “Does vaccination help
people?"

▶ Effectiveness is more of policy interest (population level);
efficacy is more of clinical or scientific interest (individual level)

▶ Randomized experiments are usually designed to study efficacy,
but noncompliance and other complications render this difficult
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Instrumental Variable Approach to Noncompliance
Angrist, Imbens, and Rubin (1996, JASA)

▶ 𝑍𝑖: assigned treatment; 𝐷𝑖: actual treatment (which might be
different from 𝑍𝑖); 𝑌𝑖: outcome

▶ The treatment received 𝐷 is post-assignment, therefore also has
two potential outcomes: 𝐷 (𝑧), 𝑧 = 0, 1

▶ Potential outcomes: 𝑌 (𝑧) for 𝑧 = 0, 1 (omit the double index
𝑌 (𝑧, 𝑑) here for simplicity)

▶ Observed data: 𝑍𝑖 , 𝐷𝑖 = 𝐷 (𝑍𝑖), 𝑌𝑖 = 𝑌 (𝑍𝑖)

▶ The central idea: (i) random assignment is an IV; (ii) divide units
into latent subgroups based on their compliance behavior

▶ Defining compliance type: 𝑆𝑖 = (𝐷𝑖 (0), 𝐷𝑖 (1)).
▶ 𝑆𝑖 is different from the actual treatment received 𝐷𝑖
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Compliance Types

▶ Four possible compliance types
𝐷𝑖 (0)

0 1
0 never-taker (NT) defier (D)

𝐷𝑖 (1)
1 complier (C) always-taker (AT)

▶ The true compliance type 𝑆 is not observed on all units
▶ The observed cells of 𝑍 and 𝐷 are mixture of different

compliance types
𝑍 𝐷 𝑆

0 0 [C, NT]
0 1 [AT, D]
1 0 [NT, D]
1 1 [C, AT]

▶ Additional assumptions are required to identify the causal effects
for each type.
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ITT Effects

▶ A key observation: the compliance type 𝑆𝑖 does not change
according to the assignment 𝑍𝑖 . It can be viewed as a (latent)
baseline characteristic

▶ Define ITT effects for each compliance type:

𝜏𝐼𝑇𝑇𝑠 = E[𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑆𝑖 = 𝑠],

for 𝑠 = 𝑐, 𝑛, 𝑎, 𝑑.

▶ The global 𝐼𝑇𝑇 may be written as the weighted average of the
𝐼𝑇𝑇 effects across the four subpopulations:

𝜏𝐼𝑇𝑇𝑌 = 𝜋𝑐𝜏
𝐼𝑇𝑇
𝑐 + 𝜋𝑛𝜏𝐼𝑇𝑇𝑛 + 𝜋𝑎𝜏𝐼𝑇𝑇𝑎 + 𝜋𝑑𝜏𝐼𝑇𝑇𝑑

where 𝜋𝑠 is the proportion of units of type 𝑠 and the treatment
received was 𝐷𝑖 = 𝑑
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Re-exam IV Identification Assumptions
In the context of randomized experiments with noncompliance
▶ A1: SUTVA ✓

▶ A2: random assignment (i.e. IV) has a (strong) effect on the
actual treatment 𝑐𝑜𝑣(𝑍𝑖 , 𝐷𝑖) > 0 ✓ (Note: this is different from
𝑐𝑜𝑣(𝑍𝑖 , 𝑆𝑖), which is 0 here due to randomization of 𝑍)

▶ A3: IV is randomized – hold by design ✓

▶ A4: ER, no direct effect of coin flip on outcome, i.e. ruling out
placebo effect. Mostly reasonable.

𝑌𝑖 (0) = 𝑌𝑖 (1), for all 𝑖 ∈ 𝑆𝑖 = 𝑛, 𝑎

Some subtle difference in ER between noncompliers
(always-taker, never-taker) and compliers

▶ A5: Monotonicity 𝐷𝑖 (1) ≥ 𝐷𝑖 (0) for all 𝑖. Reasonable in most
cases.
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Identification of the Causal Effects

▶ The monotonicity of compliance rules out the existence of
defiers, 𝜋𝑑 = 0

▶ ER implies that 𝜏𝐼𝑇𝑇𝑛 = 𝜏𝐼𝑇𝑇𝑎 = 0; this is reasonable because for
never-takers the assignment does not affect the receipt of the
treatment

▶ ER and monotonicity allow the identification of the 𝐼𝑇𝑇 effect
for compliers

𝜏𝐼𝑇𝑇𝑐 = 𝜏𝐼𝑇𝑇𝑌 /𝜋𝑐

▶ The global 𝐼𝑇𝑇 may be viewed as a conservative estimate of the
treatment effect: with 0 < 𝜏𝑐 < 1, we have 𝜏𝐼𝑇𝑇 < 𝜏𝐼𝑇𝑇𝑐
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Identify and estimate distribution of compliance types:
two-sided noncompliance

▶ Under monotonicity
▶ the units in the (𝑍 = 0, 𝐷 = 1) must be always-takers
▶ the units in the (𝑍 = 1, 𝐷 = 0) must be never-takers
▶ the units in the (𝑍 = 1, 𝐷 = 1) can be either compliers or

always-takers
▶ the units in the (𝑍 = 0, 𝐷 = 0) can be either compliers or

never-takers

▶ Under randomization, the proportion of never-takers, compliers,
and always-takers are the same between the two arms (𝑍 = 1 and
𝑍 = 0)
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Identify and estimate distribution of compliance types:
two-sided noncompliance

▶ Combining monotonicity and randomization, we can
nonparametrically identify the proportions of each compliance
type from observed data

𝜋𝑎 = Pr(𝐷𝑖 (0) = 𝐷𝑖 (1) = 1) = Pr(𝐷𝑖 = 1, 𝑍𝑖 = 0) = 𝐸 [𝐷𝑖 |𝑍𝑖 = 0]
𝜋𝑛 = Pr(𝐷𝑖 (0) = 𝐷𝑖 (1) = 0) = Pr(𝐷𝑖 = 0, 𝑍𝑖 = 1) = 1 − 𝐸 [𝐷𝑖 |𝑍𝑖 = 1]
𝜋𝑐 = Pr(𝐷𝑖 (0) = 0, 𝐷𝑖 (1) = 1) = 𝐸 [𝐷𝑖 |𝑍𝑖 = 1] − 𝐸 [𝐷𝑖 |𝑍𝑖 = 0]

▶ We can use the moment counterpart of the above quantities, to
get a moment estimator of 𝜋𝑠:

�̂�𝑎 = 𝑁01/(𝑁01 + 𝑁00)
�̂�𝑛 = 𝑁10/(𝑁11 + 𝑁10)
�̂�𝑐 = 1 − �̂�𝑛 − �̂�𝑎

where 𝑁𝑧𝑑 is the number of units in 𝑍 = 𝑧, 𝐷 = 𝑑 cell; 𝑁𝑧 is the
number of units in arm 𝑍 = 𝑧
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Identify and estimate distribution of compliance types

▶ One-sided noncompliance can be viewed as a special case: there
is no always-takers: 𝜋𝑎 = 0

▶ We can also define the ITT effect of 𝑍 on 𝐷:
𝜏𝐼𝑇𝑇
𝐷

= 𝐸 [𝐷𝑖 (1) − 𝐷𝑖 (0)]

▶ Under randomization:
𝜏𝐼𝑇𝑇
𝐷

= 𝐸 [𝐷𝑖 |𝑍𝑖 = 1] − 𝐸 [𝐷𝑖 |𝑍𝑖 = 0] = 𝜋𝑐
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Complier Average Causal Effect (CACE)

▶ The ITT effect of the compliers 𝜏𝑐 is also known as the Complier
Average Causal Effect (CACE) or Local Average Treatment
Effect (LATE, Imbens and Angrist (1994))

𝜏𝐶𝐴𝐶𝐸 ≡ 𝜏𝐼𝑇𝑇𝑐 = 𝐸 [𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑆𝑖 = 𝑐]

▶ Under A1-A5, CACE is identified as

𝜏𝐶𝐴𝐶𝐸 = 𝜏𝐼𝑇𝑇𝑌 /𝜋𝑐 = 𝜏𝐼𝑇𝑇𝑌 /𝜏𝐼𝑇𝑇𝐷 =
𝐸 (𝑌 |𝑍 = 1) − 𝐸 (𝑌 |𝑍 = 0)
𝐸 (𝐷 |𝑍 = 1) − 𝐸 (𝐷 |𝑍 = 0)

▶ CACE is a ratio of two causal effects (effect of 𝑍 on 𝑌 , and 𝑍 on
𝐷), equivalent to the IV estimand when the random assignment
is viewed as an instrument

▶ To interpret CACE as the causal effect as the treatment received
(efficacy), another ER assumption is often (implicitly) made: For
all compliers, the effect of the random assignment is only
through the effect of the treatment received.
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Moment Estimates of CACE

▶ For one-sided noncompliance (no always-takers)

�̂�𝐶𝐴𝐶𝐸 =

∑
𝑖 𝑌𝑖𝑍𝑖/

∑
𝑖 𝑍𝑖 −

∑
𝑖 𝑌𝑖 (1 − 𝑍𝑖)/

∑
𝑖 (1 − 𝑍𝑖)∑

𝑖 𝐷𝑖𝑍𝑖/
∑

𝑖 𝑍𝑖

▶ For two-sided noncompliance

�̂�𝐶𝐴𝐶𝐸 =

∑
𝑖 𝑌𝑖𝑍𝑖/

∑
𝑖 𝑍𝑖 −

∑
𝑖 𝑌𝑖 (1 − 𝑍𝑖)/

∑
𝑖 (1 − 𝑍𝑖)

1 −∑
𝑖 𝐷𝑖 (1 − 𝑍𝑖)/

∑
𝑖 (1 − 𝑍𝑖) −

∑
𝑖 (1 − 𝐷𝑖)𝑍𝑖/

∑
𝑖 𝑍𝑖

▶ Standard errors can be obtained asymptotically or via bootstrap

▶ Without monotonicity or ER, one can still obtain nonparametric
bounds for the effects, but the bounds are often too wide to be
informative
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Nonparametric identification of stratum average outcomes
▶ Under monotonicity:

▶ the units in the (𝑍 = 0, 𝐷 = 1) must be always-takers, and can
nonparametrically identify the outcome

𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑎] = 𝐸 [𝑌𝑖 |𝐷𝑖 = 1, 𝑍𝑖 = 0]

▶ the units in the (𝑍 = 1, 𝐷 = 0) must be never-takers, and can
nonparametrically identify the outcome

𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑛] = 𝐸 [𝑌𝑖 |𝐷𝑖 = 0, 𝑍𝑖 = 1]
▶ the units in the (𝑍 = 1, 𝐷 = 1) can be either compliers or

always-takers

𝐸 [𝑌𝑖 |𝐷𝑖 = 1, 𝑍𝑖 = 1] = 𝜋𝑐

𝜋𝑐 + 𝜋𝑎
𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑐] +

𝜋𝑎

𝜋𝑐 + 𝜋𝑎
𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑎]

▶ the units in the (𝑍 = 0, 𝐷 = 0) can be either compliers or
never-takers

𝐸 [𝑌𝑖 |𝐷𝑖 = 0, 𝑍𝑖 = 0] = 𝜋𝑐

𝜋𝑐 + 𝜋𝑛
𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑐] +

𝜋𝑛

𝜋𝑐 + 𝜋𝑛
𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑛]

▶ In combination, we identify 𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑐] and 𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑐]
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Extrapolating to the Full Population

▶ We can learn from these averages whether there is any evidence
of heterogeneity in outcomes by compliance status, by
comparing
▶ the pair of average outcomes of 𝑌𝑖 (0): 𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑛] vs.
𝐸 [𝑌𝑖 (0) |𝑆𝑖 = 𝑐], and

▶ the pair of average outcomes of 𝑌𝑖 (1): 𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑎] and
𝐸 [𝑌𝑖 (1) |𝑆𝑖 = 𝑐]

▶ If compliers, never-takers and always-takers are found to be
substantially different, then it appears much less plausible that
the average effect for compliers is indicative of average effects for
other compliance types
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Example: Vitamin A Supplement
Sommer and Zeger, 1991, Stat in Med

▶ Goal: Study the effect of vitamin A supplements on infant
mortality in Indonesia

▶ The vitamin supplements were randomly assigned to villages, but
some of the individuals in villages assigned to the treatment
group failed to receive them

▶ None of the individuals assigned to the control group received
the supplements

▶ So noncompliance is one-sided

▶ Outcome 𝑌 : survival of the infant (binary)

▶ 𝑍, 𝐷 are binary
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Example: Vitamin A Supplement
Sommer and Zeger (1991), SIM

▶ �̂�𝐼𝑇𝑇𝑦 = (34 + 12)/(34 + 12 + 2385 + 9663) − 74/(74 + 11514) =
−0.00258

▶ �̂�𝐼𝑇𝑇
𝑑

= (12 + 9663)/(34 + 2385 + 12 + 9663) = 0.79998
▶ �̂�𝐶𝐴𝐶𝐸 = �̂�𝐼𝑇𝑇𝑦 /�̂�𝐼𝑇𝑇

𝑑
= −0.00258/0.79998 = −0.00323
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Connection to IV estimation
▶ Vytlacil (2002, Econometrica) showed: Assumptions A1-A5 are

equivalent to a nonparametric version of the latent index model
in economics

𝐷∗
𝑖 = 𝛼0 + 𝛼1𝑍𝑖 + Y𝑖1
𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + Y𝑖2

where 𝐷∗
𝑖
= 1{𝐷𝑖 > 0}, and 𝑍𝑖 independent of Y1, Y2

▶ Here 𝐷∗ is the latent index, interpreted as the expected net utility
of choosing treatment A versus B

▶ Most IV used in economics are not in the context of randomized
experiments; instead, IV is usually a natural experiment.

▶ In econometrics, estimation is usually conducted via two-stage
least square 2SLS

▶ An excellent review of IV for causal inference: Baiocchi, Cheng,
Small (2014, SIM)
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Sources of IV in Economic Studies
The biggest challenge in using IV methods is finding a good IV.
Several common sources of IVs in economic studies
▶ The half or quarter of the year of birth:

▶ When one was born in the year is largely randomized by nature,
and does not affect later income directly.

▶ It does directly affects at what age you goes to school first, may
creates one year of difference in the year of school entrance.

▶ due to the compulsory education requirement, it can create one
year difference in education, which in turn affects income or other
labor outcomes

▶ Tax
▶ Goal: Study the effect of smoking (𝑍) on health (𝑌 )
▶ IV: tobacco tax
▶ Reasoning: tobacco tax rate is controlled by government, it does

not directly affect one’s health. But it affects the price of tobacco,
thus in turn affects how much one smokes, which affects one’s
health.

▶ More examples in Angrist and Pischke (2008, Mostly Harmless
Econometrics)
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Sources of IV in Health Studies

▶ Several common sources of IVs in health studies
▶ Randomized encouragement design
▶ Distance to specialty care provider (the McClellan example)
▶ Calendar time: Variations in the use of one treatment versus

another over time could result from changes in guidelines;
changes in formularies or reimbursement policies; changes in
physician preference. Challenge: how to take care of natural time
trend in outcome and treatment?

▶ Insurance plan
▶ Preference-based IVs
▶ Genes: Mendelian Randomization
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Preference-based IVs

▶ Idea: Find naturally occurring variation in medical practice
patterns at the level of geographic region, hospital, or individual
physician; and then use whether the region/hospital/individual
physician has a high or low use of treatment A (compared with
treatment B) as the IV.

▶ Potential problems:
▶ preference-based IVs may have a direct effect on the outcome
▶ preference-based IVs often involve clustered data. Related

research and guideline (e.g. estimand, model, se) is largely
lacking
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Genes as IV: Mendelian randomization

▶ Goal: study the causal effect of some exposure on health
outcome, e.g. smoking on lung cancer, or blood pressure on
stoke

▶ The exposure (phenotype) is usually confounded

▶ IV: polymorphism of some genes (genetic variants)

▶ Reasoning: the assortment of genes from parents to offspring is
random, i.e. genetic variants are randomly assigned conditional
on a parent’s genes

▶ Potential problems: (i) affects of a single allele is often too tiny,
multiple weak IVs; (ii) unmeasured confounding through
population stratification; (iii) genetic linkage; (iv) potential direct
effect through pleiotropy

▶ Active research area in genetic epidemiology and statistics
39 / 42



Extensions and Open Questions

▶ In practice, often IV and treatment is not binary, can be multiple
and continuous IVs

▶ From the 2SLS perspective, extension to these settings seems to
be straightforward: change a single binary IV to multiple or
continuous IV and then perform 2SLS

▶ But problematic from a causal inference perspective:
▶ does the 2SLS estimate still have a causal interpretation?
▶ how to extend to complex settings like clustered data or

heterogenous treatment effect?

▶ Even with the Angrist, Imbens and Rubin approach to binary IV
and binary treatment case, 2SLS is not efficient because it does
not utilize the mixture (of compliance type) structure of the
causal formulation (Imbens and Rubin, 1997; Hirano et al. 2003)
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