Inference from fitted models in \texttt{synthpop}

Gillian M Raab & Beata Nowok

\textbf{Abstract}

This paper describes the methods used for inference from models fitted to synthetic data generated by the \texttt{synthpop} package. Since earlier versions of \texttt{synthpop} new methodology for making inferences from synthetic data has been published \cite{5}. These new methods have the advantage over previously proposed methods \cite{6} of usually requiring only a single synthetic data set to be produced. We explain how these methods have been implemented in \texttt{synthpop} functions. Inference from synthetic data is only valid if the model used for synthesis has reproduced the relationships between variables that influence the fit to the model. Thus it is important that the results from synthetic data are compared to those from the original data. These methods, including some new, recently developed tests, are fully explained here.

\section{Introduction}

The \texttt{synthpop} package for creating synthetic data allows the user to produce synthetic version(s) of confidential data and also provides functions (e.g. \texttt{glm.synds()}) to make inferences from statistical models fitted to the synthetic data and to compare the results with those from a fit to the original data (e.g. \texttt{compare.fit.synds()}). This vignette explains the statistics computed by these functions.

The main focus of the \texttt{synthpop} package \cite{4} is to produce data for exploratory analysis with results for publication produced when the code developed on the synthetic data is run on the original, confidential data. This use of \texttt{synthpop} will usually require only a single synthetic data set ($m = 1$) of the same size as the original ($k = n$) that can be analysed as if it were the original data. In this situation an analysis of the synthetic data set, as if it were the original, is all that is required and no special methods of estimation are needed for the parameters of models fitted.
to synthetic data. When \(m > 1 \) the results from the different syntheses need to be combined and when the size of the synthetic data differs from the real data (\(k \neq n \)) the standard errors of the coefficients from the synthetic fit require adjustment to estimate the results that would be obtained from the real data. The methods implemented in \texttt{synthpop} for these situations are described in Section \ref{sec:methods_syn}.

The other situation is when the user wishes to make inferences to the population parameters directly from the synthetic data. For this case we need to use estimators that include the contributions to the uncertainty of the estimates from two sources:

1. The difference between the parameters estimated from the synthetic data and from the original data;

2. The difference between the estimates from the original data and the population parameters.

The contribution from the first source decreases as the number of synthetic data sets increases, while that from the second source is unchanged. Methods for population inference are dependent on the details of how the synthetic data have been produced, as discussed in \cite{ref1} and recently developed in \cite{ref5}. The functions \texttt{glm.synds()} and \texttt{lm.synds()} in \texttt{synthpop}, and their summary function \texttt{summary.fit.synds()} implement these methods. If synthesis has used samples from the posterior predictive distribution of the population, given the observed data (parameter \texttt{proper} of the function \texttt{syn()}) this will be recognized by \texttt{summary.fit.synds()} and appropriate calculations performed. The user can also specify that methods proposed for partially synthetic data \cite{ref7} should be used to calculate standard errors by (parameter \texttt{incomplete} of the function \texttt{summary.fit.synds()} or \texttt{compare.fit.synds()}). Although these are valid methods for any type of synthetic data they have the disadvantage of requiring multiple syntheses and should only be used when required, as discussed below. Details of how to carry out population inference with \texttt{synthpop} functions are in Section \ref{sec:methods_pop}.

To emphasize the difference between inference to the expectation from the real data and inference to the population quantities the estimates and their standard errors are labelled differently in \texttt{synthpop} inference, as follows

<table>
<thead>
<tr>
<th>Inference for</th>
<th>Coefficient</th>
<th>Standard error</th>
<th>(z) statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients expected from original data</td>
<td>\texttt{xpct(Beta)}</td>
<td>\texttt{xpct(se.Beta)}</td>
<td>\texttt{xpct(z)}</td>
</tr>
<tr>
<td>Population coefficients</td>
<td>\texttt{Beta.syn}</td>
<td>\texttt{se.Beta.syn}</td>
<td>\texttt{z.syn}</td>
</tr>
</tbody>
</table>
The final Section 4 explains the statistics calculated when the results from a fit of a model to synthetic data are compared to those from original with the function `compare.fit.synds()`. The synthetic data estimates may differ from what will be obtained from the real data if the model used for the synthesis has not captured all of the relationships between variables that influence the fitted parameters. The function `compare.fit.synds()` requires access to the original data as well as the synthetic data. It is designed to be used by the staff producing the synthetic data, or by the user at a validation step, with the long-term goal of evaluating and improving synthesis methods.

The following notation is used for quantities used in the calculations explained below.

- **Q** - the “true” vector of coefficients in the population from which the original data are assumed to be a sample.
- **p** - the number of coefficients and length of the vector **Q**.
- **q₁, ⋯, qᵢ, ⋯, qₘ** - vectors of estimated coefficients, where **qᵢ** is the estimate from the fit to the **i**th synthesis and their mean vector is $\bar{q}_m = \sum_{i=1}^{m} q_i / m$.
- **\hat{V}_{orig}** - the estimated variance-covariance matrix of the parameter estimates from a fit of the model to the original data; its diagonal vector is denoted by v_{orig}.
- **$\hat{V}_1, \cdots, \hat{V}_i, \cdots, \hat{V}_m$** - the estimated variance-covariance matrices of the coefficients **qᵢ**, calculated from each synthetic data set as if it were the original, and their mean matrix $\bar{V}_m = \sum_{i=1}^{m} \hat{V}_i / m$.
- **v₁, ⋯, vᵢ, ⋯, vₘ** - the diagonal vectors of \hat{V}_i which give the estimated variances of the coefficients **qᵢ** and their mean vector $\bar{v}_m = \sum_{i=1}^{m} v_i / m$.
- **$b_m = \sum_{i=1}^{m} (q_i - \bar{q}_m)^2 / (m - 1)$** - the between-synthesis variance of the q_i.
- **$B_m = b_{mat} b_{mat} / (m - 1)$**, where b_{mat} is a matrix of differences of the coefficients from their mean with i^{th} row $b_{mat}[i,] = q_i - \bar{q}_m$. The diagonal of B_m is b_m.

In all the situations discussed here **Q** is estimated by \bar{q}_m but its variance and standard errors will depend on what type of inference is required and how the synthesis has been carried out.

The results here apply when both the original and synthetic data are analysed by methods appropriate for simple random sampling. They could also be used when both analyses use the
same methods for complex samples, as discussed in [5], but methods for complex samples are not currently implemented in synthpop.

2 Inference to results from the original data

Here \tilde{q}_m and $\sqrt{v_m}$ estimate \hat{Q} and $\sqrt{v_{\text{orig}}}$, the coefficients and their standard errors from a fit to the original data. For a single synthetic data set produced by \texttt{syn()} with $m = 1$ and $k = n$ and the fit summarised with the default setting \texttt{population.inference = FALSE} there is no need to use the special functions for inference from synthetic data. These are the default settings in \texttt{syn()} and in \texttt{summary.fit.synds()}, used to carry out inference from an object produced by \texttt{glm.synds()} or \texttt{lm.synds()}.

\begin{verbatim}
R> library(synthpop)
R> ods <- SD2011[, c("smoke", "sex", "age", "edu")]
R> levels(ods$edu) <- c("NONE", "VOC", "SEC", "HIGH")
R> s1 <- syn(ods, seed = 1234)

Synthesis

smoke sex age edu

R> summary(glm(smoke ~ sex + age + edu + sex * edu,
+ data = s1$syn, family = "binomial"))

Call:
 glm(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
 data = s1$syn)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.974 -1.329 0.634 0.814 1.054

Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.23440 0.15712 1.490 0.1357
sexFEMALE -0.87392 0.14809 -5.900 3.6e-09 ***
age 0.00488 0.00195 2.490 0.0013 **
eduVOC -0.01597 0.13040 -0.123 0.9025
eduSEC -0.01597 0.13040 -0.123 0.9025
eduHIGH -0.47012 0.14029 -3.350 0.0009 ***
sexFEMALE:eduVOC 0.19880 0.19472 1.014 0.3101
sexFEMALE:eduSEC 0.24922 0.18419 1.350 0.1767
sexFEMALE:eduHIGH 0.76688 0.22817 3.350 0.0009 ***

\end{verbatim}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5693.7 on 4976 degrees of freedom
Residual deviance: 5495.3 on 4968 degrees of freedom
(23 observations deleted due to missingness)
AIC: 5513

Number of Fisher Scoring iterations: 4

R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu,
+ data = s1, family = "binomial"))

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with a single synthesis.
Inference to coefficients and standard errors that
would be obtained from the observed data.

Call:
glm.synds(formula = smoke ~ sex + age + edu + sex * edu,
 family = "binomial",
 data = s1)

Combined estimates:

 xpct(Beta) xpct(se.Beta) xpct(z) Pr(|xpct(z)|)
(Intercept) 0.23440 0.15712 1.49 0.1357
sexFEMALE 0.87392 0.14809 5.90 3.6e-09 ***
age 0.00488 0.00195 2.51 0.0121 *
eduVOC -0.01597 0.13040 -0.12 0.9025
eduSEC 0.47012 0.14029 3.35 0.0008 ***
eduHIGH 0.96509 0.17315 5.57 2.5e-08 ***
sexFEMALE:eduVOC -0.34922 0.18419 -1.90 0.0580 .
sexFEMALE:eduSEC -0.19880 0.19472 -1.02 0.3073
sexFEMALE:eduHIGH -0.66688 0.22817 -2.92 0.0035 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Running this code shows that the results from glm() and glm.synds() are identical. This is also
the case if the synthesis is carried out using the parameter proper = TRUE of syn() or if methods
proposed for partially synthetic data [7] are used by setting parameter incomplete = TRUE in
summary.fit.synds(). One small advantage of using glm.synds() is that it checks and gives
warnings if the model includes unsynthesised variables in such a way that they would invalidate
the inference, as in the next example.
Variable(s): sex not synthesised or used in prediction.
CAUTION: The synthesised data will contain the variable(s) unchanged.

Synthesis

smoke edu age

R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu,+
+ data = s2, family = "binomial"))

STERN WARNING: Variable(s) in formula are
not in visit sequence: sex

This inference will be wrong because these
variables will not match synthesised data

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with a single synthesis.
Inference to coefficients and standard errors that
would be obtained from the observed data.

Call:
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",+
 data = s2)

Combined estimates:

| | xpct(Beta) | xpct(se.Beta) | xpct(z) | Pr(|xpct(z)|) |
|--------------------------|------------|---------------|----------|--------------|
| (Intercept) | 0.79600 | 0.16398 | 4.85 | 1.2e-06 *** |
| sexFEMALE | 0.01161 | 0.14730 | 0.08 | 0.937 |
| age | 0.00352 | 0.00193 | 1.82 | 0.068 . |
| eduVOC | -0.22653 | 0.14289 | -1.59 | 0.113 |
| eduSEC | 0.13920 | 0.14781 | 0.94 | 0.346 |
| eduHIGH | 0.87571 | 0.18405 | 4.76 | 2.0e-06 *** |
| sexFEMALE:eduVOC | 0.00139 | 0.18238 | 0.01 | 0.994 |
| sexFEMALE:eduSEC | -0.01626 | 0.19114 | -0.09 | 0.932 |
| sexFEMALE:eduHIGH | -0.22723 | 0.23468 | -0.97 | 0.333 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The variable sex has been omitted from the visit.sequence, so that its relationships to other
variables are not maintained in the synthetic data. Warnings appear and the results show that
the coefficients involving sex are no longer significant and the other coefficients have changed.
The only time when `glm.synds()` will give different results from `glm()` with `population.inference = FALSE` is when k and n differ. In this case the standard errors of the coefficients are adjusted to what would be expected from the original data.

\[R > s3 <- syn(ods, seed = 1234, k = 500) \]

Sample(s) of size 500 will be generated from original data of size 5000.

Synthesis

smoke sex age edu

\[R > \# \text{original data} \]

\[R > \text{summary}(\text{glm(smoke} \sim \text{sex + age + edu + sex} \times \text{edu, + data = ods, family = "binomial"})\]

Call:
\[\text{glm(formula = smoke} \sim \text{sex + age + edu + sex} \times \text{edu, family = "binomial", + data = ods)} \]

Deviance Residuals:
\[
\begin{array}{cccccc}
\text{Min} & 1Q & \text{Median} & 3Q & \text{Max} \\
-2.026 & -1.295 & 0.634 & 0.808 & 1.123
\end{array}
\]

Coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 0.02815 | 0.15889 | 0.18 | 0.8594 |
| sexFEMALE | 1.03328 | 0.15048 | 6.87 | 6.6e-12 *** |
| age | 0.00636 | 0.00196 | 3.25 | 0.0012 ** |
| eduVOC | 0.21949 | 0.13261 | 1.66 | 0.0979 . |
| eduSEC | 0.61307 | 0.14420 | 4.25 | 2.1e-05 *** |
| eduHIGH | 1.07892 | 0.17994 | 6.00 | 2.0e-09 *** |
| sexFEMALE:eduVOC | -0.57658 | 0.18568 | -3.11 | 0.0019 ** |
| sexFEMALE:eduSEC | -0.44256 | 0.19619 | -2.26 | 0.0241 * |
| sexFEMALE:eduHIGH | -0.75249 | 0.23379 | -3.22 | 0.0013 ** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5669.7 on 4982 degrees of freedom
Residual deviance: 5478.1 on 4974 degrees of freedom
(17 observations deleted due to missingness)
AIC: 5496

Number of Fisher Scoring iterations: 4
R> # synthetic data
R> summary(glm(smoke ~ sex + age + edu + sex * edu,
+ data = s3$syn, family = "binomial"))

Call:
glm(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
 data = s3$syn)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.020 -1.143 0.611 0.811 1.292

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.36424 0.48105 -0.760 0.4489
sexFEMALE 1.52487 0.45421 3.359 0.00080 ***
age 0.00611 0.00618 0.994 0.3228
eduVOC 0.75458 0.39252 1.924 0.0545 .
eduSEC 0.93355 0.42495 2.203 0.0280 *
eduHIGH 1.78241 0.58580 3.039 0.0023 **
sexFEMALE:eduVOC -1.17474 0.57537 -2.039 0.0412 *
sexFEMALE:eduSEC -0.64500 0.60501 -1.067 0.2864
sexFEMALE:eduHIGH -2.12138 0.74579 -2.839 0.0045 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 573.92 on 497 degrees of freedom
Residual deviance: 547.63 on 489 degrees of freedom
(2 observations deleted due to missingness)
AIC: 565.6

Number of Fisher Scoring iterations: 4

R> # estimating original from synthetic
R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu,
+ data = s3, family = "binomial"))

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with a single synthesis.
Inference to coefficients and standard errors that
would be obtained from the observed data.

Call:
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
 data = s3, family = "binomial")
Here \texttt{glm()} fitted to a synthetic sample of size \(k = 500\) that is smaller than the original \(n = 5000\) gives larger standard errors, with no coefficients appearing significant, whereas \texttt{glm.synds()} estimates what would be found from the original. If \(m > 1\) then using \texttt{glm.synds()} will give you the average of these results for all \(m\) syntheses, as well as results from selected individual syntheses if you specify the parameter \texttt{msel}. Results from individual syntheses are simply what the standard functions \texttt{lm()} or \texttt{glm()} would report.

3 Inference to population parameters

The default setting of the parameter \texttt{incomplete} in \texttt{summary.fit.synds()} is \texttt{FALSE} indicating that methods of inference derived for the case when all of the original data have been replaced by synthesised values are used. This code gets inference to population parameters for our example in this case.

\begin{verbatim}
R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu, + data = s1, family = "binomial"), population.inference = TRUE)

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with a single synthesis.
Inference to population coefficients.
\end{verbatim}
Combined estimates:

| | Beta.syn se.Beta.syn z.syn Pr(>|z.syn|) |
|------------------|--|
| (Intercept) | 0.23440 0.22220 1.05 0.291 |
| sexFEMALE | 0.87392 0.20944 4.17 3.0e-05 *** |
| age | 0.00488 0.00275 1.77 0.076 . |
| eduVOC | -0.01597 0.18441 -0.09 0.931 |
| eduSEC | 0.47012 0.19840 2.37 0.018 * |
| eduHIGH | 0.96509 0.24487 3.94 8.1e-05 *** |
| sexFEMALE:eduVOC | -0.34922 0.26049 -1.34 0.180 |
| sexFEMALE:eduSEC | -0.19880 0.27537 -0.72 0.470 |
| sexFEMALE:eduHIGH| -0.66688 0.32268 -2.07 0.039 * |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You will find that, as expected, the standard errors are larger than when `population.inference = FALSE`. When, as for `s1`, synthesis has been carried out with the default `proper = FALSE` the standard errors of the average estimated coefficients, \bar{q}_m are calculated as $\sqrt{\bar{v}_m/m + \bar{v}_m k/n}$. If the data had been synthesised with the `syn()` option `proper = TRUE` this will be recognized by `glm.fit.synds()` and its `summary()` function and appropriate standard errors for \bar{q}_m calculated as $\sqrt{\bar{v}_m(1 + k/n)/m + \bar{v}_m k/n}$. In each case the first term under the square root sign gives the contribution from the differences between \bar{q}_m and \hat{Q} while the second provides the contribution from the differences between \hat{Q} and the population parameters Q. The first term is larger when synthesis is done with `proper = TRUE` as we see from the next analysis.

```r
R> s4 <- syn(ods, seed = 5678, proper = TRUE)
```

Synthesis

| smoke sex age edu | |

```r
R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu, + data = s4, family = "binomial"), population.inference = TRUE)
```

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with a single synthesis.
Inference to population coefficients.

Call:

```r
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial", + data = s4)
```
Combined estimates:

| Term | Beta.syn | se.Beta.syn | z.syn | Pr(>|z.syn|) |
|------------------|----------|-------------|-------|-----------|
| (Intercept) | -0.09316 | 0.26848 | -0.35 | 0.72859 |
| sexFEMALE | 0.92148 | 0.26242 | 3.51 | 0.00045 ***|
| age | 0.00935 | 0.00341 | 2.75 | 0.00604 **|
| eduVOC | 0.26584 | 0.22889 | 1.16 | 0.24546 |
| eduSEC | 0.56847 | 0.24238 | 2.35 | 0.01901 *|
| eduHIGH | 1.30446 | 0.31426 | 4.15 | 3.3e-05 ***|
| sexFEMALE:eduVOC | -0.48374 | 0.32551 | -1.49 | 0.13725 |
| sexFEMALE:eduSEC | -0.31451 | 0.33729 | -0.93 | 0.35109 |
| sexFEMALE:eduHIGH| -0.79185 | 0.41273 | -1.92 | 0.05504 .|

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see here that inference is possible when only one synthetic data set is produced, but increasing \(m \) improves the precision of the estimates as you will see from the smaller se(Beta.syn) values in the example below.

\[
R> s5 <- syn(ods, seed = 5678, m = 10, proper = TRUE, print.flag = FALSE)
R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu,
+ data = s5, family = "binomial"), population.inference = TRUE)
\]

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with 10 syntheses.
Inference to population coefficients.

Call:
\[
\text{glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
\text{data = s5})}
\]

Combined estimates:

| Term | Beta.syn | se.Beta.syn | z.syn | Pr(>|z.syn|) |
|------------------|----------|-------------|-------|-----------|
| (Intercept) | 0.12996 | 0.17508 | 0.74 | 0.4579 |
| sexFEMALE | 1.02161 | 0.16885 | 6.05 | 1.4e-09 ***|
| age | 0.00530 | 0.00213 | 2.48 | 0.0130 *|
| eduVOC | 0.14992 | 0.14708 | 1.02 | 0.3080 |
| eduSEC | 0.48663 | 0.15828 | 3.07 | 0.0021 **|
| eduHIGH | 0.98525 | 0.19689 | 5.00 | 5.6e-07 ***|
| sexFEMALE:eduVOC | -0.51278 | 0.20700 | -2.48 | 0.0132 *|
| sexFEMALE:eduSEC | -0.41484 | 0.21636 | -1.92 | 0.0552 .|
| sexFEMALE:eduHIGH| -0.63809 | 0.25982 | -2.46 | 0.0141 *|

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The synthpop package was written with completely synthesised data in mind but, with care, it can also be used for population inference for some incompletely synthesised data, when all values
for one or more variable are unchanged. The synthesis must have been conditional on the values of all unsynthesised variables. This can be done by placing them at the start of the visit sequence and setting their parameter `method = ""`. The functions `lm.synds()` and `glm.synds()` check this condition and print warnings, as we saw for the synthesis `s2` above.

If only the unchanged variables are all predictor variables in a statistical model then the methods for population inference described above will still apply. However, if one of the unchanged variables is the dependent variable in a statistical model the results above will not hold because the between-synthesis variance will generally be smaller than it would have been if the variable had been completely synthesised. In this case the between synthesis variance can be estimated from multiple syntheses [7] with standard errors calculated as $\sqrt{b_m/m + \tilde{v}_m/k/n}$. This standard error estimate requires $m > 1$ and larger values of m such as $m > 5$ are recommended for reliable results. This estimate of standard error is valid for any inference from synthetic data, but the requirement for multiple syntheses, and the associated increase in disclosure risk, means it should only be used when it is the only choice. Simulations and theoretical results have confirmed that it is only required for population inference when the dependent variable is not completely synthesised.

To use the method due to [7] the parameter `incomplete` must be set to `TRUE`. In the next example `smoke` is not synthesised and the other variables are synthesised from its unchanged values.

```r
R> s6 <- syn(ods, seed = 910011, m = 6,
+ method = c("", "cart", "cart", "cart"), print.flag = FALSE)
R> summary(glm.synds(smoke ~ sex + age + edu + sex * edu,
+ data = s6, family = "binomial"), population.inference = TRUE,
+ incomplete = TRUE)
```

Note: Your response variable is not synthesised. The compare method for evaluating lack-of-fit and a summary of your model with `population.inference = TRUE` should use `incomplete = TRUE` (see vignette on inference for details).

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with 6 syntheses.
Inference to population coefficients.

Call:
`glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
data = s6)`
Combined estimates:

| Beta.syn | se.Beta.syn | z.syn | Pr(>|z.syn|) |
|-----------|--------------|--------|-------------|
| (Intercept) | 0.00974 | 0.17400 | 0.06 | 0.95534 |
| sexFEMALE | 1.13040 | 0.15618 | 7.24 | 4.6e-13 *** |
| age | 0.00582 | 0.00201 | 2.89 | 0.00381 ** |
| eduVOC | 0.23256 | 0.14725 | 1.58 | 0.11425 |
| eduSEC | 0.66418 | 0.17267 | 3.85 | 0.00012 *** |
| eduHIGH | 1.23248 | 0.18972 | 6.50 | 8.2e-11 *** |
| sexFEMALE:eduVOC | -0.61755 | 0.19259 | -3.21 | 0.00134 ** |
| sexFEMALE:eduSEC | -0.54355 | 0.22012 | -2.47 | 0.01354 * |
| sexFEMALE:eduHIGH | -1.02610 | 0.23898 | -4.29 | 1.8e-05 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(glm.synds(formula = smoke ~ sex + age + edu + sex * edu, + data = s6, family = "binomial"), population.inference = TRUE)

Note: Your response variable is not synthesised. The compare method for evaluating lack-of-fit and a summary of your model with population.inference = TRUE should use incomplete = TRUE (see vignette on inference for details).

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with 6 syntheses.
Inference to population coefficients.

Call:
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
 data = s6)

Combined estimates:

| Beta.syn | se.Beta.syn | z.syn | Pr(>|z.syn|) |
|-----------|--------------|--------|-------------|
| (Intercept) | 0.00974 | 0.17108 | 0.06 | 0.9546 |
| sexFEMALE | 1.13040 | 0.16372 | 6.90 | 5.0e-12 *** |
| age | 0.00582 | 0.00211 | 2.76 | 0.0058 ** |
| eduVOC | 0.23256 | 0.14313 | 1.62 | 0.1042 |
| eduSEC | 0.66418 | 0.15546 | 4.27 | 1.9e-05 *** |
| eduHIGH | 1.23248 | 0.19705 | 6.25 | 4.0e-10 *** |
| sexFEMALE:eduVOC | -0.61755 | 0.20154 | -3.06 | 0.0022 ** |
| sexFEMALE:eduSEC | -0.54355 | 0.22012 | -2.47 | 0.01354 * |
| sexFEMALE:eduHIGH | -1.02610 | 0.23898 | -4.29 | 1.8e-05 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first command here gives the correct estimates for incompletely synthesised data with standard errors calculated from differences between the syntheses. The second one gives the
results you would obtain by ignoring the fact that some of the variables have not been synthesised. Differences are very small here because with $m = 6$ the contribution from the first term under the square root is small compared to the second term.

In addition to these combined estimates from all the syntheses, the user can choose to print out the results from selected individual syntheses from the m with the parameter (msel). These are simply what the original functions ($\text{lm}()$ or $\text{glm}()$) would report.

$$R> \text{summary(glm.synds(smoke ~ sex + age + edu + sex * edu,}$
$$+ \text{data = s6, family = "binomial"}, \text{population.inference = TRUE,}$
$$+ \text{incomplete = TRUE, msel = 1:2})$$

Note: Your response variable is not synthesised. The compare method for evaluating lack-of-fit and a summary of your model with population.inference = TRUE should use incomplete = TRUE (see vignette on inference for details).

Warning: Note that all these results depend on the synthesis model being correct.

Fit to synthetic data set with 6 syntheses.
Inference to population coefficients.

Call:
$\text{glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",}$
$\text{data = s6})$

Combined estimates:

\[
\begin{array}{lllll}
\text{Beta.syn} & \text{se.Beta.syn} & \text{z.syn} & \text{Pr(>|z.syn|)} \\
\text{(Intercept)} & 0.00974 & 0.17400 & 0.06 & 0.95534 \\
\text{sexFEMALE} & 1.13040 & 0.15618 & 7.24 & 4.6e-13 *** \\
\text{age} & 0.00582 & 0.00201 & 2.89 & 0.00381 ** \\
\text{eduVOC} & 0.23256 & 0.14725 & 1.58 & 0.11425 \\
\text{eduSEC} & 0.66418 & 0.17267 & 3.85 & 0.00012 *** \\
\text{eduHIGH} & 1.23248 & 0.18972 & 6.50 & 8.2e-11 *** \\
\text{sexFEMALE:eduVOC} & -0.61755 & 0.19259 & -3.21 & 0.00134 ** \\
\text{sexFEMALE:eduSEC} & -0.54355 & 0.22012 & -2.47 & 0.01354 * \\
\text{sexFEMALE:eduHIGH} & -1.02610 & 0.23898 & -4.29 & 1.8e-05 ***
\end{array}
\]

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimates for selected syntheses contributing to the combined estimates:

Coefficients:

\[
\begin{array}{lll}
\text{syn=1} & \text{syn=2} \\
\text{(Intercept)} & 0.11746 & -0.107911 \\
\text{sexFEMALE} & 1.12992 & 1.169610
\end{array}
\]

14
Comparing fits to the original and synthesised data

4.1 Overview of comparisons

The inferences from synthetic data, described above, all depend on the synthesising model being correct. If the original data can be accessed then the results of a model fitted to the original and synthetic data can be compared with the function `compare.fit.synds()` which provides a graphical representation of the differences as well as statistics to evaluate their importance. The methods we implement for evaluating these biases are standardised differences in the coefficients and a combined lack-of-fit test for the differences between the vector of coefficients estimated from the original and the synthetic data. These can be used to evaluate the specific utility of synthetic data for this analysis and they incorporate statistical tests of the null hypothesis that the synthesising model is the same as the model that is presumed to have generated the original data. Section 4.2 explains the details of these methods.

The graphical output from `compare.fit.synds()` consists of a comparison of the confidence intervals for the coefficients calculated from the original and the synthetic data. Results also include a confidence interval overlap measure for each coefficient: the ratio of the overlap of the intervals to an average of their lengths. Previous use of confidence-interval-overlap measures
have compared the intervals for population inference with synthetic data to the interval from the original data. The parameter `population.inference = TRUE` can be used to plot and calculate these intervals. But in the default case with `population.inference = FALSE` plots and intervals for the estimate of \hat{Q} expected from synthetic data are calculated. Details of each method are explained in Sections 4.3 and 4.4.

4.2 Assessing the bias in estimates from synthetic data

Function `compare.fit.synds()` calculates the standardised difference between the original and synthetic coefficients where the standardisation uses the standard errors of the original fit, $\sqrt{\hat{v}_{\text{orig}}}$. In Section 2 it was necessary to calculate the standard errors from an estimate \hat{V}_m of \hat{V}_{orig}, but here we have access to the original data and so we can use its known value. The vector of the means of the standardised differences, z_j, over m synthetic data sets is

$$z = (\bar{q}_m - \hat{Q})/\sqrt{v_{\text{orig}}/m}.$$

The mean of the absolute values of z_j for each coefficient, the $|\bar{z}| = \frac{\sum_{j=1}^{p}|z_j|}{p}$ value, gives the first summary measure of the difference between the observed and synthetic data.

The standardised differences simply summarise the bias in the estimates in relation to the precision of the estimates from the original data. If the model used to synthesise the data was the one which generated the original data, for completely synthesised data with `proper = FALSE` the expected value of each $|z_j|$ and of $|\bar{z}|$ will be $\sqrt{2/(m\pi)}$ taking the values 0.798, 0.356, 0.252, 0.056 for $m = 1, 5, 10, 200$. For completely synthesised data with `proper = TRUE` the expectations of $|z_j|$ and of $|\bar{z}|$ become $\sqrt{(1 + 2/\pi)/m}$, giving larger absolute differences. As m increases the bias expected in the null case when the synthesising model is correct decreases and the test described below will have greater power to detect a poor synthesising model. If the synthesising model is correct the coefficients from the synthetic data \bar{q}_m will have expectations \hat{Q} and variances $v_{\text{orig}}(k/n)/m$ when the synthesis parameter `proper = FALSE` or $v_{\text{orig}}(1+k/n)/m$ for synthesis with `proper = TRUE`. These results allow a test of the bias of each coefficient to be calculated as a p-value giving the probability of a difference as large as that observed under the null hypothesis that the synthesising model is correct.

A composite lack-of-fit test for the vector of differences between the coefficients from the fit to

1From the expected value of a half-Normal distribution
the original and synthetic data can be obtained from the quadratic form

$$LOF = (\bar{q}_m - \hat{Q})' V_{diff}^{-1} (\bar{q}_m - \hat{Q})$$

where V_{diff} is the between synthesis variance-covariance matrix for the differences, which depends on the synthesis method used. For completely synthesised data $V_{diff} = \hat{V}_{orig}(k/n)/m$ if the synthesis parameter $proper = FALSE$ or $V_{diff} = \hat{V}_{orig}(1 + k/n)/m$ for synthesis with $proper = TRUE$. If the synthesis model is correct these LOF measures will have a χ^2 distribution with degrees of freedom equal to the number of coefficients in the model.

We illustrate these results with three different syntheses and three different logistic regression models. For the first synthesis $s7$ and the first fit $f7$ the synthesis model is compatible with the model fitted. By using the new function `syn.strata` the synthesis preserves all the relationships between the stratifying variable, synthesised first, and the within-stratum relationships. Here stratification is by the dependent variable “smoke” and within each smoking group education is modelled as a multinomial distribution conditional on sex, giving the correct model for $f7$.

```r
R> ods <- ods[!is.na(ods$smoke),] # remove 10 observations with missing "smoke"
R> s7 <- syn.strata(ods, m = 5, method = "parametric", strata = "smoke",
+     seed = 5678, visit.sequence = c("smoke", "sex", "edu", "age"),
+     print.flag = FALSE, tab.strataobs = FALSE)
R> f7 <- glm.synds(smoke ~ sex + edu + sex * edu, data = s7,
+     family = "binomial")
R> compare(f7, ods, plot.intercept = TRUE, plot = "coef")
```

```
Call used to fit models to the data:
glm.synds(formula = smoke ~ sex + edu + sex * edu, family = "binomial",
  data = s7)
```

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.47653</td>
<td>0.287</td>
<td>0.8784</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>-0.14727</td>
<td>0.742</td>
<td>0.9624</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.22471</td>
<td>0.615</td>
<td>0.9427</td>
</tr>
<tr>
<td>eduSEC</td>
<td>-0.46064</td>
<td>0.303</td>
<td>0.8825</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.46585</td>
<td>0.298</td>
<td>0.8812</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>0.05417</td>
<td>0.904</td>
<td>0.9862</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>0.41637</td>
<td>0.352</td>
<td>0.8938</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>0.16529</td>
<td>0.712</td>
<td>0.9578</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 8 coefficients
Mean confidence interval overlap: 0.9231
Mean absolute std. coef diff: 0.3014
Lack-of-fit: 3.948; p-value 0.862 for test that synthesis model is compatible
with a chi-squared test with 8 degrees of freedom

Confidence interval plot:

As expected, there is no evidence of any lack of fit and $|\bar{z}|$ is not out of line with what we expect
with $m = 5$. The second example is more typical of what a user of synthpop might use with the
default method cart for all variables.

R> ods <- ods[!is.na(ods$smoke),] # remove 10 observations with missing "smoke"
R> s8 <- syn(ods, m = 5, seed = 5678,
+ visit.sequence = c("sex", "edu", "age", "smoke"), print.flag = FALSE)
R> f8 <- glm.synds(smoke ~ sex + age + edu + sex * age, data = s8,
+ family = "binomial")
R> compare(f8, ods)

Call used to fit models to the data:
glm.synds(formula = smoke ~ sex + age + edu + sex * age, family = "binomial",
data = s8)

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.2463</td>
<td>0.005</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>2.0424</td>
<td>0.000</td>
</tr>
<tr>
<td>age</td>
<td>2.2534</td>
<td>0.000</td>
</tr>
<tr>
<td>eduVOC</td>
<td>0.2058</td>
<td>0.645</td>
</tr>
<tr>
<td>eduSEC</td>
<td>0.5315</td>
<td>0.235</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.2374</td>
<td>0.595</td>
</tr>
<tr>
<td>sexFEMALE:age</td>
<td>-2.9877</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 7 coefficients
Mean confidence interval overlap: 0.6536
Mean absolute std. coef diff: 1.358
Lack-of-fit: 71.02; p-value 0 for test that synthesis model is compatible
with a chi-squared test with 7 degrees of freedom

Confidence interval plot:

While the lack-of-fit test indicates differences and there is clear evidence of bias for two of the
seven coefficients and some evidence for a third one, the general pattern of coefficients, illustrated
in Figure 1, is the same for both intervals and would not mislead any decisions to be made on
the basis of preliminary analysis with the synthetic data. This is an example of a general point
that we should not expect that these tests of fit should show no differences since it is sufficient for
the synthetic data to be a good approximation to the original. The p-values tell us that there is evidence of a difference but not how important it may be. The effect size, measured here by z_j (Std. coef diff), gives a better measure of importance. In this example the largest absolute effect size is only 1.4. The third synthesis uses the method "sample" for all variables, a bootstrap sample that does not preserve any of the relationships between variables, and the fitted model is clearly wrong with every coefficient giving evidence of a difference and the large absolute effect sizes, with three over 5.

```r
R> s9 <- syn(ods, m = 5, seed = 5678, method = "sample",
+ visit.sequence = c("sex", "edu", "age", "smoke"), print.flag = FALSE)
R> f9 <- glm.synds(smoke ~ sex + age + edu + sex * edu, data = s9,
+ family = "binomial")
R> compare(f9, ods)
```

Call used to fit models to the data:
```
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
 data = s9)
```
Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>6.757</td>
<td>0</td>
<td>-0.72377</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>-7.641</td>
<td>0</td>
<td>-0.94926</td>
</tr>
<tr>
<td>age</td>
<td>-3.200</td>
<td>0</td>
<td>0.18369</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-2.182</td>
<td>0</td>
<td>0.44343</td>
</tr>
<tr>
<td>eduSEC</td>
<td>-4.020</td>
<td>0</td>
<td>-0.02552</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-6.137</td>
<td>0</td>
<td>-0.56569</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>4.063</td>
<td>0</td>
<td>-0.03639</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>2.336</td>
<td>0</td>
<td>0.40406</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>3.844</td>
<td>0</td>
<td>0.01931</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 9 coefficients

Mean confidence interval overlap: -0.1389
Mean absolute std. coef diff: 4.464
Lack-of-fit: 975.3; p-value 0 for test that synthesis model is compatible with a chi-squared test with 9 degrees of freedom

Confidence interval plot:

When the dependent variable is not synthesised we need to set incomplete = TRUE for correct inference. This leads to the calculation of the variance matrix of the differences as $V_{diff} = B_m/m$. This variance matrix will be singular if the m is smaller than then number of coefficients (p) and m considerably larger than p is recommended. In this case the lack-of-fit test needs to use Hotelling’s T^2 statistic referred to an F distribution with degrees of freedom p and $m - p$. In the next example two variables, including the dependent variable are unsynthesised so incomplete = TRUE is required and m increased to 20.

```r
R> s10 <- syn(ods, seed = 910011, m = 20, method = c("", ",", "cart", "cart"),
+   print.flag = FALSE)
R> f10 <- glm.synds(smoke ~ sex + age + edu + sex * edu, data = s10,
+   family = "binomial")
```

Note: Your response variable is not synthesised. The compare method for evaluating lack-of-fit and a summary of your model with population.inference = TRUE should use incomplete = TRUE (see vignette on inference for details).

```r
R> compare(f10, ods)
```

Call used to fit models to the data:

```r
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial",
   data = s10)
```

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
</table>

20
Measures for 20 syntheses and 9 coefficients

Mean confidence interval overlap: 0.9357

Mean absolute std. coef diff: 0.2519

Lack-of-fit: 30.42; p-value 0 for test that synthesis model is compatible with a chi-squared test with 9 degrees of freedom

Confidence interval plot:

```r
R> compare(f10, ods, incomplete = TRUE)
```

RCall used to fit models to the data:

```r
glm.synds(formula = smoke ~ sex + age + edu + sex * edu, family = "binomial", data = s10)
```

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.07201</td>
<td>0.747</td>
<td>0.9816</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>0.22107</td>
<td>0.323</td>
<td>0.9436</td>
</tr>
<tr>
<td>age</td>
<td>0.04241</td>
<td>0.850</td>
<td>0.9892</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.20888</td>
<td>0.350</td>
<td>0.9467</td>
</tr>
<tr>
<td>eduSEC</td>
<td>-0.28726</td>
<td>0.199</td>
<td>0.9267</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>0.38493</td>
<td>0.085</td>
<td>0.9018</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>0.09449</td>
<td>0.673</td>
<td>0.9759</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>-0.10292</td>
<td>0.645</td>
<td>0.9737</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>-0.85302</td>
<td>0.000</td>
<td>0.7824</td>
</tr>
</tbody>
</table>

Measures for 20 syntheses and 9 coefficients

Mean confidence interval overlap: 0.9357

Mean absolute std. coef diff: 0.2519

Lack-of-fit: 4.164; p-value 0.015 for test that synthesis model is compatible with an F distribution with 9 and 11 degrees of freedom

Confidence interval plot:

This gives a fit that, judged by the values of z_j (Std. coef diff) and the overlaps is acceptable, but with $m = 20$ there is evidence of lack-of-fit for two coefficients.
4.3 Confidence interval overlap when population.inference = FALSE

In this case confidence interval overlaps are calculated using the standard errors from the original fit. The overlap for the \(i^{th} \) coefficient is

\[
IO_j = \left[\frac{\min(l_o, u_o) - \max(l_s, l_s)}{u_o - l_o} \right]
\]

(1)

where the confidence interval for the original coefficient is \((l_o, u_o)\) and for that from the synthesised data is \((l_s, u_s)\). When the intervals do not overlap \(IO_j\) becomes negative. Note that this interval is a simplification of Equation 2 below, proposed by [3] because both intervals are the same length. The two intervals are offset by \(|z_j|\) so that standardised difference and the interval overlap are linearly related by \(IO_j = 1 - |z_j|/(2q_{N(1-\alpha/2)}) \), where \(q_{N(1-\alpha/2)} \) is the quantile of the Normal distribution used in calculating the confidence intervals, i.e. 1.96 for 95% intervals. The average of the overlaps can then be used as a second summary measure of utility.

The expected value of \(IO_j \) for 95% intervals will be \(1 - \sqrt{2/(m\pi)}/(2 \cdot 1.96) \), giving expected overlaps of 79.6%, 90.9%, 93.5% and 98.6% for \(m = 1,5,10,200 \).

To illustrate these methods we select three different fitted models. In the first case the synthesis model is compatible with the model being fitted. A model with smoking predicted from sex, education and its interactions is evaluated. The synthesis is stratified by the dependent variable, smoking, with missing values removed and a parametric model with sex and education is fitted in each stratum, giving a synthesis compatible with the model.

\[
\text{Call used to fit models to the data:}
\]

\[
\text{glm.synds(formula = smoke ~ sex + edu + sex * edu, family = "binomial")}
\]
Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.4538</td>
<td>0.310</td>
<td>0.8842</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>-0.3047</td>
<td>0.496</td>
<td>0.9223</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.1355</td>
<td>0.762</td>
<td>0.9654</td>
</tr>
<tr>
<td>eduSEC</td>
<td>-0.1393</td>
<td>0.755</td>
<td>0.9645</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.2363</td>
<td>0.597</td>
<td>0.9397</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>0.2908</td>
<td>0.516</td>
<td>0.9258</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>-0.1862</td>
<td>0.677</td>
<td>0.9525</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>0.2083</td>
<td>0.641</td>
<td>0.9469</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 8 coefficients
Mean confidence interval overlap: 0.9377
Mean absolute std. coef diff: 0.2444
Lack-of-fit: 5.57; p-value 0.695 for test that synthesis model is compatible with a chi-squared test with 8 degrees of freedom

Confidence interval plot:

```r
R> f12 <- glm.synds(smoke ~ sex + edu + sex * edu, data = s12, +
                    family = "binomial")
R> compare(f12, ods, plot.intercept = TRUE)
```

Call used to fit models to the data:

```r
glm.synds(formula = smoke ~ sex + edu + sex * edu, family = "binomial",
          data = s12)
```

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.7747</td>
<td>0.221</td>
<td>0.8024</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>0.7394</td>
<td>0.242</td>
<td>0.8114</td>
</tr>
<tr>
<td>eduVOC</td>
<td>0.9286</td>
<td>0.142</td>
<td>0.7631</td>
</tr>
<tr>
<td>eduSEC</td>
<td>0.7619</td>
<td>0.228</td>
<td>0.8056</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.3224</td>
<td>0.610</td>
<td>0.9177</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>-1.3197</td>
<td>0.037</td>
<td>0.6633</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>-0.3114</td>
<td>0.622</td>
<td>0.9205</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>0.2580</td>
<td>0.683</td>
<td>0.9342</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 8 coefficients
Mean confidence interval overlap: 0.8273
Mean absolute std. coef diff: 0.677
Lack-of-fit: 10.34; p-value 0.242 for test that synthesis model is compatible with a chi-squared test with 8 degrees of freedom

Confidence interval plot:
The first synthesis gives results in line with what would be expected for standardised differences and overlaps from a correct model with $m = 5$, and the second with synthesis from the posterior predictive distribution of the parameters gives larger standardised differences and lower overlaps. In neither case does the lack-of-fit test suggest any problem with the synthesising model.

The next example uses parametric models which capture some of the relationships but largely miss the interaction between education and sex.

```r
R> s13 <- syn(ods, m = 5, seed = 9101112, method = "parametric", +   print.flag = FALSE)
R> s14 <- syn(ods, m = 5, seed = 1415, method = "parametric", +   proper = TRUE, print.flag = FALSE)
R> f13 <- glm.synds(smoke ~ sex + edu + age + sex * edu, data = s13, +   family = "binomial")
R> compare(f13, ods, plot.intercept = TRUE, plot = "coef")
```

Call used to fit models to the data:

```r
glm.synds(formula = smoke ~ sex + edu + age + sex * edu, family = "binomial",
   data = s13)
```

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.35891</td>
<td>0.422</td>
<td>0.9084</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>-2.23180</td>
<td>0.000</td>
<td>0.4307</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.87314</td>
<td>0.051</td>
<td>0.7773</td>
</tr>
<tr>
<td>eduSEC</td>
<td>-0.02193</td>
<td>0.961</td>
<td>0.9944</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.65646</td>
<td>0.835</td>
<td>0.9763</td>
</tr>
<tr>
<td>age</td>
<td>-0.09307</td>
<td>0.835</td>
<td>0.9763</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>2.82787</td>
<td>0.000</td>
<td>0.2786</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>1.79093</td>
<td>0.000</td>
<td>0.5431</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>2.52655</td>
<td>0.000</td>
<td>0.3555</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 9 coefficients

Mean confidence interval overlap: 0.6774
Mean absolute std. coef diff: 1.265
Lack-of-fit: 74.28; p-value 0 for test that synthesis model is compatible with a chi-squared test with 9 degrees of freedom

Confidence interval plot:

```r
R> f14 <- glm.synds(smoke ~ sex + edu + age + sex * edu, data = s14, +   family = "binomial")
R> compare(f14, ods, plot.intercept = TRUE)
```

Call used to fit models to the data:

```r
glm.synds(formula = smoke ~ sex + edu + age + sex * edu, family = "binomial",
   data = s14)
```
Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.8080</td>
<td>0.201</td>
<td>0.7939</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>-2.5032</td>
<td>0.000</td>
<td>0.3614</td>
</tr>
<tr>
<td>eduVOC</td>
<td>0.0193</td>
<td>0.976</td>
<td>0.9951</td>
</tr>
<tr>
<td>eduSEC</td>
<td>0.3371</td>
<td>0.594</td>
<td>0.9140</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>-0.6988</td>
<td>0.269</td>
<td>0.8217</td>
</tr>
<tr>
<td>age</td>
<td>1.2870</td>
<td>0.042</td>
<td>0.6717</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>3.1646</td>
<td>0.000</td>
<td>0.1927</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>2.3845</td>
<td>0.000</td>
<td>0.3917</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>2.5495</td>
<td>0.000</td>
<td>0.3496</td>
</tr>
</tbody>
</table>

Measures for 5 syntheses and 9 coefficients

Mean confidence interval overlap: 0.6102
Mean absolute std. coef diff: 1.528
Lack-of-fit: 53.73; p-value 0 for test that synthesis model is compatible with a chi-squared test with 9 degrees of freedom

Confidence interval plot:

Both syntheses identify the problems with the synthesis model, but the first analysis with `proper = FALSE` shows it more clearly.

4.4 Confidence intervals for `population.inference = TRUE`.

When the parameter `population.inference` of the `compare.fit.synds()` function is set to `TRUE` interval overlaps are calculated as

\[
 IO_j = 0.5 \left[\frac{\min(u_o, u_s) - \max(l_o, l_s)}{u_o - l_o} + \frac{\min(u_o, u_s) - \max(l_o, l_s)}{u_s - l_s} \right]
\]

as proposed by [3]. Here the proportion of overlap is calculated with the geometric mean of the interval lengths in the denominator. When the intervals are calculated on the original scales (plot = "coef") they differ in length, with that from the synthetic data usually being wider. If the intervals are printed and plotted as z statistics (plot = "z") these differences in width of intervals are not apparent because each one has been standardised by its standard error. The differences are most pronounced for small m and when the data have been synthesised with `proper = TRUE` as in s16 below.
R> s15 <- syn(ods, proper = TRUE, print.flag = FALSE)
R> f15 <- glm.synds(smoke ~ sex + edu + sex * edu, data = s15, + family = "binomial")
R> compare(f15, ods, plot.intercept = TRUE, plot = "coef")

Call used to fit models to the data:
glm.synds(formula = smoke ~ sex + edu + sex * edu, family = "binomial", data = s15)

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.3667</td>
<td>0.795</td>
<td>0.9064</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>1.2255</td>
<td>0.386</td>
<td>0.6874</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.7350</td>
<td>0.603</td>
<td>0.8125</td>
</tr>
<tr>
<td>eduSEC</td>
<td>1.6695</td>
<td>0.238</td>
<td>0.6741</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>0.6869</td>
<td>0.627</td>
<td>0.8248</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>0.2085</td>
<td>0.883</td>
<td>0.9468</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>-1.8782</td>
<td>0.184</td>
<td>0.7420</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>-1.6586</td>
<td>0.241</td>
<td>0.7436</td>
</tr>
</tbody>
</table>

Measures for one synthesis and 8 coefficients
Mean confidence interval overlap: 0.7312
Mean absolute std. coef diff: 1.054
Lack-of-fit: 6.591; p-value 0.581 for test that synthesis model is compatible with a chi-squared test with 8 degrees of freedom

Confidence interval plot:
R> compare(f15, ods, plot.intercept = TRUE, population.inference = TRUE, + plot = "coef")

Call used to fit models to the data:
glm.synds(formula = smoke ~ sex + edu + sex * edu, family = "binomial", data = s15)

Differences between results based on synthetic and observed data:

<table>
<thead>
<tr>
<th></th>
<th>Std. coef diff</th>
<th>p value</th>
<th>CI overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.3667</td>
<td>0.795</td>
<td>0.7877</td>
</tr>
<tr>
<td>sexFEMALE</td>
<td>1.2255</td>
<td>0.386</td>
<td>0.7877</td>
</tr>
<tr>
<td>eduVOC</td>
<td>-0.7350</td>
<td>0.603</td>
<td>0.7877</td>
</tr>
<tr>
<td>eduSEC</td>
<td>1.6695</td>
<td>0.238</td>
<td>0.7414</td>
</tr>
<tr>
<td>eduHIGH</td>
<td>0.6869</td>
<td>0.627</td>
<td>0.7887</td>
</tr>
<tr>
<td>sexFEMALE:eduVOC</td>
<td>0.2085</td>
<td>0.883</td>
<td>0.7887</td>
</tr>
<tr>
<td>sexFEMALE:eduSEC</td>
<td>-1.8782</td>
<td>0.184</td>
<td>0.6995</td>
</tr>
<tr>
<td>sexFEMALE:eduHIGH</td>
<td>-1.6586</td>
<td>0.241</td>
<td>0.7436</td>
</tr>
</tbody>
</table>

Measures for one synthesis and 8 coefficients
Mean confidence interval overlap: 0.766
Mean absolute std. coef diff: 1.054
Lack-of-fit: 6.591; p-value 0.581 for test that synthesis model is compatible with a chi-squared test with 8 degrees of freedom

Confidence interval plot:

5 Acknowledgement

We are most grateful to Dr. Jörg Drechsler for his constructive criticisms of a previous draft of this vignette and to other synthpop users for their feedback.

References

