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Summary

In data integration contexts, two statistical agencies seek to merge their sep-
arate databases in one file. The agencies also may seek to disseminate data to
the public based on the integrated file. These goals may be complicated by the
agencies’ need to protect the confidentiality of database subjects, which could
be at risk during the integration or dissemination stage. This article proposes
several approaches based on multiple imputation for disclosure limitation, usu-
ally called synthetic data, that could be used to facilitate data integration and
dissemination while protecting data confidentiality. It reviews existing methods
for obtaining inferences from synthetic data and points out where new methods
are needed to implement the data integration proposals.
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1 Introduction

In many contexts, statistical agencies, survey organizations, businesses, and other
data owners (henceforth all called agencies) with related databases can enhance anal-
yses by combining their data. For example, one agency might have demographic and
health data, and a second agency might have income data. An integrated database
enables predictions of health outcomes from demographic and income variables, which
is more informative than predictions from the health and demographic data alone.
Data integration may be complicated by ethical or legal obligations to protect
confidentiality of database subjects. These obligations may prevent agencies from
sharing the records in their databases with each other or, for agencies charged with
disseminating data, with the broader public. For some analyses, the agencies can work
around the first constraint using techniques from secure computation, which allows
agencies to compute specific quantities from the integrated data without actually
sharing individual records with each other. Secure computation algorithms have been
developed for linear regression (Du et al., 2004; Karr et al., 2005, 2007, 2009), data
mining with association rules (Kantarcioglu and Clifton, 2002; Vaidya and Clifton,
2002; Evfimievski et al., 2004), model based clustering (Vaidya and Clifton, 2003; Lin
et al., 2004), and adaptive regression splines (Ghosh et al., 2007). The literature on
privacy-preserving data mining (Agrawal and Srikant, 2000; Lindell and Pinkas, 2000)
contains related results. Secure computation techniques do not provide methods for

sharing an integrated database with the public.



This article discusses how multiple imputation for disclosure limitation, usually
called synthetic data, can be adapted to facilitate inter-agency data sharing and public
data dissemination. The basic idea is for agencies to construct an integrated database
that satisfies inter-agency confidentiality concerns by sharing simulated datasets with
each other. To protect confidentiality in further dissemination to the public, the
agencies simulate sensitive values in the integrated database to create synthetic data.
At each step, the simulations are done multiple times to enable the ultimate users of
the integrated data—analysts of public use files—to obtain valid inferences, at least
for analyses congenial (Meng, 1994) to the models used in the simulation steps.

Multiple imputation approaches are proposed for two flavors of data integration.
To describe these flavors, we suppose that there are two datasets, D1 = (71, X;)
owned by Agency 1 and Dy = (Z5,Y5) owned by Agency 2, to be integrated by the
two agencies. Let D, be the integrated dataset. The first integration setting is to
create Do = (Z1,X1,Y1), i.e. to append the values of Y5 to Dy for those records
common to both datasets (with missing values of Y] for records in Dy but not in Ds).
We call this the “add-on” setting. The add-on setting is a standard record linkage
problem, where the linking variables might be common identifiers or values in Z.
In this article, we ignore the effects of potential matching errors on inferences. The
second setting is to create D, = (Z, X*,Y*), where Z = (71, Z3), X* = (X1, X3),
Y* = (Y], Y2), and X; and Y;* are imputed values. We call this the “complete-it” set-

ting. This can be viewed as a missing data problem, where the complete dataset has



(X,Y, Z) for all records in Dy and D,. To enable correct estimation of uncertainty,
the agencies can create several completed datasets, (Dﬁ})n, Dﬁ?,Zn, ey Dé%), each con-
taining independent draws of (X, Y]"), which can be analyzed using the methods of
Rubin (1987). Under strong assumptions, it is possible to create these datasets even
when the records in Dy and D, do not overlap. This is called statistical matching
(D’Orazio et al., 2006) or data fusion (Réssler, 2003).

The remainder of the article is organized as follows. Section 2 reviews the use
and benefits of multiple imputation approaches for disclosure limitation. These ap-
proaches are the building blocks of the proposals for integrating and sharing data via
multiple imputation, which are described in Section 3. Section 4 illustrates one of the
data sharing proposals using genuine data. Section 5 has some concluding remarks

about implementation of these proposals.

2 Description of synthetic data methods

Before discussing fully and partially synthetic data approaches, we begin with a gen-

eral overview of data confidentiality in the context of public use data dissemination.

2.1 Data confidentiality and public use dissemination

Wide dissemination of data greatly benefits society, enabling broad subsets of the
research community to access and analyze the collected data. Often, however, data

disseminators cannot release data as collected, because doing so could reveal survey



respondents’ identities or sensitive attributes. Failure to protect confidentiality can
have serious consequences for data disseminators, since they may be violating laws
passed to protect confidentiality. Additionally, when confidentiality is compromised,
the data collectors may lose the trust of the public, so that potential respondents are
less willing to give accurate answers, or even to participate, in future surveys.

At first glance, releasing safe public use data seems straightforward: simply strip
unique identifiers like names, tax identification numbers, and exact addresses before
releasing data. However, these actions alone may not suffice when quasi-identifiers,
such as demographic variables, employment/education histories, or establishment
sizes, remain on the file. These keys can be used to match units in the released data
to other databases. For example, Sweeney (1997) showed that 97% of the records in
a medical database for Cambridge, MA, could be identified using only birth date and
9-digit ZIP code by linking them to a publicly available voter registration list.

Agencies therefore further limit what they release, typically by altering the col-
lected data (Willenborg and de Waal, 2001). Common strategies include recoding
variables, such as releasing ages or geographical variables in aggregated categories;
reporting exact values only above or below certain thresholds, for example report-
ing all incomes above $100,000 as “$100,000 or more”; swapping data values for
selected records, e.g., switch the quasi-identifiers for at-risk records with those for
other records to discourage users from matching, since matches may be based on in-

correct data; and, adding noise to numerical data values to reduce the possibilities of



exact matching on key variables or to distort the values of sensitive variables.

These methods can be applied with varying intensities. Generally, increasing
the amount of alteration decreases the risks of disclosures; but, it also decreases the
accuracy of inferences obtained from the released data, since these methods distort re-
lationships among the variables (Duncan et al., 2001; Gomatam et al., 2005; Shlomo,
2007). For example, intensive data swapping severely attenuates correlations between
the swapped and unswapped variables. Unfortunately, it is difficult—and for some
analyses impossible—for data users to determine how much their particular estima-
tion has been compromised by the data alteration, in part because agencies rarely
release detailed information about the disclosure limitation strategy. Even when such
information is available, adjusting for the data alteration to obtain valid inferences
may be beyond some users’ statistical knowledge. For example, to analyze properly
data that include additive random noise, users should apply measurement error mod-
els (Fuller, 1993), which are difficult to use for non-standard estimands. Moreover, as
resources for ill-intentioned data users continue to expand, the alterations needed to
protect data with traditional disclosure limitation techniques may become so extreme

that, for many analyses, the released data are no longer useful.

2.2 Fully synthetic data

Motivated by these problems, Rubin (1993) proposed an alternative approach to

protecting confidentiality in public use data files: release multiply-imputed, synthetic



datasets. In this approach, the agency (i) randomly and independently samples units
from the sampling frame to comprise each synthetic dataset, (ii) imputes the unknown
data values for units in the synthetic samples using models fit with the original survey
data, and (iii) releases multiple versions of these datasets to the public. A similar
approach was suggested by Fienberg (1994). This can preserve confidentiality, since
identification of units and their sensitive data is nearly impossible when the released
data are not actual, collected values. Fully synthetic, public use data products are
being developed by statistical agencies in Germany (Drechsler et al., 2007) and New
Zealand (Graham and Penny, 2005).

To fix notation for describing the generation and analysis of synthetic data, con-
sider the integrated dataset, D.,,, to be a random sample from a finite population
D of size N. We write Doy = (Dopsy Dimis). The Dgys is the portion of D, that
is observed, e.g., (Z, X1,Y3). The D, is the portion of D.,, that is missing either
because of the design, e.g. (X3, Y]), or due to nonresponse. Let D,,. be all values not
observed in D,,,,, including those values for records not in the integrated database.
Finally, the entire population of values is D = (Dps, Dege)-

The agency constructs fully synthetic datasets based on D, in a two-part process.
First, the agency imputes values of D.,. to obtain a completed-data population, D®.
For reasons discussed in Rubin (1987) and Raghunathan et al. (2003), imputations
should be generated from the Bayesian posterior predictive distribution f(Dege| Dops),

or some approximation of it. One convenient approach is to generate imputations



with a sequence of conditional models, also called chained equations, as is frequently
done in multiple imputation for missing data (Van Buuren and Oudshoorn, 1999;
Raghunathan et al., 2001). The agency may choose to impute values of D for all N
units so that the completed-data contain no real values, thereby avoiding the release
of any respondent’s actual values in D,,s. Second, to reduce the size of the file released
to the public, the agency samples ny, units from D® using a simple random sample.
These sampled units are released as public use data, so that the released dataset,
d®, contains the values of D@ only for units in the synthetic sample. This entire
process is repeated independently ¢ = 1,...,m times to get m different synthetic
datasets, which are released to the public. In practice, it is not necessary to generate
completed-data populations for constructing the d”). The agency need only generate
values of D for units in the synthetic samples.

From these synthetic datasets, the analyst seeks inferences about some estimand
@, for example the population mean of Y or the population regression coefficients of
Y on X. In each synthetic dataset, the analyst estimates () with some estimator ¢
and the variance of ¢ with some estimator v. It is assumed that the analyst specifies
q and v by acting as if the synthetic data were in fact collected data from a simple
random sample of (X,Y).

Fori=1,...,m, let ¢¥ and v be respectively the values of ¢ and v computed
with d®). Under assumptions described by Raghunathan et al. (2003), the analyst

can obtain valid inferences for scalar @ by combining the ¢¥ and v®. Specifically,



the following quantities are needed for inferences:

The analyst can use ¢, to estimate () and

Ty = (1+ 1/m)by, — On, (4)

to estimate the variance of §,,. For large m, inferences can be based on a normal
distribution, (g, — @) ~ N(0,7). This variance estimator differs from the one in
Rubin (1987) for standard missing data, because full synthesis involves the additional
step of sampling new records off the frame; see Reiter and Raghunathan (2007) for a
detailed explanation.

Fully synthetic data sets can have positive data utility features. When data
are simulated from distributions that reflect the distributions of the observed data,
frequency-valid inferences can be obtained from the multiple synthetic data sets for
a wide range of estimands. These inferences are determined by combining standard
likelihood-based or survey-weighted estimates; the analyst need not learn new sta-
tistical methods or software programs or worry about adjusting for the disclosure
limitation method in inferences. Synthetic data sets are analyzed as simple random
samples, even when the observed data are collected with a complex sampling design.

The data generation models can incorporate adjustments for nonsampling errors and



can borrow strength from other data sources, thereby resulting in inferences that can
be even more accurate than those based on the original data. Because all units are
simulated, geographic identifiers can be included in the synthetic data sets, facilitat-
ing estimation for small areas. Other benefits are discussed in Raghunathan et al.
(2003) and Reiter (2002, 2005a,b).

There is a cost to these benefits: the validity of synthetic data inferences depends
critically on the models used to generate the synthetic data. This is because the
synthetic data reflect only those relationships included in the data generation models.
When the models fail to reflect certain relationships accurately, analysts’ inferences
also will not reflect those relationships. Similarly, incorrect distributional assumptions
built into the models are passed on to the users’ analyses. Practically, this dependence
means that some analyses cannot be performed accurately, and that agencies need
to release information that helps analysts decide whether or not the synthetic data
are reliable for their analyses. For example, agencies can include the models as
attachments to public releases of data. Or, they can include generic descriptions of
the imputation models, such as “Main effects and first order interactions for all other
variables are included in the imputation models for income.” Another approach is
for the agency to build a verification server (Reiter et al., 2009) that users can query
for feedback on the differences between the results of analyses done on the synthetic
data and the genuine data. Analysts who desire finer detail than afforded by the

imputations may have to apply for special access to the observed data.
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2.3 Partially synthetic data

To reduce the sensitivity of inferences to the specifications of the imputation models,
some statistical agencies have opted for a variant of Rubin’s approach called par-
tially synthetic data (Little, 1993; Reiter, 2003). These comprise the units originally
surveyed with only some collected values replaced with multiple imputations. For
example, the agency might simulate sensitive variables or quasi-identifiers for units
in the sample with rare combinations of quasi-identifiers; or, the agency might re-
place all data for selected sensitive variables or quasi-identifiers. The former strategy
has been employed by the U.S. Federal Reserve Board in the Survey of Consumer
Finances. They replace monetary values at high disclosure risk with multiple impu-
tations, releasing a mixture of these imputed values and the unreplaced, collected
values (Kennickell, 1997). It also is used by the U.S. Bureau of the Census to pro-
tect the identities of people in group quarters (e.g., prisons, shelters) in the American
Communities Survey. They replace quasi-identifiers for records at high disclosure risk
with imputations. The latter strategy has been employed by the U.S. Bureau of the
Census to protect data in longitudinal, linked business datasets. They replace all val-
ues of some sensitive variables with multiple imputations and leave other variables at
their actual values (Abowd and Woodcock, 2001, 2004). It also has been used to cre-
ate synthesized origin-destination matrices, i.e. where people live and work, available
to the public as maps via the web (On The Map, http://lehdmap.did.census.gov/). In

the U.S., partially synthetic, public use datasets are in the development stage for the
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Survey of Income and Program Participation, the Longitudinal Business Database,
the Longitudinal Employer-Household Dynamics survey, and the American Commu-
nities Survey veterans and full sample data. Other examples of partially synthetic
data are in Abowd and Lane (2004), Little et al. (2004), Reiter (2004, 2005¢c), and
Mitra and Reiter (2006).

The protection afforded by partially synthetic data depends on the nature of the
synthesis. Replacing key identifiers with imputations makes it difficult for users to
know the original values of those identifiers, which reduces the chance of identifica-
tions. Replacing values of sensitive variables makes it difficult for users to learn the
exact values of those variables, which can prevent attribute disclosures. Nonetheless,
there remain disclosure risks in partially synthetic data no matter which values are
replaced. Analysts can utilize the released, unaltered values to facilitate disclosure
attacks, for example via matching to external databases, or they may be able to es-
timate genuine values with reasonable accuracy from the synthetic values and any
information released about the data generation model.

The methods for generating partially synthetic data depend on whether there is

any missing data, i.e. whether or not Dy, = Dops.

2.3.1 Partially synthetic data when D.,,, = D

Assuming no missing data, the agency constructs partially synthetic datasets by re-

placing selected values from the observed data with imputations. Let R; = 1 if unit
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j is selected to have any of its observed data replaced with synthetic values, and let
R; = 0 for those units with all data left unchanged. Let R = (Ry,..., R,). Let DY
be all the imputed (replaced) values in the ith synthetic dataset, and let D,,., be all
unchanged (unreplaced) values of D.yy,. The Dfnie)p are generated from the posterior
predictive distribution of (Dy.p | Deom, R), or a close approximation of it. The values
in Y., are the same in all synthetic datasets. Each synthetic dataset, D(i), then
comprises (D,(«ie)p, D.rep, R). Imputations are made independently ¢ = 1,...,r times
to yield r different partially synthetic data sets, which are released to the public.
Inferences from partially synthetic datasets are based on quantities defined in (1)
— (3). We assume the analyst specifies the point and variance estimators, ¢ and v,
by acting as if each D was in fact collected data from a random sample of D based
on the original sampling design. As shown by Reiter (2003), under certain conditions

the analyst can use ¢, to estimate () and
T,="b/r+ 7, (5)

to estimate the variance of ¢,.. Inferences for scalar () are based on t-distributions with
degrees of freedom v, = (r — 1)(1+ ,/(b./r))?. The variance estimator in (5) differs
from the one in Rubin (1987) for standard missing data, because the imputations are
done on a complete dataset rather than a dataset with missing values; see Reiter and

Raghunathan (2007) for further details.
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2.3.2 Partially synthetic data when D.,,, # D

When some data are missing, it seems logical to impute the missing and partially
synthetic data simultaneously. In general, D,,;s and D,., are imputed from different
distributions. For example, suppose univariate data from a normal distribution have
some values missing completely at random. Further, suppose the agency seeks to
replace all values larger than some threshold with imputations. The imputations
for missing data are based on a normal distribution fit using all of D,,,. However,
the imputations for replacements must be based on a posterior distribution that
conditions on values being larger than the threshold.

Imputing D,,,;s and D,., separately generates two sources of variability, in addition
to the sampling variability in D,,,,, that the user must account for to obtain valid
inferences. To allow analysts to estimate the total variability correctly, agencies
can employ a two stage procedure for generating imputations. First, the agency
fills in D,,;s with draws from f(Dps | Deps), resulting in m completed datasets,
DW .. D™ Second, the agency selects the units whose values are to be replaced,
i.e. whose R; = 1. In each DW . the agency imputes values Y},(el;f) for those units with
R; = 1, using f(D,ep | DU, R). This is repeated independently i = 1,...,7 times
for I = 1,...,m, so that a total of M = mr datasets are generated. Each dataset,
D) = (Dypyep, D%s, D&Y, R), includes a label indicating the [ of the D) from which
it was drawn. These M datasets are released to the public.

Analysts can obtain valid inferences from these released datasets by combining
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inferences from the individual datasets. As before, we assume the analyst specifies ¢
and u by acting as if each D% was in fact collected data from a random sample of D
based on the original sampling design. For l =1,...,mandi=1,...,7, let ¢ and
u?) be respectively the values of ¢ and v in dataset D%, The following quantities
are needed for inferences about scalar Q):

o= S0 ) =S q0/m (6)

=1 =1

o = DY@ =gV fmr = 1) = > w/m ™)

m

b = ) (@ = aqu)?/(m—1) (8)

=1

oy o= Y. ul/(mr). (9)

=1 i=1
Under conditions described in Reiter (2004), the analyst can use qy; to estimate Q).

An estimate of the variance of ¢ is:

Inferences are based on the t-distribution, (Q — Gar) ~ t.,,(0,T), with degrees of

freedom

(11)

(Y mba)® (o /r)? \T
e ( (m—1T%  mlr - 1)TJ\2/I) '

Reiter and Raghunathan (2007) explain why this two stage approach requires a dif-

ferent variance estimator than (5). Reiter (2008) discusses the effects on inferences

of different selections of m and r.
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3 Synthetic data for integration and dissemination

In the data integration and dissemination context, confidentiality can be at risk be-
cause of inter-agency data sharing or dissemination of the integrated file. For simplic-
ity, we assume that Agency 1 shares the identifiers of the records in D; with Agency
2 to facilitate record linkage. Hence, the primary risk for both agencies at the inte-
gration stage is that one agency could learn sensitive attribute values of the records
owned by the other agency. Methods of record linkage that do not involve direct
sharing of identifiers are described by Churches and Christen (2004) and O’Keefe
et al. (2004). When D; and D, have no common records, as in statistical matching,
Agency 1 need not share identifiers with Agency 2.

We categorize integration settings in two cases. Case 1 occurs when the two
agencies are willing to share all their values with each other, so that confidentiality
risks arise only when disseminating the integrated data to the public. Case 2 occurs
when at least one agency is unwilling to share its data with the other agency. We
describe methods from the perspective of Agency 1, i.e. it initiates all integration
protocols and is responsible for releasing a public use version of the integrated data.

Table 1 summarizes the scenarios that we consider.

3.1 Case 1: Full access

When both agencies are willing to share all data with each other, the integration is

straightforward. The only task is for Agency 1 to disseminate a safe dataset to the
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Table 1: Summary of methods with relevant section numbers in parentheses. In the
table, F means full synthesis; P means partial synthesis; and M means missing data
imputation. Subscripts indicate which dataset is synthesized; no subscript means
both datasets are synthesized/completed. For example, MPs; means use multiple
imputation for any missing data in (Dy, Dy), followed by partial synthesis of sensitive

values in Dy. The * means that Agency 1 protects D; before inter-agency sharing.

Scenario Add-on setting Complete-it setting

Case 1: Inter-agency sharing of Dy and Dy (3.1)

No real data for public F (2.2) F
Some real data for public P (2.3.1) MP (2.3.2)

Case 2, Scenario A: Limited sharing of Dy, unrestricted sharing of D; (3.2.2)

All D, for agency and public P, Dy N Dy # (): MPy
D1 N D2 == @: P2M

Case 2, Scenario B: Limited sharing of Dy, limited sharing of D; (3.2.3)

All D, for agency, some for public P,yP, Dy N Dy # (): MP,Py
D1 N Dy = (): PoMPy
Some D, for agency, some for public PyP} Dy N Dy # (): MPyP?
Dy N Dy = (: PoMP3

Case 2, Scenario C: No sharing of Ds, no sharing of D; (3.2.4)

No real data for public P,F* Dy N Dy # (): MPyF*

D1 N D2 = @: PQMF*
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public using the methods described in Section 2.

If some but not all values are sensitive to disclose, Agency 1 can release a partially
synthetic dataset. For the add-on setting, this involves the process and inferential
methods described in Section 2.3.1, or the methods in Section 2.3.2 if there are missing
values in the integrated D.,,,. For the complete-it setting, this involves the process
and inferential methods described in Section 2.3.2. Multiple imputation is used to
create D, first, and sensitive values are replaced second.

If all values are sensitive to disclose, Agency 1 can release a fully synthetic dataset.
This is the same process regardless of the integration setting. Agency 1 specifies a
distribution for all variables based on (D1, Ds), and whatever other constraints exist,
and simulates new data for all variables. Analysts of these data use the inferential

methods described in Section 2.2.

3.2 Case 2: Limited Access

The first case presumes no inter-agency concerns about their database subjects’ con-

fidentiality. We now turn to the more complex case where these concerns exist.

3.2.1 Synthetic data for vertically partitioned data

We first describe an approach for the add-on setting where Dy and D5 have exactly the
same records but different variables, known as vertical partitioning (Karr et al., 2007).

This approach can be adapted for more general add-on scenarios. The approach was
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developed by Kohnen (2005) and illustrated by Kohnen and Reiter (2009). We assume
no missing data in D; or Ds; methods for handling missing data and integration
simultaneously are a subject for future research.

To start the protocol, Agency 1 sends a masked version of D; to Agency 2 that
protects the confidentiality of any sensitive values in D;. For example, Agency 1
might apply standard disclosure limitation techniques to sensitive values in D; like
adding noise. Or, Agency 1 might transform the variables with sensitive data to
standard normal distributions, for example via Box-Cox transformations; see Kohnen
and Reiter (2009) for an application of this approach. A third masking approach was
described by Kohnen (2005). Agency 1 creates k — 1 “disguiser” copies of Dy, for
example by adding different amounts of noise to the sensitive values of D;. Agency
1 then includes D; with the disguisers and passes the collection of all k datasets to
Agency 2, which is not told which dataset is the genuine D;. With good disguisers,
Agency 2 has only a 1/k chance of guessing the label of the true D; and hence learning
the exact values of these records’ sensitive attributes.

In the next step of the protocol, Agency 2 determines which values of Dy are too
sensitive to reveal to Agency 1. Let Dy, indicate those values, which could be some
or all of Dy. Let k be the number of datasets that Agency 2 receives from Agency
1. If it receives a single dataset with perturbed/transformed variables, then k = 1.
For each dataset DY) that it receives, where [ = 1,... k, Agency 2 estimates the

distribution f (D27T6p|D§l),D2). Agency 2 then simulates new values of Ds ., from
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these distributions as in Section 2.3.1, generating m datasets with each DY). Agency
2 passes the km datasets back to Agency 1. When k > 1, it also includes labels
indicating which D%l) each was created from. Agency 2 could pass the k imputation
models to Agency 1 rather than generate data, although with complicated models it
might be easier and pose fewer confidentiality risks to pass simulations from those
models. If & > 1, Agency 1 discards the k — 1 disguiser datasets it receives from
Agency 2. In the end, Agency 1 is left with partially synthetic data, { DM, ... D™},
including actual values of D; and simulated values of Ds ..

The agencies may not be willing to share these partially synthetic datasets with
the public without further protections. Furthermore, releasing a public use version
of the partially synthetic datasets, or even publishing results of analyses based on
them, could disclose sensitive values in Dy to Agency 2. To limit these risks, Agency
1 can release synthetic data, treating each D) as the “observed data” from which to
synthesize. These datasets can be fully or partially synthetic.

For the fully synthetic case, in each D® the agency completes the population by
filling in D, with 7 independent draws from f(D,..|D®). For each D®| the agency
then takes a simple random sample from each completed population. The agency
releases the mr datasets to the public. Under conditions described in Kohnen (2005),

the analyst can use gy, from (6) to estimate (). An estimate of the variance of gy is
Tsf:bM/m—l—zDM—@M, (12)

where by, Wy, and vy are defined in (7)—(10). This variance estimator differs from
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(4) because Agency 1 generates synthetic data from already synthesized data; see
Kohnen and Reiter (2009) for derivations. When n, m, and r are large, inferences
can be based on the normal distribution, (Q — gar) ~ N(0, Tsy).

For the partially synthetic case, in each D® the agency replaces any sensitive
values in D; with r independent draws from f(D,.,|D", R). Kohnen (2005) shows

that the analyst can estimate () with g,;, and estimate of the variance of gy; with

Tsp = Up + bM/m (13)

where by, and vy, are defined in (7)—(10). When n, m, and r are large, inferences can

be based on the normal distribution, (€ — gar) ~ N(0,Tp).

3.2.2 Scenario A: Some values in D, are sensitive, but D; is not

Suppose that Agency 2 is not willing to share some values in Dy with Agency 1 nor
with the public. Agency 1 is willing to share D; with Agency 2 and with the public.
As an example, Agency 1 might have non-sensitive demographic values, and Agency
2 might have sensitive health or economic data. We note that the opposite scenario,
i.e. Agency 2 is willing to share all but Agency 1 is not, is included in Case 1.

For the add-on setting, Agency 1 sends D; to Agency 2. Agency 2 then generates
r replacements of its sensitive values, Y5 ,¢,, by drawing from f(Y3,ep|D1, D2). This
results in r partially synthetic versions of D.,,. Agency 2 sends the r versions to
Agency 1, which releases them to the public. When D.,,,,, has missing values, Agency 2

uses the two-stage process of Section 2.3.2 before passing data to Agency 1. Analysts
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of the released data use the corresponding inferential methods of Section 2.3.2.

For the complete-it setting, the protocol depends on whether or not some of the
same records are in D and Ds. If so, Agency 1 sends D; to Agency 2, who then gen-
erates imputations as in Section 2.3.2. First, Agency 2 creates m completed versions
of D,y using standard missing data techniques. Second, in each completed dataset
D((;f,)m, Agency 2 replaces sensitive values, Dj .y, with r draws from f (Dg’rep‘Dg))m).
Agency 2 sends the mr datasets to Agency 1, who releases them to the public. Ana-
lysts of these mr datasets base inferences on the methods in Section 2.3.2.

When there are no overlapping records, Agency 1 does not send anything to
Agency 2. Instead, Agency 2 simulates new values for its sensitive elements, Dj ¢, by
drawing from f(Dsg ep|D2). Agency 2 does this m times, creating Dgl) = (Danrep, Dgl}ep
forl =1,...,m. It sends these m copies of Dgl) to Agency 1. Agency 1 appends each
copy to Dy, creating DY = (D, Dél)) forl =1,...,m. Agency 1 then fills in the val-
ues of D,,;s in each DU using statistical matching techniques (Réssler, 2003; D’Orazio
et al., 2006), creating r multiple imputations for each D®. These mr imputations
are released to the public. This nesting structure resembles the one in Section 2.3.2;
however, the replacement data is simulated before the missing data. This ordering

differs from that used in Section 2.3.2, which implies that new methods of combining

the point and variance estimates are needed for valid inference with this approach.
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3.2.3 Scenario B: Some values in D; and D, are sensitive

This scenario assumes that Agency 2 follows the same behavior as in Scenario A:
it won’t share all of its data with anyone. Agency 1 now views some of its data as
sensitive. We consider two possibilities for Agency 1, specifically (i) it is willing to
share all values of D; with Agency 2 but only some values with the public, and (ii)
it is willing to share only some values of D; with Agency 2 and with the public.

For the add-on setting where Agency 1 is willing to share all of D; with Agency
2, the agencies proceed as in the add-on setting for Scenario A. Once Agency 1 gets
the partially synthetic datasets from Agency 2, it simulates new values of its sensitive
data, Dj ,ep, from f (D17r6p|D(l)). When there are no missing values, this is identical
to the final stage of the protocols in Section 3.2.1. If the agencies are not willing
to release any values to the public, Agency 1 generates fully synthetic data, and
secondary data analysts base inferences on (12). If the agencies are willing to release
some of Dy or Dy to the public, Agency 1 generates partially synthetic data, and
analysts base inferences on (13). When there are missing data, Agency 2 could use
the two stage approach of Section 2.3.2 to generate datasets. Agency 1 would then
generate fully or partially synthetic data based on each dataset it gets from Agency
2. Effectively, this creates a three stage imputation approach. Currently, there are
no methods of inference for three stage imputation approaches. We note that the
variance formulas in (12) and (13) are not correct, since they presume Agency 2

imputes replacements in one stage.
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For the add-on setting where Agency 1 shares only some of D; with Agency 2,
Agency 1 can adopt the protocols of Section 3.2.1. That is, it applies disclosure
protection to D; before passing it to Agency 2. Agency 2 then applies the strategies
described in the previous paragraph using each of the k£ datasets sent by Agency 1.
Agency 1 discards any disguisers (if £ > 1) and proceeds as in the previous paragraph.

For the complete-it setting where Agency 1 is willing to share with Agency 2
but not the public, the agencies proceed as in the approaches for Scenario A. When
the records in D; and D, overlap, after receiving the mr datasets from Agency 2,
Agency 1 makes the public use file by generating replacement values for the sensitive
D 4ep in all mr datasets, D& for [ = 1,...,m and i = 1,...,r, with draws from
f(D1rep| DED). This could be done multiple times in each D9 effectively creating
a three stage imputation procedure.

When records overlap and Agency 1 is not willing to share with Agency 2, Agency
1 can apply disclosure protection to D; before passing it to Agency 2. Agency 2 then
follows the two-stage process of Section 2.3.2 on each of the k datasets passed by
Agency 1, passing the entire collection back to Agency 1. When k > 1, Agency 1
discards the disguiser datasets. Agency 1 then simulates new values of sensitive D,
for the public use file by simulating from f(D; ,..,| D"?), as in the previous paragraph.

For the complete-it setting without overlapping records, Agency 1 and Agency
2 proceed as in the corresponding approaches for Scenario A with one modification.

Before release to the public, Agency 1 simulates the sensitive values of D;. This
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approach requires new inferential procedures.

3.2.4 Scenario C: All values in D; and D, are sensitive

This scenario assumes that both agencies are unwilling to share any values with each
other or with the public. For the add-on setting, Agency 1 can initiate the full
synthesis protocol in Section 3.2.1. For the complete-it setting, Agency 1 and Agency
2 proceed as in Scenario A. However, Agency 1 now simulates all data values before

release. Once again, this additional simulation requires new inferential procedures.

4 Illustration of data sharing protocol

We now illustrate one of the synthetic data approaches to data integration and dis-
semination. In particular, we presume two agencies own the same records but different
variables, which is the setting of Section 3.2.1. For the illustration we use a subset of
public release data from the March 2000 U.S. Current Population Survey. The data
comprise nine variables measured on 51,016 heads of households; see Table 2. Similar
data are used by Reiter (2005a) to illustrate and evaluate releasing fully synthetic
data without data integration.

We partition the data so that Agency 1 owns all variables except income and
Agency 2 owns only income. We presume that Agency 1 is willing to share the values
of all variables with Agency 2, but Agency 2 is not willing to share any genuine values

of income with Agency 1. Thus, Agency 1 does not disguise the data that it sends to
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Table 2: Description of variables used in the empirical studies

Variable Label Range

Sex X male, female

Race R white, black, American Indian, Asian
Marital status M 7 categories, coded 1-7

Highest attained education level E 16 categories, coded 31-46

Age (years) G 0-90

Number of people in household H 1-16

Number of people in household under age 18 Y 0,1-11

Household property taxes ($) P 0,1-99,997

Household income ($) I -21,011 — 768,742

Agency 2. Agency 2 disguises what it sends to Agency 1 by simulating all records’
incomes. See Kohnen and Reiter (2009) for an illustration of techniques that enable
Agency 1 to disguise its data before passing to Agency 2.

We also presume that Agency 1 releases a public use file of the integrated data
that protects the confidentiality of respondents’ identities. We consider age, race,
marital status, and sex to be quasi-identifiers that intruders can know precisely. To
make the public use file, Agency 1 simulates all records’ values of age, race, and
marital status in the integrated data. This is arguably more data synthesis than

necessary. There are only 521 records with unique combinations of age, race, marital
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status, and sex; and, there are only 284 combinations of the four variables with two
cases. Thus, to protect confidentiality it may be sufficient for Agency 1 to simulate
the quasi-identifiers for only a subset of the full sample. Nonetheless, we simulate all
values to illustrate heavy synthesis. Intruders might have access to property taxes,
in which case Agency 1 may want to simulate those variables as well.

We generate synthetic datasets in two stages. First, Agency 2 replaces all values
of income and passes m = 5 partially synthetic datasets to Agency 1. Second, in
each of these five datasets, Agency 1 generates r = 5 datasets in which age, marital
status, and race are synthesized. Agency 1 does not change the values of sex. These
25 synthetic datasets are what would be released to the public. The synthetic data

are generated using regression trees (CART models), as we now describe.

4.1 CART Synthesis Models

CART models are a flexible tool for estimating the conditional distribution of a uni-
variate outcome given multivariate predictors. Essentially, the CART model par-
titions the predictor space so that subsets of units formed by the partitions have
relatively homogeneous outcomes. The partitions are found by recursive binary splits
of the predictors. The series of splits can be effectively represented by a tree struc-
ture, with leaves corresponding to the subsets of units. Reiter (2005¢) describes how
CART models can be used to generate partially synthetic data.

To synthesize all values of income, we first separate the data into four groups
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defined by the four distinct values of race. In each group, using D, we fit a regression
tree of income on all other variables (except race). Label the tree in any group as Y(p).
We require a minimum of five records in each leaf of the trees and use a minimum
deviance splitting criterion of 0.001; see Reiter (2005¢) for discussion of specifying tree
parameters. Let Ly, be the wth leaf in some ), and let Y(%“” be the ny,, values of
Y(;) in leaf Ly,. In each Ly, in the tree, we generate a new set of values by drawing
from Y(%“” using the Bayesian bootstrap (Rubin, 1981). These sampled values are
the replacement imputations for the ny, —units that belong to Lj,. Repeating the
Bayesian bootstrap in each leaf of the income trees results in the ith set of synthetic
ages, Y(ryep,i- We repeat this process m = 5 times to generate the five partially
synthetic datasets, { DM, ..., D®} to be shared with Agency 1.

To avoid releasing values of the observed incomes in each leaf, we could take an
additional step suggested in Reiter (2005c¢). In each leaf, we would estimate the
density of the bootstrapped values using a Gaussian kernel density estimator with
support over the smallest to the largest value of Y{;). Then, for each unit, we would
sample randomly from the estimated density in that unit’s leaf using an inverse-cdf
method. We do not take this extra step here.

For the synthesis of age, race, and marital status, we proceed sequentially. First,
in each D@, we fit the age tree, Y(ciy, with all variables except race and marital
status as predictors. In each Lg;, in the age tree, we generate a new set of values

by drawing from Y(éf)w using the Bayesian bootstrap. We next simulate values of
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marital status. In each D@, we fit the marital status tree with all variables except
race as predictors. To maintain consistency with Y(gj)rep,i, units’ leaves in V) are
located using Y(gyrep,i- Occasionally, some units may have combinations of values that
do not belong to one of the leaves of ). For these units, we search up the tree
until we find a node that contains the combination, then treat that node as if it were
the unit’s leaf. Once each unit’s leaf is located, values of Y(s)rep,i are generated using
the Bayesian bootstrap. Imputing races follows the same process: we fit the tree
Y(riy using all variables as predictors, place each unit in the leaves of )J(g; based on
their synthesized values of age and marital status, and sample new races using the
Bayesian bootstrap. The entire process is repeated independently » = 5 times for
each D, resulting in mr = 25 datasets that would be released to the public.

All CART models are fit in S-Plus using the “tree” function. It takes about
two hours of computer time to generate all 25 synthetic datasets. The sequence of

imputations is G—M — R; see Reiter (2005¢) for a discussion of imputation sequencing.

4.2 Analytic usefulness

We now illustrate the analytic usefulness of the resulting synthetic datasets. We
estimate the coefficients in a regression of the logarithm of income on a function of
all the predictors, including non-linear effects in age and interactions among marital
status and sex. Table 3 summarizes the inferences for the coefficients when fitting

the model on the observed data, on the first stage of synthetic data with only income
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replaced, and on the final stage of synthetic data with income, age, marital status,
and race replaced. In general, the estimated coefficients and 95% confidence intervals
are similar across all three sources of data, even for the interactions and non-linear
effects. The least accurate synthetic coefficients involve people who are widowed
males and who are married in the armed forces. There are relatively small numbers
of people in these categories: 1012 are widowed males and 773 people are married
in the armed forces. Agency 2 could improve inferences by fitting separate trees
for these groups. In general, Agency 2 should compare synthetic and observed data
inferences for many representative analyses, and adjust the synthesizer when large
differences exist. Agency 1 can improve the synthesis by comparing inferences from
the mr datasets to those from the m datasets sent by Agency 2.

Of course, the results in Table 3 are specious if the synthesis does not substantially
alter the original data. To investigate this, for each person j in the data we estimate
the actual income, [;, as the average of the five synthetic incomes, fj. We then
compute the absolute relative prediction error for each person, |(I; — I,])/(I; + 0.5)],
where the 0.5 is added to avoid division by zero. The median and first quartile of
these relative prediction errors are 0.72 and 0.18 respectively, indicating the synthetic
data averages tend to differ substantially from the actual incomes.

We next examine the quasi-identifiers. We estimate each person’s actual age as
the most frequently occurring value among that unit’s 25 imputations. We similarly

estimate each person’s actual marital status and race. We then compare each person’s
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Table 3: Point estimates and 95% confidence intervals for coefficients in regression of
log(I) using observed data, synthetic data with only income replaced, and synthetic

data with income, age, marital status, and race replaced.

Synthetic Data

Estimand Observed Data I Only I,A,M,R
Intercept 4.9 (4.8, 5.0) 5.1 (4.9, 5.3) 5.1 (4.8, 5.3)
Black 17 (<19, -.15) .18 (-.21,-.15) -.18 (-.21, -.15)
American Indian -.25 (- 1 -18) - 27 (-.34,-.19) - 23 (-.35, -.12)
Asian -01( 5,.04) .01 (-.03,.06) .01 (-.05, .06)
Female 00 (-02, 03) .00 (-02,.03)  -.00 (~.04, 03)
Married in armed forces - 03 (-.11, .06) - 10 (-.22,.01)  -.13 (-.20, -.07)
Widowed .02 (<07, .04)  -10 (-17,-.03) -.12 (~.20, -.05)
Divorced 16 (=20, -13)  -19 (-24. -15) .20 (-.25, .15)
Separated 224 (-.31,-17)  -.23 (-.32,-.15)  -.27 (-.36, -.19)
Single . 17( 20, -.14) - 16 (-21,-12) - 16 (-.20, -.11)
Education 11 (.108, .113) .11 (.103,.110) .11 (.101, .114)
Household size > 1 50 (.48, .52) 49 (.45, .52) 48 (.43, .54)
Females married in armed forces - 52 (-.64, -.41) - 35 (-.48,-.22) - 32 (- 48 -.16)
Widowed females -.31 (-.37,-.25)  -.26 (-.32,-.19) -.24 (-.34, .-14)
Divorced females -.31 (-.35,-.26) -.30 (-.35,-.25) -.26 (- 35 -.17)
Separated females -.52 (-.61,-.43) -.43 (-.53,-.33) -.38 (-.53, -.23)
Single females - 32 (-.36,-.28) - 29 (-.34,-.24) - 29 (-.36, -.21)
Age x10 43 (41, 46) A1 (.38, .44) .41 (.38, 43)
Age? x1000 -44( AT, -.42) -41 (-.44, -.38) -41 (-.43, -.38)
Property tax x10000 37 (.34, .40) 38 (.35, .41) 38 (.35, .41)

Income regression fit using records with I > 0.
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estimated quasi-identifiers to their counterparts in the original data. The values in
the synthetic and original data exactly match on all three variables for only 7% of the
records, indicating that age, martial status, and race are substantially altered. For
a formal approach to measuring identification disclosure risks in synthetic data, see

Drechsler and Reiter (2008).

5 Concluding remarks

This article proposes approaches for integrating and disseminating data using multiple
imputation. The data sharing proposals have not been implemented in practice, and
there are many challenges to doing them well. The confidentiality protection for
methods based on disguisers is sensitive to the properties of the disguisers. Unrealistic
disguisers may not afford any protection, and detailed domain knowledge on the part
of the receiving agency (Agency 2) can defeat them. For example, when D; contains
incomes, Agency 2 can identify D, if it knows the exact income of at least one record
on the file, and there are no duplicates of that income in the disguisers datasets. These
risks lead Kohnen and Reiter (2009) to conclude that perturbing or transforming data
generally provides greater protection than sharing multiple disguisers.

Creating synthetic data, especially full synthesis, is challenging for large datasets
with many variables. With large amounts of simulation, results are sensitive to as-
sumptions used in the synthesis models. Nonetheless, as the illustration and published

applications show, it is possible to generate synthetic data that are analytically use-
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ful for a wide class of (but not all) estimands. We also note that in complete-it data
integration settings with a relatively small amount of overlap in records, agencies
have to make strong assumptions about the distributions of the data regardless of
confidentiality concerns, as there is little information about the relationships among
variables. Such assumptions can be used to generate synthetic data in those settings.

Legal and ethical concerns over data sharing and dissemination seem to be only
growing. In the future, it is conceivable that agencies may not be allowed to share or
release any genuine data. Yet, there are potentially enormous benefits to agencies of
integrating data from different sources, and to the broader public if agencies dissem-
inate the integrated data. The techniques proposed in this article have the potential
to handle data integration and dissemination simultaneously while respecting confi-
dentiality constraints. The next steps in developing these methods are clear: derive
methods for inferences where needed, and investigate disclosure risks and analytical
validity at both the inter-agency and dissemination stages. Empirical investigations
on genuine data will help agencies and analysts to understand the benefits and limi-

tations of multiple imputation approaches to data integration and dissemination.
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