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Longitudinal observational studies

I All previous discussions focus on treatment at a single time
(cross-section or panel settings)

I Common in real world situations, e.g. medical research, data
(treatment, covariates and/or outcome) are repeatedly collected on
subjects over a period – longitudinal studies

I Particularly interested in estimating the effect of a time-varying
treatment on an outcome of interest measured at a later time

I Confounders can be time-varying, affected by past treatment and
affecting future covariates and or outcomes

I Standard regression adjustment fails to give consistent estimators in
the presence of time-varying confounders if those confounders are
themselves affected by treatment
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Sequentially ignorable assignment

What type of studies we consider

I Treatments with multiple time points, where those treatments
assignment is ignorable conditionally on the observed history.

I If we can justify the above assumption, this is a possible template for
randomized experiments or observational studies

I Example 1: patients visiting doctors at different times.

I Example 2: workers exposed to hazards at the workplace (related to
health worker survivor effect)

A common goal is to estimate the accumulative (over the study
period) effect of the treatment on an outcome.
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Time-varying treatments: An example
(Daniel et al. 2013, SIM)

I In many longitudinal medical studies, patients’ treatment changes over
time and is measured several times during the study, along with other
time changing covariates.

I For example, type II diabetes patients recruited into a study
comparing two antiglycaemic drugs may be followed up on several
occasions, on each of which their HbA1c (a long-term measure of
blood glucose level), blood pressure, cholesterol level, BMI, anaemia
status, and others variables are measured

I Suppose wish to compare the effect of the two treatments on HbA1c
18 months after recruitment and on the risk (or hazard) of
experiencing a cardiac event in the 18 months following recruitment.
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Time-varying treatments: The challenge
(Daniel et al. 2013, SIM)

A1 L2 A2 ... Y

I Study allows for the dose and type of treatment to be changed
according to the current (and past) values of HbA1c and other
covariates.

I A high HbA1c likely lead to increasing the dose of the current drug;
but high HbA1c is also thought to lead to an increased risk of a
cardiac event, making HbA1c at a particular time a confounder of the
relationship between subsequent treatment and the outcome

I Because HbA1c varies over time (in a way that cannot be foreseen at
baseline), it is called a time-varying confounder
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Time-varying treatments: The challenge
(Daniel et al. 2013, SIM)

I To estimate the causal effect of treatment on risk of cardiac event, it
seems necessary to control for HbA1c in the analysis

I Not only does HbA1c affect treatment but also the reverse is true!!!

I An effective antiglycaemic drug lowers HbA1c, and thus current value
of the treatment variable has a causal effect on future values of HbA1c

I This means controlling for HbA1c is problematic, because future
measurements of HbA1c lie on the causal pathway between past
treatment and the outcome

I conditioning on HbA1c blocks some of the effect of the treatment and,
in addition, conditioning on a consequence of treatment risks inducing
collider-stratification bias
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Notation with a toy example

I We will switch notation from previous lectures to be compatible with
the literature in longitudinal treatment

I Toy example: patients with cancer, visiting doctor at two time points
t1,t2.

I at (t = 1, 2) : possible treatment at time t

I Ai,t : the observed treatment at time t (Zi,t in previous notation
system)

I Lobs
i : observed cancer progression at time 2

I Yi(a1, a2): potential outcome at time 3

I Yi = Yi(Ai,1, Ai,2): observed outcomes
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Toy example with T = 2

month action potential observed
outcome value

1 give treatment a1 (1=high) Ai,1

2 (i) measure cancer progression Lobs
i

(ii) give treatment a2 (1=high) Ai,2

3 measure cancer progression Yi(a1, a2) Yi

I For each individual, there are a total of 4 potential outcomes
{Y (1, 1),Y (1, 0),Y (0, 1),Y (0, 0)}, but only one will be observed
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Figure: Example with treatment at two time points and sequentially ignorable
assignment (Here Z is the assignment, and Xobs is the intermediate variable)
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Causal Estimand

I Typical target estimand - marginal causal effects due to treatment
sequence:

τa1a2,a
′
1a
′
2
= E[Yi(a1, a2) − Yi(a′1, a

′
2)],

for all (a1, a2) , (a′1, a
′
2) ∈ {0, 1}

2.

I For example, compare cancer progression Y between always taking
high dose Pr(Y (1, 1) = 1) and always taking low dose Pr(Y (0, 0) = 1).

I Note that we only control (a1, a2), that is why the potential outcomes
Yi() are only a function of a1, a2 and not also of L.
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Problems with standard adjustment

Two “standard” approaches to estimate
Pr(Y (1, 1) = 1) − Pr(Y (0, 0) = 1):

I Approach 1. “Do not condition on progression Lobs because it is an
intermediate outcome”:

Pr(Y = 1 |A1 = 1, A2 = 1) − Pr(Y = 1 |A1 = 0, A2 = 0)

= 60% − 60% = 0

I Approach 2. “Condition on intermediate progression Lobs because it
was used in deciding treatment A2”:

Pr(Y = 1 |A1 = 1, A2 = 1, Lobs = 1) − Pr(Y = 1 |A1 = 0, A2 = 0, Lobs = 1)

= 60% − 80% = −20%
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Problems with standard adjustment

Two “standard” approaches to estimate
Pr(Y (1, 1) = 1) − Pr(Y (0, 0) = 1):

I Approach 1. “Do not condition on progression Lobs because it is an
intermediate outcome”:

Pr(Y = 1 |A1 = 1, A2 = 1) − Pr(Y = 1 |A1 = 0, A2 = 0)

= 60% − 60% = 0

I Approach 2. “Condition on intermediate progression Lobs because it
was used in deciding treatment Z2”:

Pr(Y = 1 |A1 = 1, A2 = 1, Lobs = 1) − Pr(Y = 1 |A1 = 0, A2 = 0, Lobs = 1)

= 60% − 80% = −20%

Both approaches are incorrect for the goal - adjusting for Lobs alone is
not enough
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Assumption 1: Positivity/Overlap

A1 L A2 Y

τa1a2,a
′
1a
′
2
= E[Yi(a1, a2) − Yi(a′1, a

′
2)]

I At every time point, units have positive probability to receive all levels
of the treatment

P(A1 = a1) > 0

P(A2 = a2 |A1 = a1, L = l) > 0

for all a1, a2, l.
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Assumption 1: Positivity/Overlap

I Positivity states that conditional on covariate history, the probability of
receiving each treatment sequence is bounded away from zero and one

I The above illustration is only for two time periods (T = 2), and
therefore the covariate history includes only L right after treatment A1

I Positivity is less likely to be satisfied

I for large values of T

I when A includes more than two values (multiple treatments)
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Assumption 2: Sequential Ignorability (Robins, 1986)

A1 L A2 Y

Let Lobs
t (often shorthanded to Lt ) denote the time-varying

confounders, including both time-varying covariates and intermediate
outcome at time t.
Let āt = (a1, a2, ..., at ), Āt = (A1, . . . , At )

I Sequential ignorability: treatment at time t is randomized with
probabilities depending on the observed past, including covariates,
intermediate outcomes, that is, at any time t :

{Yi(āt ), ∀āt } ⊥ Ai,t | Hi,t,

where Hi,t = (A1, ..., At−1; L1, ...Lt−1) is the observed history
I In the previous simple example, H1=nothing, and H2 = (Ai,1, Lobs
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Identifiability

I E[Y (a1, a2)] is a function of potential outcomes
I Idenitifiability of E[Y (a1, a2)] means that it can be written in terms of

observed data

E[Y(a1, a2)]

= E[Y(a1, a2) |A1 = a1] (1)

= E[Y(A1, a2) |A1 = a1] (2)

=
∑
l=0,1

E[Y(A1, a2) |A1 = a1, L
obs = l]P(Lobs = l |A1 = a1) (3)

=
∑
l=0,1

E[Y(A1, a2) |A1 = a1, L
obs = l, A2 = a2]P(L

obs = l |A1 = a1) (4)

=
∑
l=0,1

E[Y(A1, A2) |A1 = a1, L
obs = l, A2 = a2]P(L

obs = l |A1 = a1) (5)

I (1), (4) from sequential ignorability
I (2), (5) from consistency (SUTVA); (3) from law of total probability
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g-computation
(Robins, 1986)

I Causal effects are identified under the assumption of sequential
ignorability leading to the g-computation

Pr(Y(0, 0) = 1) = Pr(Y(0, 0) = 1 |A1 = 0)

=
∑

Lobs=0,1

Pr(Y(0, 0) = 1 |A1 = 0, Lobs )Pr(Lobs |A1 = 0)

=
∑

Lobs=0,1

Pr(Y(0, 0) = 1 |A1 = 0, Lobs, A2 = 0)Pr(Lobs |A1 = 0)

=
∑

Lobs=0,1

Pr(Yobs = 1 |A1 = 0, Lobs, A2 = 0)Pr(Lobs |A1 = 0)

= 0%(50%) + 80%(50%) = 40%
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g-computation
(Robins, 1986)

I Similarly, we can estimate Pr(Yi(1, 1) = 1) = 60%

I Therefore, the causal effect is given by

Pr(Yi(1, 1) = 1) − Pr(Yi(0, 0) = 1) = 20%

I Use analogous arguments, we can also estimate
Pr(Yi(0, 1) = 1) = 55% and Pr(Yi(1, 0) = 1) = 50%.

I This procedure can be generated to longitudinal treatments with any T
time points: g-computation
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g-computation
(Robins, 1986)
I For T time points, let āt = (a1, a2, ..., at ), Āt = (A1, . . . , At )

A1 L2 A2 ... Y

Pr(Y (āT )) =∑
Lobs

2 ,...,Lobs
T

Pr(Yobs | Lobs
2 , ..., Lobs

T , AT = aT )

× Pr(Lobs
2 |A1 = a1) × · · · ×

× Pr(Lobs
T |A1 = a1, Lobs

2 , A2 = a2, . . . , Lobs
T−1, AT−1 = aT−1).

I This is the basic g-computation formula, or g-formula
I Can pose models for all distributions in the RHS and estimate Pr(ā) –

in essence, this is an outcome modeling approach
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g-computation

I To operationalize the g-formula, a key component is to specify models
for all components

I outcome regression Pr(Yobs | Lobs
2 , ..., Lobs

T , AT = aT )

I models for time-varying confounders
Pr(Lobs

t |A1 = a1, Lobs
2 , A2 = a2, . . . , Lobs

t−1 , At−1 = at−1) ∀t

I Model for time-varying confounder can be complex

I involves a large number of time points T

I involves many covariates, some of which are continuous

I may further factor
Pr(Lobs

t |A1 = a1, Lobs
2 , A2 = a2, . . . , Lobs

t−1 , At−1 = at−1) ∀t with a series
of conditional distributions

I variable selection with longitudinal treatments still an open question
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Parametric g-formula
Specify models for the joint density of time-varying confounders,
treatments, and outcomes over time via parametric modeling (Keil et
al. 2014)

Step 1: Fit models for each component in the g-computation formula

(1.1) Fit a pooled (over persons and time) model for the conditional
distribution of each confounder Lt at time t as function of t, past
treatment, and covariate history, for example, with a single binary Lt

logit{P(Lt = 1)} = β0 + β1t + g1{ Āt−1; β2} + g2{L̄t ; β3}

I Denote Āt = (A1, . . . , At ) and L̄t = (L1, . . . , Lt )

I g1{ Āt−1; β2} = g1{At−1; β2} (concurrent);
g1{ Āt−1; β2} = g1{

∑t−1
k=1 Ak ; β2} (cumulative)

I For multivariate Lt , either use a series of conditional models or specify
a model for each component of Lt
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Parametric g-formula

Step 1: Fit models for each component in the g-computation formula

(1.2) Fit a pooled (logistic) model for the (binary) outcome YT as a function
of past treatment, and confounder history, for example,

logit{P(YT = 1)} = η0 + h1{ ĀT ; η2} + h2{L̄T ; η3}

I Again, this is a time-averaged model (or a set of time-specific models)

I Here we illustrate ideas based on relatively simple models – they are
likely oversimplifications for realistic settings but convenient choices
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Parametric g-formula

Step 2: Approximate the sum (or integral) by performing Monte Carlo
simulation for S number of times based on the intervention sequence
(regimen) of interest. For each t ≥ 2

(2.1) Simulate time-varying confounders from the fitted models in Step
(1.1) using previously simulated confounders and assigned treatment
values. The assignment treatment values āT = (a1, . . . , aT ) will be set
according to the target estimand of interest

I For t = 2, simulate L2 from logit{P(L2 = 1)} = β̂0 + 2β̂1 + g1{a1; β̂2}

I For t = 3, simulate L3 from
logit{P(L3 = 1)} = β̂0 + 3β̂1 + g1{a1, a2; β̂2} + g2{L̂2; β̂3}

I and so on . . .
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Parametric g-formula

(2.2) Based on all simulated confounders and the treatment assigned,
compute the average potential outcomes for all patients using the
outcome model fitted in Step (2.1)
I standard averaging, but used in the more complex longitudinal settings

I obtain Ês[Y (āT )] based on the sth simulation

Step 3: Calculate the average of the estimated potential outcomes over
all generated simulation, obtain

Ê[Y (āT )] =
1
S

S∑
s=1
Ê
s
[Y (āT )]

With a large S, Step 3 tries to minimize the simulation error
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Compatibility
I Parametric g-estimators can require many modeling assumptions

I Depending on their functional forms, it is possible that the parametric
models {

µt (āT , L̄t ; δt ) : t = T, . . . , 1
}

are mutually incompatible, i.e. no joint distribution satisfies all K
simultaneously

I One could hope for small bias of each model does not add up
I Compatibility itself is not a practical drawback

I Even for parametric models that are mutually compatible, the models
are practically (although not logically) certain to be misspecified (Bang
and Robins, 2005)

I Main point is misspecification of outcome models can bring bias

I Highlight the need for flexible outcome models
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g-null paradox
I g-null paradox means “model misspecification leads to hypothesis

tests that inevitably reject the null hypothesis as sample size increases,
even when the causal null hypothesis is true” (Robins, 2003)

I “Worst” consequence of model incompatibility: choices of model
form can rule out the null hypothesis a priori because no parameter
values in the model parameter space are consistent with the causal null

I Cannot be easily assessed by frequentist approaches, but can be
somewhat relieved by expanding the model space with flexible
modeling

I In the Bayesian setting (Bayesian g-formula), g-null paradox can be
assessed by examining whether the prior predictive distribution of the
potential outcomes rules out the g-null hypothesis (Keil et al. 2018)
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Dimension reduction and propensity score
I When all conditional distributions in g-computation are correctly

specified, g-computation leads to the most efficient estimates with the
smallest large sample variances

I However, dimension of variables increases exponentially with T , due
to time-varying covariates

I With medium to large T , model building and model checking in
g-computation can be very demanding

I Dimension reduction is crucial. Propensity score again plays a central
role to achieve dimension reduction: weighting or outcome
regression. Matching is less suitable.

I Positivity/overlap can be checked in terms of the propensity score,
instead of directly on covariates (ignored by the g-computation
estimator)
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Dimension reduction and propensity score

I Define the propensity score at time t given the observed history as:

eit = Pr(Ait = 1 | Hit ), i = 1, ...,T,

where Hit = {L̄it, Āi,t−1} is the observed history for unit i up to time t

I Under SI, easy to show SI holds for the longitudinal propensity scores:
For a given t, and for all āt

{Yi(āt )} ⊥ Ai,t |ei,1, Ai,1, ..., ei,t−1, Ai,t−1 (6)

I Equation (6) imply that instead of adjusting for the history of
covariates, we can adjust for the history of propensity scores -
substantially reduce the covariate dimension in modeling

I Two approaches: weighting (marginal structural models (MSM)) and
regression on PS history
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Longitudinal treatments: Recap of notation

I N subjects

I A0: baseline treatment at baseline time τ0

I L0: vector of baseline covariates

Suppose we have T + 1 subsequent follow-up visits at times
τ1, . . . , τT+1

I At : treatment at visit t during interval [τt, τt+1)

I Lt : covariates measured just before At and remain unchanges during
interval [τt, τt+1)
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Longitudinal treatments: Recap of notation

I L0 can contain time-fixed covariates (age and gender etc, often
denoted as X) and other baseline measure of tima-varying covariates

I An outcome Yi is measured at the final visit T + 1

I Assume At is binary for simplicity, but generalization to multiple
treatments is possible

I Goal: estimate the causal effect of the time-varying treatment on the
outcome in the combined population, using the observational data (the
sequence of At is non-randomized)

I Question: what is the ideal randomized trial that we wish to mimic?
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Marginal structural model (MSM)
Robins, Hernan, Brumback, 2000, Epidemiology

I Under sequential ignorability and longitudinal positivity/overlap, we
have used the g-computation to estimate the causal estimand E[Y (ā)]

I Even if the treatment is binary, there are 2T+1 values of Ā = ā, where
we use Ā to denote the history of treatment or treatment path

I Causal effects are characterized by 2T+1 average potential outcomes
corresponding to each treatment path:{

E[Y (ā) : ā ∈ Ā]
}

I As T increases, the high-dimensional nature of this characterisation
leads to difficulties both with estimation (due to an insufficient
number of subjects following any given trajectory) and with
interpretation (due to too many potential comparisons)
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Marginal structural model
I Some simplification is necessary, for example, one can use the

following GLM with inverse link function h

E[Y (ā)] = h(ā; γ)

I For example, we can posit h(ā; γ) = γ+γ2cum(ā), where
cum(ā) =

∫ T+1
0 a(t)dt =

∑T
t=0 a(t) is the cumulative treatment

I Can further adjust for baseline covariates (effect modifiers), for
example with V ∈ L0

E[Y (ā)] = h

(
γ1 + γ2

T∑
t=0

a(t) + γ3V

)
I We call such models marginal structural models (MSM)

I models for some aspect of the conditional distribution of the
counterfactuals given baseline covariates

I always marginal with respect to post-baseline confounders
32 / 73



MSM versus Associational Model
(Robins (1999))

I MSM is a structural model, different from associational models,
which are

E(Y | Ā = ā) = h(ā;α)

I The associational models are concerned with only observed outcomes,
and therefore α , γ if there is time-varying confounding (when would
they be equal?)

I Directly fitting the associational model to the observed data leads to
bias - remember to the simple cancer progression example?

I Can use weighted estimation of the associational model to remove
time-varying confounding and recover γ⇒ IPW estimation of MSM
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Generalizing IPW (Horvitz-Thompson) estimator

I Define the propensity score at time t given the observed history as:

et = P(At = 1 | Āt−1, L̄t ), i = 1, ...,T,

I Obtain the stabilised inverse probability weights for each individual

SW =
∏T

t=0 P(At = Aobs
t | Āt−1)∏T

t=0 P(At = Aobs
t | Āt−1, L̄t )

with A−1 = ∅

I Replace the denominator with 1 leads to the unstablized weights

I If the MSM further conditions on baseline covariates V , the stabilised
inverse probability weights can be further modified as

SW-V =
∏T

t=0 P(At = Aobs
t | Āt−1,V)∏T

t=0 P(At = Aobs
t | Āt−1, L̄t )
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IPW estimation of MSM
Robins, Hernan, Brumback, 2000, Epidemiology

I For T = 2
I Specify a model for the outcome, f (y, ā, ; γ) with score function

S(y, a0, a1; γ) = ∂
∂γ log f (y, a0, a1; γ).

I For example, for a binary outcome Y with two time points, two
possible models:
I logit{Pr(Yi = 1|A0, A1)} = γ1 + γ2 A0 + γ3 A1 + γ4 A0 A1
I logit{Pr(Yi = 1|A0, A1)} = γ1 + γ2(A0 + A1).

I Solving for the following estimating equation
N∑
i=1

SWi × S(Yobs
i , Ai0, Ai1; γ) = 0, (7)

gives consistent estimates of the parameters γ
I Eq (7) is solved via maximizing the weighted likelihood

35 / 73



Estimating weights

I As usual, the weights are unknown, and therefore need to be estimated
from data

I Consistency of γ̂ depends on correct estimation of propensity score
weights

I Estimate the propensity score at each time, and normalizing the
inverse propensity score weights by the unconditional probability of
being assigned to the observed treatment at each t

SWi =

∏T
t=0 P(Ai, t = Aobs

i, t | Āi, t−1; ϕ̂)∏T
t=0 P(Ai, t = Aobs

i, t | Āi, t−1, L̄i, t ; β̂)
=

∏T
t=0 P(Ai, t = Aobs

i, t | Āi, t−1; ϕ̂)∏T
t=0 ê

Aobs
i, t

i, t {1 − êi, t }
1−Aobs

i, t

where φ̂ and β̂ the MLE of the respective propensity score models
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Estimating weights
I Pr(At = Aobs

t |Ai,t−1, ..., Ai,0) can be estimated by the proportion of
subjects in cell of Aobs

i,t−1, ..., Aobs
i,0 in the study sample with Ai,t = Aobs

i,t

I When T is large, this may lead to many zero weights due to empty
cells

I Instead estimate both denominators and numerators from models. For
example, let

logit{Pr(Ai,1 = 1|A0)} = φ1 + φ2 A0.

logit{Pr(Ai,1 = 1| L̄1, A0)} = β1 + β2 A0 + β
T
3 L1 + β

T
4 A0L1.

I The last model assumes a “Markov" type condition so that
Ai,1 ⊥ L0 |A0, L1 – usually the lagged covariates and treatment may be
most predictive (rationale for a pooled model when T is large)

I Important to check overlap of propensity scores at each time (what
about balance?)
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MSM: procedure

Step 1 Build an outcome model: Pr(Y (a0, a1)) = Pr(Y |A1, A2) under
“randomization”

Step 2 Build a propensity score model for each time: Pr(A1 |A0, L̄1) and
Pr(A0 |L0); also build model for Pr(A2 |A1) and Pr(A1) (for
stabilized weights) – this can be replaced with pooled models

Step 3 Estimate the propensity scores at each time, check overlap and
remove units in the non-overlap region

Step 4 Calculate the stabilized weights for each unit at each time point

Step 5 Estimate the parameters of the outcome model by maximizing the
weighted likelihood (weighted regression)

Case study: Hernan, Robin, Brumback (2000). outcome is survival,
use the marginal structural Cox model
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An illustrative example
Daniel et al. 2013

I Let γ0 = −0.5, γ1 = −0.75 and γ01 = 0.2, and generate data from the
true MSM, and induce time-varying confounding through L1

E{Y (a0, a1)} = γint + γ0a0 + γ1a1 + γ01a0a1

I This is a nonparametric MSM because it is saturated

I Fit a naive associational model without adjusting for L1

E[Y |A0, A1] = αint + α0 A0 + α1 A1 + α01 A0 A1

I Fit an adjusted associational model

E[Y |A0, A1, L1] = βint + β0 A0 + β1 A1 + β01 A0 A1 + βlL1

I Using what we have learned, which one of these models could
estimate the causal parameters γ?
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An illustrative data analysis
Daniel et al. 2013

I None! Same essence as the earlier simple (nonparametric) example
I Unadjusted associational model ignores time-varying confounding
I Adjusted associational model induces collider-stratification bias
I The correct approach is either g-computation or MSM
I Read more about this example in a tutorial by Daniel et al. (2015)
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An illustrative data analysis
Daniel et al. 2013
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Inference for MSM

I Bootstrap will provide valid variance and interval estimates using
MSM

I Treating SWi as fixed, and use the robust sandwich variance to
provide a conservative variance estimate

I essentially a “survey” weighted GLM

I In R, this is done by the svyglm() in the survey package

I Can invoke the M-estimation theory to provide a more accurate
sandwich variance that takes into account the estimation of the
stablized weights

I can be cumbersome if the weights are not estimated via pooled models
over person and time
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Loss to follow up

I Write Ri,t = 1 is subject i observed at visit t, and zero otherwise;
assume missing at random (MAR),

P(Ri,t = 1| Āi, L̄i, Ri,t−1 = 1) = P(Ri,t = 1| Āi,t−1, L̄i,t−1, Ri,t−1 = 1)

I The stablized IPW becomes

SW =
∏T

t=0 P(Ai, t = Aobs
i, t | Āi, t−1, Ri, t−1 = 1)P(Ri, t = 1 | Āi, t−1, Ri, t−1 = 1)∏T

t=0 P(Ai, t = Aobs
i, t | Āi, t−1, L̄i, t, Ri, t−1 = 1)P(Ri, t = 1 | Āi, t−1, L̄i, t−1, Ri, t−1 = 1)

I An advantage of IPW is that specialized software routines are not, in
general, needed, because the models can be fitted using standard
regression commands, incorporating weights (SAS, R and Stata)
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Doubly Robust MSM
(Bang and Robins, 2005 Biometrics)

I Simple weighting is not efficient, and lead to bias if the weights are
incorrectly specified

I The ICE estimator (one form of g-formula) can be used to estimate
MSM parameters as well, with a simple modification in the final
sequential regression
I recall ICE estimator imputes all potential outcomes (in an exhaustive

fashion), and so in the final regression model, we can simply just fit a
MSM to estimate γ

I Combine IPW and ICE to create a doubly-robust estimator for MSM
I consistent for γ is either series of propensity score models or outcome

models are correct

I more efficient than IPW alone by exploiting a series of conditional
outcome models
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Doubly Robust MSM
Bang and Robins, 2005 Biometrics

I First estimate the propensity scores at each time, and create
π̄t (β̂) =

∏t
k=0 P(At = Aobs

t | Āt−1, L̄t ; β̂)

I e.g. one can use a pooled logistic model over persons and time

I The DR MSM estimator uses the idea of “clever covariate" in the
sequential regression steps (augmenting the ICE estimator by the
“clever covariate")

I the clever covariate at each time is defined as π̄−1
t (β̂)

I when performing (canonical link) regression at each time, include the
linear term W̄(Āt ) = π̄

−1
t (β̂)

I Connecting to Lecture 7 on DR estimator for point treatment with a
clever covariate

45 / 73



Operationalizing Doubly Robust MSM

I Recall the example with T = 3(t = 0, 1, 2) time points as in the last
lecture, and the observed data consists of (L0, A0, L1, A1, L2, A2,Y )

I Step 1: Compute the inverse probability weights at each time point to
create the “clever covariate”, e.g., using a pooled logistic regression
for person-time data

logit{P(At = Aobs
t | Āt−1, L̄t ; β̂)} = β0,t + β1 At−1 + β2Lt

the weight at time t = 0, 1, 2 for each unit then becomes
Ŵ(Āt ) =

∏t
t=0 1/P̂(At = Aobs

t | Āt−1, L̄t ; β̂) =
∏t

t=0 π̂
−1(At | Āt−1, L̄t )
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Operationalizing Doubly Robust MSM

I Step 2: At time t = 2, postulate the mean model to compute
regression coefficient vector δ2 with ordinary least squares

Y = δ2,0 + δ2,1cum(Ā2) + δ
′
2,2L2 + δ2,3Ŵ(Ā2) + ε2

For time t = 1, use the above fitted model to compute the
pseudo-outcomes for each unit under observed history Ā1 but all
possible treatment status at time t = 2. In other words, for each unit,
we expand the data set with two rows per patient; one with outcome
Ŷ (Ā1, A2 = 1) and Ŷ (Ā1, A2 = 0) and same covariate and treatment
history up to time 1 otherwise
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Operationalizing Doubly Robust MSM

I Step 3: Define Y (1) = Ŷ (Ā1, a2) for a2 ∈ {0, 1}, then perform linear
regression on this pseudo-outcome with sample size 2N to estimate
δ2, allowing for the clever covariate

Y (1) = δ1,0 + δ1,1cum(Ā1) + δ
′
1,2L1 + δ1,3W̄(Ā1) + ε1

I Repeat the above outcome imputation step, but now for time t = 0, we
use the above fitted model to compute pseudo-outcomes for each unit
under observed treatment history A0 but all possible treatment status
for the future
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Operationalizing Doubly Robust MSM

I That is to say, we further expand the data set to have four rows per
patient, with replicated histories A0 and L0, but different outcomes
given by Ŷ (A0, A1 = A2 = 1), Ŷ (A0, A1 = 0, A2 = 1),
Ŷ (A0, A1 = 1, A2 = 0) and Ŷ (A0, A1 = A2 = 0) (expanded data set with
4N sample size)

I Step 4: Define Y (0) = Ŷ (A0, a1, a2) for a1, a2 ∈ {0, 1}, then perform
linear regression on this pseudo-outcome with sample size 4N to
estimate δ0

Y (0) = δ0,0 + δ0,1 A0 + δ
′
0,2L0 + δ0,3W̄(A0) + ε0
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Operationalizing Doubly Robust MSM

I Step 4: As before, expanding the data set to obtain eight row per
patient, with outcomes Ŷ (A0 = A1 = A2 = 1), Ŷ (A0 = 0, A1 = A2 = 1),
Ŷ (A0 = A1 = 0, A2 = 1), Ŷ (A0 = 1, A1 = 0, A2 = 1),
Ŷ (A0 = 0, A1 = 1, A2 = 0), Ŷ (A0 = A1 = 1, A2 = 0) and
Ŷ (A0 = A1 = A2 = 0), Ŷ (A0 = 1, A1 = A2 = 0)

I At step 4, we have already computed all eight potential outcomes for
each unit, and therefore we can just compute the final average
potential outcomes by simple averaging!
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Operationalizing Doubly Robust MSM

I For example,

Ê[Y (0, 0, 0)] =
1
N

N∑
i=1

Ŷi(0, 0, 0)

Ê[Y (1, 1, 1)] =
1
N

N∑
i=1

Ŷi(1, 1, 1) . . . . . .

I Given the interest is in the marginal structural model parameter with
baseline covariate V ∈ L0, then can perform a final regression based
on all imputed potential outcomes, for example, run the model with
8N sample size

Ŷ (a1, a2, a3) = γ1 + γ2cum(Ā2) + γ3V + ε∗
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Doubly Robust MSM

I A direct extension of doubly robust estimator with a cross-sectional,
point treatment in Lecture 7

I Leads to consistent estimator of the structural regression parameters if

I either the sequence of propensity score models are correctly specified

I or the sequence of outcome regression models are correctly specified

I but not necessarily both
I When both sequences of models are correct, the resulting estimator

for structural regression parameters are semiparametric efficient

I The diagnostic nature of the DR MSM estimator is also similar to the
case with a point treatment

I has not been used much in practice, because no software + a bit more
complicated construction. . .

52 / 73



Covariate-balancing propensity scores
Imai and Ratkovic, 2015 JASA

I For IPW estimators, may have extreme weights under lack of overlap

I Lack of overlap is much more likely with large T

I The covariate-balancing propensity scores directly balance the mean
covariates, and bypass the need to estimate a parametric propensity
score model

I usually more efficient and robust

I But the balancing conditions at each time t are based on the entire
weight history (across T time points), and becomes much more
complicated with large T

I Other calibration estimator exists (e.g. residual balancing for MSM;
Zhou and Geoffrey, 2020)
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Strength of MSM

I Intuitive and relatively easy to explain – compared to g-formula, most
closely related to standard methods

I easily extended to different types of outcome variable

I only require to specify models for the treatment
assignment/propensity score and the MSM itself

I conditional distributions of (1) outcome Y given the covariates and (2)
time-varying covariates given past covariates and treatments are left
unspecified (unlike g-formula)

I less prone to model misspecification than the g-formula
(high-dimensional covariates)

I not prone to g-null paradox
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Limitations of MSM

I inverse weighting can be unstable and inefficient if there are extreme
weights

I stablized weights can help, but as we see in the cross-sectional setting,
not a lot

I prone to extreme weights, can use weight trimming or truncation (Cole
and Hernan, AJE 2008), but similar issue as in one time point (sensitive
to cutoff and ambiguous target population

I possible to extend to target populations, e.g. other balancing weights
such as overlap weights, but remain an open question

I possible interactions between treatment and time-varying covariates
cannot be explored because the MSM is marginal with respect to the
latter
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Balancing Weights for MSM?

I We have seen from prior lectures that IPW can be generalized to the
family of balancing weights, among which overlap weights address
the positivity issues from a design based perspective

I focus on interpretable overlap population at equipoise

I This is in general much harder to operationalize with longitudinal
treatments and confounding under the MSM framework

I whether the tilling function depends only on baseline confounders?

I if the tilling function depends on time-varying confounders, the
counterfactual time-varying covariates are not fully observable

I how to conceptualize the overlap target population with time-varying
treatment patterns

I open methodological questions to address
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Regression on longitudinal propensity score (RLPS)
(Achy-Brou, Frangakis and Griswold, 2010, Biometrics)

I MSM uses the longitudinal propensity score as inverse weight
I An alternative approach is through regressing the history of the

longitudinal propensity scores.
I Achy-Brou et al. (2010) showed that, similar to the g-computation:

Pr(Yi(āT ))

=
∑

e1,...,eT

Pr(Yobs
i | ei,1, Ai,1 = a1, ..., ei,T , Ai,T = aT )

× Pr(ei,T |ei,1, Ai,1 = a1, ..., ei,T−1, Ai,T−1 = aT−1)

... × Pr(ei,2 |ei,1, Ai,1 = a1)Pr(ei,1). (8)

I Therefore, given models for the RHS of the equation, we can estimate
the target quantities Pr(Y (āt ))
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Regression on longitudinal propensity score (RLPS)

Here instead of conditioning on all covariates, we use the propensity
scores as the single predictor at each time
Pros:

I Simpler to specify model and conduct model checking

I If the models are corrected specified, regression estimators are more
efficient (smaller variance in large samples) than the weighting
estimators

I Regression estimators are not as sensitive to extreme weights as
weighting estimators

Cons:
I Not as efficient as g-computation; and need to model distributions of

longitudinal PS
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RLPS: case study
Achy-Brou, Frangakis and Griswold (2009, Biometrics)

I Units: patients with diabetes who took active treatments.
I Time points: T = 3; Sample size: n = 131, 714.
I Treatments at one time: a1 Insulin; a2 Exenatide; a3 both; a4 other.
I Outcome: (1) hospitalization rate; (2) total health care cost.
I Covariates: 3 baseline and 18 time-varying ones.

I Goal: predict and compare patient outcomes if all patients had been
assigned to “Insulin-Insulin-Insulin" (In3),
“Exenatide-Exenatide-Exenatide" (Ex3), “Other-Other-Other" (O3)
longitudinal treatments, adjusting for time-varying confounding.
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RLPS: case study

Step 1 For each time point t = 1, ..., 3 and each treatment k = 1, ...K ,
estimate the propensity score models: Pr(Ai,t = k |Hi,t ) = ei,t,k .

Step 2 At each time point t and for each treatment k: Stratify subjects into
five blocks by the quintiles of the propensity scores. Check
covariates balance within each block. Remove units in the
non-overlapping region of the propensity scores.

Step 3 Fit regression models to estimate the probabilities
Pr(et |et−1, At−1, ..., e1, A1).

Step 4 Fit a regression model for Pr(Y |eT , AT , et−1, At−1, ..., e1, A1) and
estimate the model parameters by, say, MLE

Step 5 Estimate the average potential outcome E(Y (āT )) by (8), with the
parameter estimates obtained in Steps 3 and 4.
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Bayesian Inference of Longitudinal Treatments
I Similar to single-time treatments, Bayesian inference considers the

observed values of the four quantities to be realizations of random
variables and the unobserved values to be unobserved random
variables

I Use T = 2 to illustrate: there are six potential outcomes for each units:

V ≡ (L(0), L(1),Y (0, 0),Y (1, 0),Y (0, 1),Y (1, 1)).

I For each unit i, we observe one out of two intermediate potential
outcomes at time 1, Lobs

i = Li(Ai1), and one out of four potential
outcomes at time 2, Yobs

i = Yi(Ai1, Ai2)

I Potential outcomes under unassigned treatment sequences are
missing: Lmis

i = Li(1 − Ai1) and
Ymis
i = {Yi(1 − Ai1, Ai2),Yi(Ai1, 1 − Ai2);Yi(1 − Ai1, 1 − Ai2)}.
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Bayesian Inference: Joint Outcome Modeling
(Zajonic, 2012, JASA)

I Goal: simulate the posterior predictive distributions of the missing
potential outcomes

I Assuming
I Sequential ignorability
I Exchangeability
I Prior independence of parameters in the models for outcome and for

the assignment mechanism

I Then the posterior predictive distribution of the missing potential
outcomes is

Pr(Ymis, Lmis | Yobs, Lobs, A1, A2)

=
Pr(V)Pr(A1, A2 |V)∫∫

Pr(V)Pr(A2, A1 |V, )dYmisdLmis

∝

∫ ∏
i

Pr(Yi (0, 0),Yi (1, 0),Yi (0, 1),Yi (1, 1), Li1(0), Li1(1) | θ)p(θ)dθ
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Bayesian Inference: Joint Outcome Modeling

I The most straightforward Bayesian approach for time-varying
treatments requires specifying a joint outcome model of all variables
(intermediate variables, final potential outcomes and treatment
assignment and possibly conditional on baseline covariates)

I And then derive posterior predictive distributions of the missing
potential outcomes Ymis

i , mis
i given the observed data

I When T > 2, the joint outcome modeling approach may require
specifying a very complex high-dimensional model, raising inferential
challenges

I simplification via g-computation
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Bayesian Inference: g-computation
(Gustafson, 2015, Biometrics; Keil et al. 2018)

I Bayesian version of g-computation: build a Bayesian model for the
outcome given history at each time period, and then use g-formula to
combine the posterior draws from these models

I A simple case of T = 2 with binary outcome and treatment

I Use a Bayesian saturated binary regression model (one parameter for
each cell in the contingency table): A1, L |A1, Y |(A1, L, A2)

I Independent uniform prior for each of the parameters, posterior is
independently Beta distribution

I Results are very similar to the Bayesian marginal structural model
(later), but arguably simpler implementation, and fully Bayesian
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Dynamic treatment regimes

I We have focused on estimating the population effects of a static
treatment regimes

I Static treatment regimes assign treatment based only on baseline
covariates

I Dynamic treatment regimes assign treatment based on time-varying
covariates and baseline covariates

I Much research has been done in the frequentist paradigm, e.g.
Murphy (2003) proposed frequentist semiparametric plug-in methods
to find the dynamic treatment regime that maximizes the expected
final outcome E[Yi(a)] asymptotically

I From the Bayesian perspective, the procedure is straightforward as
that for static treatment regimes - a decision theory perspective
(Zajonc, 2012)
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Dynamic treatment regimes: Notations

I Notations: baseline covariates L0; treatment at time t, At ;
intermediate outcome at time 1 (time-varying covariates) L1; final
outcome at time 2, Y .

I A dynamic treatment regime (DTR) δ is a pair of decision functions
δ1 : X0 → {0, 1} and δ2 : X0 × {0, 1} × X1 → {0, 1} that assign units
with observed covariates (a1, l1, l0) to a treatment sequence:

δ ≡ (δ1(l0), δ2(l0, a1, l1))

I More generally, decision functions can be conditional probability
distributions over treatments

I Potential outcomes indexed by decision functions instead of treatment
sequences: Li1(δ1) ≡ Li1(δ1(Li0)) and

Yi(δ) ≡ Yi(δ1(Li0), δ2(Li0, δ1(Li0), Li1(δ1))).
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Average treatment regime effects

I Let δ′ be the reference or placebo treatment

I Average treatment regime effect of treatment regime δ is

τ(δ, δ′) = E[Yi(δ) − Yi(δ′)]

I Or the improvement from the status-quo (observed treatment):

τ(δ) = E[Yi(δ) − Yi]
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Optimal dynamic treatment regimes: Bayesian perspective

I D: the specific class of treatment regimes under consideration

I uδ(·): a utility function over outcomes (defined by investigators or
policymakers)

I D = (L0, A1, L1, A2,Y): all observed data from a sample

I The outcome of interest: the posterior expected utility for regime δ
given prior p(θ):

U(δ, p | D)

∝

∫ ∫
uδ(Ỹ (δ))Pr(Ỹ (δ)|θ)

N∏
i

Pr(D |θ)p(θ)dθdỸ (δ),

I General strategy: integrate over all sources of uncertainty by
maximizing using the posterior predictive distribution

68 / 73



Optimal dynamic treatment regimes: Bayesian perspective

I
∏N

i Pr(V |θ)p(θ) is the likelihood function of the observed data

I Expected utility averages over the posterior distribution of the
unknown outcome Ỹ (δ) conditional on the observed data D and
incorporate uncertainty in the parameters δ

I The optimal treatment regime selects the maximizing rule, conditional
on the observed data and prior,

δ∗(p,D) = arg maxδ∈DU(δ, p|D)

I Given the optimal treatment regime, we can calculate the average
improvement over the status-quo: E[Yi(δ∗) − Yi]
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Choosing the utility function

I Zajonc (2012) proposed a mean-variance utility function:

U(δ, p | λ,D) = λ1 E[Ỹ (δ)|D] + λ2V[Ỹ (δ)|D]

Varying λ1 and λ2 reflects mean-variance preference

I In single time treatment, Dehejia (2005) also considered the Bayesian
decision theory perspective.

I Slight different goals of analyzing static and dynamic treatment rules,
but rely on same set of assumptions

I DTRs helps better understand causal mechanisms to improve policy
and practice across different disciplines.
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