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1 Introduction

Does a decision to smoke cigarettes increase the likelihood of a person getting lung cancer? Does changing

teachers’ expectations of a student’s performance affect the academic development of that student? Increas-

ingly, such causal questions are being answered with statistics. For both scientists and consumers, it has

become important to understand how valid causal studies can be designed and how suspicious studies can

be identified. This paper aims to further these understandings by explaining the statistical principles and

techniques that underlie valid studies of causal relationships.

The objective of many causal studies–and the objective addressed in this paper–is to measure the effect of

some variable on taking one action relative to the effect of taking a different action. For example, how will my

headache feel if I take aspirin versus if I do not take aspirin? This differs from the objective of identifying the

cause of an event (e.g., it was my neighbor’s incessantly barking dog that caused my headache). Realistically

identifying the cause of an event is generally an unattainable goal because of the many variables that affect an

outcome: my headache was affected by pressures at work, by the quality of last night’s sleep, etc. However,

as we shall see, relative causal effects are amenable to statistical analyses (Rubin, 1990).
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2 Formally defining relative causal effects

A statistical framework for determining relative causal effects was constructed by Neyman (1990) and Fisher

(1925, 1935) in the context of agricultural studies in which researchers randomly assigned various fertilizers

to plots to see how crop yields would respond. Rubin (1974, 1978, 1990) extended the framework to cover

settings where researchers do not randomize assignements. Because of the popularity and comprehensibility

of the Neyman-Fisher-Rubin framework, our definition of causal effects follows these authors’ work. For

explanations of other causal frameworks, see Holland (1986), where the Neyman-Fisher-Rubin framework is

called the Rubin Causal Model, and Cox (1992).

First, we establish some terminology that describes the basics of a causal study. Treatments are variables

that are conceptually manipulable. For example, in a study addressing ways of reducing people’s cholesterol

levels, following a vegetarian diet is a treatment because a person’s diet can be altered to be vegetarian

or non-vegetarian. Conversely, in this study, age is not a treatment because a person’s age cannot be

manipulated. Units are the objects to which the treatments are assigned. In the cholesterol study, the units

are the people assigned to follow either the vegetarian or non-vegetarian diet. Responses are any variables

whose values may have been affected by the treatments, such as cholesterol levels after following a particular

diet for six months. Concomitants are any variables whose values are unaffected by treatments, such as a

unit’s age, gender, and cholesterol level before treatment assignment. Putting it all together, a causal study

attempts to find the relative effects of the treatments on a response for selected units with given values of

concomitants.

We now use the cholesterol study to develop the formal definition of a causal effect. Assume that there

is exactly one type of vegetarian diet and one type of non-vegetarian diet. To simplify notation, let’s call

the vegetarian diet “treatment a” and the non-vegetarian diet “treatment b”. For each unit u in the study,

there is some time t1 when the unit begins following one of the diets, and some time t2 (e.g., six months

later) when the cholesterol is measured.

There are two potential outcomes at time t2 for each unit: the cholesterol level that would be observed
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if the unit were exposed to treatment a at time t1, and the cholesterol level that would be observed if the

unit were exposed to treatment b at time t1. Let’s denote these outcomes as Yua and Yub, respectively. The

only distinction between Yua and Yub is exposure to different treatments; so, the only explanation of any

difference between Yua and Yub is a difference in the effects of the two treatments on cholesterol levels. Thus,

if somehow we could simultaneously observe Yua and Yub, the quantity Yua − Yub would tell us exactly how

much the cholesterol level for unit u would change if treatment a were used instead of treatment b. Because

of this property, Yua − Yub is defined as the causal effect of treatment a relative to treatment b for unit u

(Rubin, 1974). When there are n units in the study, one measure of a typical causal effect is the average of

these causal effects:
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3 Estimating relative causal effects

In reality, we can assign only one treatment to unit u at time t1. Thus, we can observe either Yua or Yub

at time t1, but not both. As a consequence, we are faced with what Holland (1986) calls the fundamental

problem of causal inference: we can never directly observe an individual or average causal effect. However,

statistics provides a way around this problem: we can create two groups of units, so that one group receives

treatment a and the other group receives treatment b, and then estimate the average causal effect from the

observed responses in each group.

A natural estimator of Ȳa − Ȳb is the difference in the sample means of each treatment group, ȳa − ȳb.

However, if the groups are not well contructed, ȳa− ȳb, might estimate the effects of both the treatments and

other variables. For example, if the vegetarian group contains more avid exercisers than the non-vegetarian

group, and if exercise affects cholesterol levels, then ȳa− ȳb estimates the effects of the the different diets and

of the different exercise habits. Without strong assumptions about how exersice affects cholesterol levels,

we are unable to determine how much of ȳa − ȳb is due to the different diets and how much is due to the
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different exercise habits.

How should we design the causal study to avoid making such strong and potentially unverifiable assump-

tions? The advice given by Neyman-Fisher-Rubin is simple and logical: we should construct the treatment

groups so that the distributions of all the concomitants that might affect the response are as similar as pos-

sible in the two groups. With such balance, the concomitants affect ȳa and ȳb by nearly the same amounts,

so their effects on ȳa − ȳb are negligible. The only remaining explanations of any difference between ȳa and

ȳb is a difference in the effects of the treatments. In this way, ȳa − ȳb in fact estimates the average causal

effect of the treatments.

We have now developed the basics of the Neyman-Fisher-Rubin causal framework. The advantage of

designing studies within this framework is that, if concomitant information is available prior to applying

the treatments, we can check if the study is likely to yield reliable conclusions before ever measuring the

responses: we check the balance of the causally-relevant concomitants in the two groups. On the other hand,

when causal studies ignore this framework–as in the study described in Example 3.1–their conclusions rely

heavily on unverifiable assumptions.

Example 3.1 A before-and-after study. Moore and McCabe (1993, pp. 507-508) describe a summer training

program designed to improve the speaking skills of teachers of French. The teachers take a French test at

the beginning of the summer, attend the summer program, and then take a different French test at the end

of the summer. The average of teachers’ post-program scores (call this ȳpost) is significantly higher than the

average of their pre-program scores (call this ȳpre). It is tempting to attribute this improvement to a causal

effect of the program, but there is a flaw in the study’s design that undermines any causal conclusions: since

every teacher is exposed to the program, there is no way to observe responses at the end of the summer

under the no-attendance treatment. Consequently, the validity of ȳpost− ȳpre as an estimate of the program’s

causal effect rests on the assumption that the teachers’ final test scores would be similar to their initial test

scores had they not attended the program. This assumption could be easily violated. For example, perhaps

the teachers were unaccostumed to or nervous about the testing format the first time, and this, rather than
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the effect of the program, explains why their scores were lower on the first test. Or, perhaps simply taking

the first test motivated the teachers to learn more French independent of the summer program. Even if we

believe that taking the first test did not affect scores on the second test, other events may have affected

teachers’ post-program test scores. For example, perhaps the school system offered incentives to teachers

who improved their French, and this rather than the summer program motivated teachers to improve.

The researchers can avoid these issues by assigning some teachers to attend the program and others not

to attend, and by giving the initial and final tests to both groups. With this design, any effects due to taking

the initial test or the passage of time are present in both groups and are therefore removed from the estimate

of the average causal effect.

If the researchers adopt this design, they should balance the causally-relevant concomitants (e.g., years

of teaching experience, nationality) in the two groups to isolate the effect of the program. The next two

sections describe techniques for creating treatment groups that achieve such balance.

4 The power of randomized experiments

When the researcher controls the assignment of treatments to the units, the study is called an experiment.

To follow the Neyman-Fisher-Rubin advice, the researcher needs to assign treatments to units (i.e., create

treatment groups) in a manner that balances the causally-relevant concomitants. When there are many

concomitants, it can be difficult to assign treatments systematically in a way that achieves such balance.

Furthermore, even if the researcher manages to balance adequately the concomitants that are observed, the

groups might still be unbalanced on unobserved, causally-relevant concomitants.

Amazingly, there is a simple technique that approximately balances both observed and unobserved con-

comitants in each group: random assignment of treatment to each unit as suggested by Fisher (1935, p.

224). With two treatments, random assignments are determined by tosses of a coin: units whose coin toss

is heads are assigned treatment a, and units whose coin toss is tails are assigned treatment b. Constructing

treatment groups by this process is basically equivalent to randomly taking two disjoint samples from the
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units in the study. Since random samples from the same population tend to have similar characteristics, the

two treatment groups should have closely balanced concomitants.

To show this formally, let xu be the vector of observed and unobserved concomitants of unit u, and

let xa = {xu : u assigned treatment a} represent the collection of concomitants for all units assigned

treatment a. Before treatments are assigned, xa is a random variable. Its sample space consists of

all possible arrangements of the units’ concomitants under the study design. For example, when as-

signing treatment a to two of the four units in a study, xa can take on one of six possible outcomes:

(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4). Because of the randomization, treatment assignment is

independent of the concomitants; that is, each unit has the same probability of being assigned treatment a,

regardless of the values of its concomitants. Thus, each outcome in the sample space of xa is equally likely

to occur. By symmetry, the collection of concomitants for all units assigned to treatment b, xb = {xu : u

assigned treatment b}, has the same sample space and probability distribution. Hence, since xa and xb are

sampled from the same distribution, the two treatment groups should have closely balanced concomitants.

Example 4.1 Balance of several concomitants in a real experiment. The National Supported Work Demon-

stration was a federally-sponsored study of a job-training program for economically disadvantaged male and

female workers (LaLonde, 1986). The study ran in the mid-1970s in ten sites across the United States.

Qualified applicants to the program were randomly assigned to one of two groups: 1) a treated group that

received the training, and 2) a control group that received no training.

Before randomizing an applicant to a group, the researchers collected background information on the

applicant. The means and standard deviations of these concomitants for the 1602 women in the program

are shown in Table 1. As is evident from the table, the means and standard deviations of the concomitants

are closely balanced. In fact, according to LaLonde (1986), none of the difference between the treated and

control group means are statistically significant.

What about the balance of the causally-relevant concomitants not shown in Table 1? Because treatment

assignment is independent of all concomitants, there is no reason to think that the randomization acted
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Table 1: Concomitants’ balance in a randomized experiment

Treated Group Control Group
Variable Mean (SD) Mean (SD)
Age 33.37 (7.43) 33.63 (7.18)
Years of School 10.30 (1.92) 10.27 (2.00)
Proportion High School Dropouts .70 (.46) .69 (.46)
Proportion Married .02 (.15) .04 (.20)
Proportion Black .84 (.37) .82 (.39)
Proportion Hispanic .12 (.32) .13 (.33)
Real Earnings 1 Yr. Before Training ($) 393 (1203) 395 (1149)
Real Earnings 2 Yrs. Before Training ($) 854 (2087) 894 (2240)
Hours Worked 1 Yr. Before Training 90 (251) 92 (253)
Hours Worked 2 Yrs. Before Training 186 (434) 188 (450)
Month of Assignment (Jan. 1978 = 0) -12.26 (4.30) -12.30 (4.23)
Number of Observations 800 802
Note: Data extracted from Table 1 in LaLonde (1986) .

differently on unobserved concomitants. Therefore, although we cannot empirically gauge the sample balance

of the unobserved concomitants, we have assurance that their balance is similar to the balance of the observed

concomitants.

In addition to closely balancing both observed and unobserved concomitants, random assignment has

other related benefits. First, because of randomization, E(ȳa − ȳb) = Ȳa − Ȳb; that is, in expectation the

sample average causal effect equals the true average causal effect. This property, which is called unbiasedness,

implies that ȳa − ȳb tends to estimate the right quantity, Ȳa − Ȳb (Rubin, 1974). Second, under the null

hypothesis that Yua−Yub = k for all units u in the study, random assignment induces a pribability distribution

on the observable sample average causal effect. Using this distribution, it is possible to test the null hypothesis

without making parametric assumptions about the sample average causal effect, e.g., that it follows a normal

distribution (Fisher, 1935; Rosenbaum, 1995; Rubin, 1974). Third, when using parametric models to obtain

inferences about an average causal effect, randomization simplifies the modeling of causal relationships. With

randomized experiments, it is not necessary to model the effect of concomitants on the responses to get valid

inferences (Rubin, 1978). Finally, randomization prevents the researcher from purposefully assigning specific

units to certain treatments. This helps the researcher avoid cheating that favors one treatment over another
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(Rubin, 1978).

Because of these desirable properties, randomized experiments are widely held as the gold standard

for studies of causal effects (Cobb and Moore, 1997). For general advice on designing, implementing, and

analyzing randomized experiments, see Cox (1958).

5 Estimating causal effects without randomization

Frequently, researchers want to compare the relative effects of several treatments but, for ethical or practical

reasons, cannot randomize the treatments to the units. In the statistical literature, such studies are called

observational studies. For example, a comparison of lung cancer incidence rates for smokers and non-smokers

is an observational study, since we cannot assign people to smoke or not to smoke.

The data in an observational study are usually collected from databases that contain units with different

treatment exposures, e.g., data on smokers and non-smokers obtained from hospital records. The units

in these database populations may have different distributions of causally-relevant concomitants, e.g., the

smoking population may be younger than the non-smoking population, and age affects lung cancer rates.

Thus, it is desirable to create treatment groups from the database populations that have similar distributions

of causally-relevant concomitants rather than simply differencing the averages of smokers’ and non-smokers’

lung cancer incidence rates from all the units in the database.

Typically, the database contains information on several, but not all, causally-relevant concomitants. One

way to balance these observed concomitants is to construct treatment groups from matched pairs, where each

half of the pair comes from a different treatment exposure. For example, if for every smoker we include a

non-smoker of the same age, gender, and race, the treatment groups will be balanced on these concomitants.

As a result, these variables will not affect the comparison of the smoking group’s and non-smoking group’s

lung cancer rates.

When many observed concomitants require balancing, it is often necessary to employ advanced matching

techniques, such as matching on propensity scores (Rosenbaum and Rubin, 1983b). In a study with two
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treatments a and b, where treatment a is the treatment with fewer exposures in the database, the propensity

score is defined as the conditional probability that a unit with observed concomitants xobs is exposed to

treatment a rather than treatment b. Rosenbaum and Rubin (1983b) prove that units with the same

propensity score are assigned to treatments independently of xobs; therefore, units with different exposures

but identical propensity scores have the same distributions of xobs. These theorems have useful implications

for constructing treatment groups: if, for every unit exposed to treatment, a we select a unit exposed to

treatment b with nearly the same propoensity score, the treatment groups will be closely balanced on xobs.

In real observational studies, the units’ true propensity scores are not known and must be estimated from

the data. These estimates are usually obtained from a logistic regression of the probability of exposure to

treatment a on some function of the observed concomitants. The function of the concomitants is determined

by trying various specifications until one is found that produces treatment groups with adequate concomitant

balance.

Example 5.1 Propensity score matching to balance observable concomitants in a real observational study.

Rosenbaum and Rubin (1985) use propensity score matching to create a control group in a study of the

effect on children’s psychological development of prenatal exposure to barbiturates. The children, born

between 1959 and 1961, are culled from a large Danish database. There are 221 children whose mothers

took barbiturates and 7,027 children whose mothers did not take barbiturates. The database also contains

information on twenty causally-relevant concomitants for each child.

In Table 2, we show the standardized differences in the concomitants’ means between the 221 children

exposed to barbiturates and potential control groups of children not exposed to barbiturates. The first column

shows the standardized differences when the control group contains all 7,027 non-exposed children, and the

second column shows the standardized differences when the control group contains all 221 non-exposed

children matched on propensity scores. The standardized differences are defined as (x̄a − x̄b)/
√

(s2
a + s2

0
)/2,

where x̄a and x̄b are the sample means of the exposed and control groups’ concomitants, and s2

a and s2

0

are the sample variances of the 221 exposed and 7,027 non-exposed children’s concomitants. The common
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Table 2: Improvement in concomitant balance after propensity score matching

Standardized Differences
In Variables’ Means ×100

Variable All Controls Matched Controls
Child Characteristics

Sex -7 0
Single/multiple birth (0,1) -10 -3
Oldest child (yes, no) -16 * -5
Child’s age at start of study (months) 3 7

Mother Characteristics

Socioeconomic status (9 ordered categories) 26 ** -10
Mother’s education (4 ordered catgories) 15 * -17
Mother unmarried (yes, no) -43 ** -7
Mother’s age (years) 59 ** -8
Mother’s height (5 ordered categories) 18 ** -8

Pregnancy Characteristics

Weight gain / height3 (30 values) 0 0
Pregnancy complications (an index) 17 * -14
Preeclampsia (yes, no) 9 0
Respiratory illness (yes, no) 10 -7
Length of gestation (10 ordered categories) 6 -12
Cigarette consumption, last trimester -3 0

(10 ordered categories)
Other Drugs

No. exposures to antihistamines (0 - 6) 10 -3
No. exposures to hormones (0 - 6) 28 ** 8
Exposed to hormone type 1 (yes, no) 15 * -2
Exposed to hormone type 2 (yes, no) 19 ** -2
Exposed to hormone type 3 (yes, no) 18 ** -3

Note: Data extracted from Table 1 in Rosenbaum and Rubin (1985).
* indicates 2 ≤ |two-sample t-statistic| < 3.
** indicates 3 ≤ |two-sample t-statistic|.

denominator facilitates comparisons of the balance in unmatched and matched control groups.

As we can see from the table, the exposed children are quite different from the 7,027 non-exposed children.

For example, children exposed to barbiturates more frequently were the oldest child, were born to unmarried

and older mothers, endured complicated pregnancies, and were exposed to other drugs. After propensity

score matching, the dramatic differences in many variables are reduced. For example, the standardized

differences for the four hormone use variables are reduced from 28, 15, 19, and 18 to a much smaller 8, -2,

-2, and -3.
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Propensity score matching may not fully remedy concomitant imbalance. For example, after matching

on propensity scores in the barbiturate study, there are still moderate differences between exposed and

non-exposed groups in mother’s education, pregnancy complications, and gestation length. To control the

effects of residual imbalances, a frequently-employed approach in observational studies, and in randomized

experiments, is to model the relationship between the concomitants and the response. When Yi is the

response and xobs,i is a 1 × p vector of observed concomitants for unit i, a typical model is the linear

regression

Yi = β0 + β1TREATi + xobs,iβ + εi

where TREATi equals one if unit i is exposed to treatment a and equals zero if unit i is exposed to treatment

b, β is a p × 1 vector of regression coefficients, and εi is an error term with a posited distribution (e.g., a

normal distribution with mean zero and constant variance). The estimate of β1 is the estimate of the average

causal effect, adjusted for the effects of the concomitants xobs.

Regression adjustments largely remove the effects of residual imbalance when the relationships between

the concomitants and the response are accurately modeled. Over a small region of concomitant space,

the assumption of linearity between concomitants and response is likely to be reasonable. On the other

hand, when the concomitants’ distributions are far apart, the linearity assumption is based on unverifiable

extrapolations across a wide range of the concomitants. For this reason, regression models are more effective

when based on matched groups with similar concomitants than when based on all units in the database

(Rubin, 1997).

It is important to note that propensity score matching and regression adjustment do not directly address

imbalances in unobserved causally-relevant concomitants. This contrasts with random assignment of treat-

ments, which provides assurance that unobserved background concomitants are not severely imbalanced. In

observational studies, it is therefore imperative to test thoroughly the sensitivity of causal conclusions to

various specifications of the effects of unobserved concomitants and degrees of imbalance in these concomi-

11



tants. Such sensitivity tests can be conducted using the techniques in Rosenbaum (1995) and Rosenbaum

and Rubin (1983a). Regardless, observational studies are especially vulnerable to the criticism that the

estimates of the causal effects are attributable to unobserved concomitants.

Despite their limitations, observational studies are often the only way to address many important causal

questions. Thus, we should not remove observational studies from our causal tool box; instead, we should

think hard about which concomitants are causally-relevant and do our best to balance them across the

treatment groups. For general advice on planning and analyzing observational studies, the reader is referred

to the works of Cochran (1983) and Rubin (1984). Another excellent source for information on the analysis

of observational studies is Rosenbaum (1995).

6 Other considerations in causal studies

Besides the balance of causally-relevant concomitants, there are other fundamental issues to consider when

designing or evaluating causal studies. Paramount is the realism of the study: if a study’s conclusions are

to have relevance to the real world, the study’s conditions must map to the real world. For example, a

psychologist might randomly assign subjects to work in an artifically created, stressful situation to study the

effects of stress on behavior. This does not necessarily mean that the subjects react similarly in real world

stressful situations Moore and McCabe (1993, p. 239). A related concern applies to generalizing the results

from the study to broader populations: just because conclusions hold in one population does not mean that

they hold in other populations. For example, studies frequently use units selected for convenience, such as

volunteers or college students. These units have characteristics that make it risky to extend conclusions to

the general population (e.g., volunteers are more cooperative and college students are more educated than

the general population).

In addition to these problems, some studies contain hidden biases that undermine their credibility. The

researcher expecting one treatment to be more effective might subconsciously, or even consciously, alter the

observed responses to favor that treatment. Similarly, the subject who knows she is receiving a new treatment
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may be more upbeat than the subject who knows he is receiving a standard treatment, and positive attitude

may affect the outcome of interest. To eliminate the potential of these biases to affect the results, treatment

assignments are hidden from both researcher and subject in double-blind studies Moore and McCabe (1993,

p. 238). Another hidden bias occurs when the treatment for one unit affects the response for other units,

thereby distorting estimates of the causal effect. For example, in an agricultural experiment comparing two

fertilizers on the same field, the fertilizer from one plot may leach onto another plot. This leaching may

affect the plots’ yields and, therefore, the conclusions about fertilizer effectiveness. Often studies can be

designed to avoid such interference between units: in agricultural experiments, empty strips of land are

placed between each plot to minimize the effects of leaching (Cox, 1958).

7 Conclusions

Designing causal studies, and knowing when such studies rely heavily on unstated assumptions, is a tricky

undertaking. The framework described in this paper can help in this task. The message of the framework is

simple and logical: design studies so that the treatment groups have similar distributions of causally-relevant

concomitants. When balanced, the concomitants equally affect both groups’ average response and therefore

do not affect the estimate of the average causal effect. As we showed, a reliable and easy way of balancing

both observable and unobservable concomitants is to assign treatments to units randomly. When this is

not possible, matching techniques can be used to create treatment groups with similar distributions of the

observable concomitants, but causal conclusions lean on the assumption that such balancing has removed

most of the effects of the concomitants from the estimate of the average causal effect. Finally, regardless of

whether the causal study is experimental of observational, we must always be on the lookout for unwarranted

generalizations and hidden biases that can diminish the study’s utility.
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