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Abstract

Multiple imputation can handle missing data and disclosure limitation simultaneously. First, fill in

the missing data to generate m completed datasets, then replace confidential values in each completed

dataset with r imputations. I investigate how to select m and r.
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1 Introduction

When statistical agencies disseminate data to the public, they strive to release files that are safe from

attacks by ill-intentioned data users seeking to learn respondents’ identities or attributes, informative for a

wide range of statistical analyses, and easy for users to analyze with standard statistical methods. Often,

however, agencies cannot release data in their collected form, because doing so would disclose some survey

respondents’ identities or attributes. Agencies do the obvious things to protect confidentiality before releasing

data, such as stripping unique identifiers like names, social security numbers, and addresses. However, these

actions alone may not eliminate the risk of disclosures when key identifying variables—e.g., age, sex, race,
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and marital status—remain on the file. These keys can be used to match units in the released data to other

databases. Many agencies therefore alter values of key identifiers, and possibly values of sensitive variables,

before releasing the data (Willenborg and de Waal, 2001).

Several authors, beginning with Rubin (1993), have proposed using multiple imputation as a way to

release disclosure-proofed datasets with high utility. In Rubin’s original approach, the agency (i) randomly

and independently samples units from the sampling frame to comprise each synthetic dataset, (ii) imputes

the unknown data values for units in the synthetic samples using models fit with the original survey data,

and (iii) releases multiple versions of these datasets to the public. These are called fully synthetic datasets.

Releasing fully synthetic data can preserve confidentiality, since identification of units and their sensitive

data can be difficult when the released data are not actual, collected values. Furthermore, using appropriate

data generation and estimation methods of Raghunathan et al. (2003)—based on the concepts of multiple

imputation (Rubin, 1987) for missing data—analysts can make valid inferences for a variety of estimands

using standard, complete-data statistical methods and software, at least for inferences congenial to the

model used to generate the data. Provided the agency releases some description of this model, analysts can

determine whether or not their questions can be answered using the fully synthetic data. Other attractive

features of fully synthetic data are described by Rubin (1993), Raghunathan et al. (2003), Raghunathan

(2003), and Reiter (2002, 2004a, 2005a,b).

Although no statistical agencies have released fully synthetic datasets as of this writing, some agencies use

or are considering a variant of the multiple imputation approach proposed by Little (1993): release datasets

comprising the units originally surveyed with some collected values, such as sensitive values at high risk of

disclosure or values of key identifiers, replaced with multiple imputations. These are called partially synthetic

datasets. For example, the U.S. Federal Reserve Board protects data in the U.S. Survey of Consumer Finances

by replacing monetary values at high disclosure risk with multiple imputations, releasing a mixture of these

imputed values and the unreplaced, collected values (Kennickell, 1997). The U.S. Bureau of the Census and
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Abowd and Woodcock (2001) protect data in longitudinal, linked datasets by replacing all values of some

sensitive variables with multiple imputations and leaving other variables at their actual values. The Bureau

of the Census currently is researching the possibility of releasing partially synthetic public use files for the

Survey of Income and Program Participation and the American Communities Survey. Partially synthetic

approaches are appealing because they can maintain the primary benefits of fully synthetic data–protecting

confidentiality while allowing users to make inferences without learning complicated statistical methods or

software–with decreased sensitivity to the specification of imputation models (Reiter, 2003).

When some data are missing, it is logical to impute the missing and partially synthetic data simultane-

ously. Multiple imputation is appealing for handling nonresponse because it moves the burden of dealing

with the missing data off of data analysts and on to data producers, who typically have greater resources

than analysts. When the imputation models meet certain conditions (Rubin, 1987, Chapter 4), analysts of

the completed datasets can obtain valid inferences using complete-data statistical methods and software.

Specifically, the analyst computes point and variance estimates of interest with each dataset and combines

these estimates using simple formulae developed by Rubin (1987). These formulae automatically propagate

the uncertainty introduced by imputation through the analysts’ inferences, enabling analysts to focus on

modeling issues rather than estimation technicalities.

To adapt multiple imputation to handle nonresponse and disclosure simultaneously, agencies can use the

procedure proposed by Reiter (2004b). First, the agency fills in the missing data, generating m multiply-

imputed datasets. Second, the agency replaces the values at risk of disclosure in each imputed dataset with

r multiple imputations, ultimately releasing M = m ∗ r nested multiply-imputed datasets. Valid inferences

can be obtained by combining point and variance estimates from the multiply-imputed datasets as described

in Reiter (2004b).

In this paper, I consider the use of simultaneous multiple imputation for missing data and for partially

synthetic data. The existing literature contains little guidance on implementing this approach in practice.
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One critical issue is the selection of m and r. For example, for a fixed value of M , is it preferable to select

large m or large r? This paper provides such guidance by using simulation studies to explore the effects on

data utility of different allocations of m and r. The studies suggest that agencies can improve accuracy by

making m large relative to r. The improvements can be substantial when the fractions of missing information

are large.

2 Review of inferential methods for multiple imputation

For a finite population of size N , let Ij = 1 if unit j is selected in the survey, and Ij = 0 otherwise, where

j = 1, 2, . . . , N . Let I = (I1, . . . , IN ). Let Rj be a p × 1 vector of response indicators, where Rjk = 1 if

the response for unit j to survey item k is recorded, and Rjk = 0 otherwise. Let R = (R1, . . . , RN ). Let

Yinc = (Yobs, Ymis) be the n × p matrix of survey data for the n units with Ij = 1; Yobs is the portion of

Yinc that is observed, and Ymis is the portion of Yinc that is missing due to nonresponse. Let X be the

N × d matrix of design variables for all N units in the population, e.g. stratum or cluster indicators or

size measures. We assume that such design information is known for all population units, for example from

census records or the sampling frame(s). When it is not known for some units, X can be treated as part of

Y for those units. Finally, we write the observed data as D = (X, Yobs, I, R).

Let Zj = 1 if unit j is selected to have any of its data replaced with synthetic values, and let Zj = 0 for

those units with all data left unchanged. Let Z = (Z1, . . . , Zn). Let Ynrep be the values in Yobs that are not

replaced; these remain constant across all synthetic datasets.

To generate the M synthetic datasets, first the agency fills in values for Ymis with draws from the

Bayesian posterior predictive distribution of (Ymis | D), or approximations of that distribution such as

those of Raghunathan et al. (2001). These draws are repeated independently l = 1, . . . , m times to obtain m

completed datasets, D(l) = (D, Y
(l)
mis). Once these are generated, in each D(l) the agency imputes replacement

values Y
(l,i)
rep for those units with Zj = 1, drawing from the posterior distribution for (Yrep | D(l), Z), or a
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close approximation of it. These draws are repeated independently r times, so that we obtain i = 1, . . . , r

synthetic datasets, d(l,i) = (X, Ynrep, Y
(l)
mis, Y

(l,i)
rep , I, R, Z) for each l. Each d(l,i) includes a label indicating

the l of the D(l) from which it was drawn. A total of M = mr datasets are generated and are released to

the public.

The user of these synthetic public use datasets, henceforth labeled the analyst, seeks inferences about

some estimand Q = Q(X, Y ), for example the population mean of Y or the population regression coefficients

of Y on X . In each d(l,i), the analyst estimates Q with some estimator q and the variance of q with some

estimator u. It is assumed the analyst specifies the point and variance estimators, q and u, by acting as if

each d(l,i) was in fact collected data from a random sample of (X, Y ) based on the original sampling design

I . For l = 1, . . . , m and i = 1, . . . , r, let q(l,i) and u(l,i) be respectively the values of q and u in dataset d(l,i).

The following quantities are needed for inferences about scalar Q:

q̄M =

m
∑

l=1

r
∑

i=1

q(l,i)/(mr) =

m
∑

l=1

q̄(l)/m (1)

w̄M =
m

∑

l=1

r
∑

i=1

(q(l,i) − q̄(l))2/m(r − 1) =
m

∑

l=1

w(l)/m (2)

bM =

m
∑

l=1

(q̄(l) − q̄M )2/(m − 1) (3)

ūM =

m
∑

l=1

r
∑

i=1

u(l,i)/(mr). (4)

The q̄(l) is the average of the point estimates in each group of datasets indexed by l, and the q̄M is the

average of these averages across l. The w(l) is the variance of the point estimates for each group of datasets

indexed by l, and the w̄M is average of these variances. The bM is the variance of the q̄(l) across synthetic

datasets. The ūM is the average of the estimated variances of q across all synthetic datasets. This notation

differs slightly from that in Reiter (2004b) to distinguish the within-group and between-group quantities

more clearly.
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As described in Reiter (2004b), the analyst can use q̄M to estimate Q and

TM = (1 + 1/m)bM − w̄M/r + ūM (5)

to estimate the variance of q̄M . Inferences can be based on the t-distribution, (Q − q̄M ) ∼ tνM
(0, TM ), with

degrees of freedom

νM =

(

((1 + 1/m)bM )2

(m − 1)T 2
M

+
(w̄M/r)2

m(r − 1)T 2
M

)

−1

. (6)

It is necessary for r > 1 to enable the analyst to estimate w̄M . If r = 1, the TM collapses to Rubin’s (1987)

variance formula for multiple imputation for missing data, T = (1+1/m)bm+ ūm. This is a biased estimator

of the variance when multiple imputation is used for replacing observed data (Reiter, 2003).

It is possible for TM < 0, especially when m and r are small enough so that bM and w̄M are estimated

with high variance. Adjustments for negative variance estimates have not been proposed in the existing

literature. Here I propose that, when TM < 0, analysts use the conservative approximation,

T adj
M = (1 + 1/m)bM + ūM . (7)

This mimics the variance estimator for multiple imputation for missing data. The corresponding degrees of

freedom is

νadj
M = (m − 1)(1 + mūm/((m + 1)bm))2 (8)

which is the degrees of freedom for multiple imputation for missing data (Rubin, 1987). This proposal will

be employed in the simulation studies.
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3 Simulation studies

Agencies utilizing multiple imputation for missing data and disclosure limitation must choose values of m

and r. This choice is guided by two concerns: data utility and disclosure risk. Generally, the larger the

values of m and r, the smaller the variances of the q̄M , but the more information available for ill-intentioned

users to attempt to learn about respondents’ identities and sensitive attributes (Reiter, 2004b). To evaluate

different allocations of m and r, I assume a fixed M . Agencies would select M after studying the risk and

utility of different values, for example following the methods outlined in Reiter (2005c).

For a fixed value of M , there is little difference in the disclosure risks associated with different allocations

of m and r. This is because the Ynrep, which contain actual data and so provide some information about

identities and attributes, are identical across all d(l,i) regardless of the allocation. Additionally, there are

M available imputations for each replaced value of Yobs—which the user can average in attempts to make

disclosures, as illustrated by Reiter (2005c)—again regardless of the allocation.

The utility of the released data are directly affected by the choice of m and r, since these impact the

V ar(q̄M ). To evaluate these effects, I use simulation studies of three allocations: (m = 8, r = 2), (m = 4, r =

4), (m = 2, r = 8). The M = 16 is selected for convenience but is roughly the size of M that agencies might

use in practice. Each complete dataset, D, comprises n = 1000 values drawn randomly from Y ∼ N(0, 102).

The population size is considered infinite so that finite population correction factors are ignored. To create

missing data, I select random samples of units in D and make their Y missing. I then select random samples

of units in Yobs and replace their values with imputations, which simulates making partially synthetic data.

This simulation design is simpler than what can arise in practice, but it is sufficient for illustrating the effects

of different allocations of m and r on data utility.

The first stage of the process is to impute missing data to generate the D(l) = (Yobs, Y
(l)
mis, I, R). The

Y
(l)
mis are drawn using a Bayesian bootstrap (Rubin, 1987, pp.123-124). This draws values of Y

(l)
mis from donor

pools comprising the nobs values of Yobs. The next stage is to replace selected values of Yobs to generate
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the partially synthetic datasets. As mentioned in Section 2, the correct posterior predictive distribution is

f(Y | D(l), Z), not f(Y | D(l)). I generate the Y
(l,i)
rep using standard Bayesian normal distribution theory,

using only the values with Zj = 1 to determine the posterior distributions. When Z = I , i.e. when all values

are replaced, I simulate n values of Y
(l,i)
rep so that each d(l,i) contains no values of Yobs and no values of Y

(l)
mis.

The estimand of interest is the population mean, Q = 0. Each q(l,i) is the sample average of (Ynrep, Y
l
mis, Y

(l,i)
rep ),

and each u(l,i) is the sample variance of (Ynrep, Y
(l)
mis, Y

(l,i)
rep ) divided by 1000. Table 1 summarizes the results

from 5000 simulations involving several values of m and r, and differing rates of missing and synthetic data.

For all scenarios, the average of the q̄M is within simulation error of zero and so is not reported. Across

all scenarios, the TM is approximately unbiased for the V ar(q̄M ), and the confidence interval coverages are

close to nominal. As expected, variances increase with the fraction of missing data and with the fraction

of replaced values. The fraction of missing data plays a larger role in the variance than does the fraction

of replaced data. For example, going from 30% missing to 50% missing increases variances by around 33%,

whereas going from 30% replaced to 100% replaced increases variances by 10% or less.

The variances are smaller when m is relatively large than when r is relatively large. This trend becomes

pronounced as the fraction of missing data increases. Additionally, with large fractions of missing informa-

tion, using m = 2 results in intervals that have less than 95% coverage. These results suggest that for large

amounts of missing data, it is preferable to allocate more resources to the missing data imputations than to

the replacement imputations. This is consistent with advice from the literature on multiple imputation for

missing data: increase m when the fraction of missing data is large (Rubin, 1987).

However, making m large is not the proverbial free lunch: when replacing all values with synthetic

data, increasing m increases the risks of obtaining negative variance estimates. This forces us to use the

adjusted variance estimator and adjusted degrees of freedom more frequently. The resulting inferences are

conservative, with higher than 95% coverage for the confidence intervals. The risk of negative variance

estimates decreases as the amount of replaced data decreases.
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4 Conclusions

Agencies considering the use of multiple imputation for missing data and disclosure limitation select the

total number of synthetic datasets to release based on disclosure risk and data utility considerations. Once

M is selected, the agency needs to allocate resources to imputing missing data and to replacing values. This

paper illustrates that inferences can be made more efficient by allocating more to m than to r, especially for

substantial fractions of missing information. For small values of M , a reasonable approach is to use similar

values of m and r. This realizes some of the payoffs from reducing the variance due to missing data and

reduces the risks of negative variance estimates.

References

Abowd, J. M. and Woodcock, S. D. (2001). Disclosure limitation in longitudinal linked data. In P. Doyle,

J. Lane, L. Zayatz, and J. Theeuwes, eds., Confidentiality, Disclosure, and Data Access: Theory and

Practical Applications for Statistical Agencies, 215–277. Amsterdam: North-Holland.

Kennickell, A. B. (1997). Multiple imputation and disclosure protection: The case of the 1995 Survey of

Consumer Finances. In W. Alvey and B. Jamerson, eds., Record Linkage Techniques, 1997, 248–267.

Washington, D.C.: National Academy Press.

Little, R. J. A. (1993). Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.

Raghunathan, T. E. (2003). Evaluation of Inferences from Multiple Synthetic Data Sets Created Using

Semiparametric Approach. Tech. rep. Report for the National Academy of Sciences Panel on Access to

Confidential Research Data.

Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., and Solenberger, P. (2001). A multivariate technique

for multiply imputing missing values using a series of regression models. Survey Methodology 27, 85–96.

9



Raghunathan, T. E., Reiter, J. P., and Rubin, D. B. (2003). Multiple imputation for statistical disclosure

limitation. Journal of Official Statistics 19, 1–16.

Reiter, J. P. (2002). Satisfying disclosure restrictions with synthetic data sets. Journal of Official Statistics

18, 531–544.

Reiter, J. P. (2003). Inference for partially synthetic, public use microdata sets. Survey Methodology 181–189.

Reiter, J. P. (2004a). New approaches to data dissemintation: A glimpse into the future (?). Chance 17, 3,

12–16.

Reiter, J. P. (2004b). Simultaneous use of multiple imputation for missing data and disclosure limitation.

Survey Methodology 30, 235–242.

Reiter, J. P. (2005a). Releasing multiply-imputed, synthetic public use microdata: An illustration and

empirical study. Journal of the Royal Statistical Society, Series A 168, 185–205.

Reiter, J. P. (2005b). Significance tests for multi-component estimands from multiply-imputed, synthetic

microdata. Journal of Statistical Planning and Inference 131, 365–377.

Reiter, J. P. (2005c). Using CART to generate partially synthetic, public use microdata. Journal of Official

Statistics 21, 441–462.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

Rubin, D. B. (1993). Discussion: Statistical disclosure limitation. Journal of Official Statistics 9, 462–468.

Willenborg, L. and de Waal, T. (2001). Elements of Statistical Disclosure Control. New York: Springer-

Verlag.

10



Table 1: Results of 5000 simulations for each scenario.

95% CI Coverage
V ar(q̄M ) E(TM ) TM < 0 Unadj. Adj.

10% missing, 30% replaced
m = 8 and r = 2 .115 .116 0 95.4
m = 4 and r = 4 .118 .117 0 94.6
m = 2 and r = 8 .121 .121 0 95.0

30% missing, 30% replaced
m = 8 and r = 2 .156 .151 0 94.7
m = 4 and r = 4 .157 .157 0 94.8
m = 2 and r = 8 .167 .167 0 93.4

50% missing, 30% replaced
m = 8 and r = 2 .207 .214 0 95.0
m = 4 and r = 4 .225 .226 0 94.1
m = 2 and r = 8 .244 .255 0 92.2

10% missing, 100% replaced
m = 8 and r = 2 .128 .125 264 93.4 98.6
m = 4 and r = 4 .128 .127 9 95.6 95.7
m = 2 and r = 8 .125 .130 0 94.1

30% missing, 100% replaced
m = 8 and r = 2 .156 .159 178 95.1 98.5
m = 4 and r = 4 .170 .166 3 94.8 94.8
m = 2 and r = 8 .170 .175 0 92.8

50% missing, 100% replaced
m = 8 and r = 2 .221 .223 81 96.4 97.9
m = 4 and r = 4 .243 .240 4 94.5 94.5
m = 2 and r = 8 .264 .260 0 90.5

The first two columns are the variance of the q̄M and the average of TM across the 5,000 simulation runs. The third column
is the number of times the TM < 0. The last two columns show the percentages of the five thousand 95% confidence intervals
based on that contain zero. The penultimate column is for intervals based on the t-distribution with νM degrees of freedom,

and the last column is for intervals based on TM and νM when TM > 0 and on T
adj

M
and ν

adj

M
when TM < 0.
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