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Abstract

We presenta Bayesianframework for content-basedim-
ageretrieval which modelsthedistributionof color andtex-
ture featureswithin setsof relatedimages. Givena user-
speci�ed text query (e.g. “penguins”) the system�r st ex-
tractsa setof images,froma labelledcorpus,correspond-
ing to that query. The distribution over features of these
imagesis usedto computea Bayesianscore for each image
in a large unlabelledcorpus. Unlabelledimagesare then
rankedusingthisscoreandthetopimagesarereturned.Al-
thoughtheBayesianscore is basedon computingmarginal
likelihoods,which integrateover modelparameters, in the
caseof sparse binary data the score reducesto a single
matrix-vectormultiplication and is therefore extremelyef-
�cient to compute. We showthat our methodworks sur-
prisingly well despiteits simplicityandthefact that no rel-
evancefeedback is used. We compare different choicesof
features,andevaluateour resultsusinghumansubjects.

1. Intr oduction

As thenumberandsizeof imagedatabasesgrows,accu-
rateandef�cient content-basedimageretrieval (CBIR) sys-
temsbecomeincreasinglyimportantin businessandin the
everydaylives of peoplearoundthe world. Accordingly,
therehasbeena substantialamountof CBIR research,and
muchrecentinterestin usingprobabilisticmethodsfor this
purpose(seesection4 for afull discussion).Methodswhich
boostretrieval performanceby incorporatinguserprovided
relevancefeedbackhavealsobeenof interest.

In thispaperwedescribeanovel framework for perform-
ing content-basedimageretrieval usingBayesianstatistics.
Even thoughour methodexactly solvesa Bayesianinfer-
enceproblem,integrating over modelparameters,this re-
ducesto an ef�cient singlematrix-vectormultiplication in
thepresenceof sparsebinarydata.Our methodfocuseson
performingcategory search,thoughit could easily be ex-
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tendedto othertypesof searches,anddoesnot requirerele-
vancefeedbackin orderto performreasonably. It alsoem-
phasizesthe importanceof utilizing informationgiven by
setsof images,asopposedto singleimagequeries.

In thefollowingsectionswedescribeourBayesianCBIR
systemin detail. In section2 wediscusseachcomponentof
thesystemincludingfeatureextraction,preprocessing, and
theretrieval algorithm. In section3 we analyzetheexperi-
mentalresultsfrom usingour systemto performcategory
searchesfor 50 querieson a Corel image databasewith
nearly32,000images. We alsoanalyzetexture andcolor
featuresindividually. Lastly, we discussthe large amount
of relatedandfuturework (sections4 and5).

2. ImageRetrieval System

In our BayesianCBIR systemimagesarerepresentedas
binarizedvectorsof features.We usecolor andtexturefea-
turesto representeachimage,asdescribedin section2.1,
andthenbinarizethesefeaturesacrossall imagesin a pre-
processingstage,describedin section2.2.

Given a query input by the user, say “penguins”, our
BayesianCBIR system�nds all imagesthat areannotated
“penguins” in a training set. The set of featurevectors
which representtheseimagesis then usedin a Bayesian
retrieval algorithm (section2.3) to �nd unlabelledimages
whichportraypenguins.

2.1.Features

Werepresentimagesusingtwo typesof texturefeatures,
48 Gabortexture featuresand27 Tamuratexture features,
and165color histogram features.We computecoarseness,
contrastand directionality Tamurafeatures,as in [1], for
eachof 9 (3x3) tiles. We apply 6 scalesensitive and 4
orientationsensitive Gabor�lters to eachimagepoint and
computethe meanandstandarddeviation of the resulting
distribution of �lter responses.See[2] for moredetailson
computingthesetexturefeatures.For thecolor featureswe
computeanHSV (HueSaturationValue)3D histogram[3]
suchthat thereare8 bins for hue and5 eachfor valueand



saturation.Thelowestvaluebin is notpartitionedinto hues
sincethey arenoteasyfor peopleto distinguish.

2.2.Preprocessing

After the240dimensionalfeaturevectoris computedfor
eachimage,thefeaturevectorsfor all imagesin thedataset
arepreprocessed together. Thepurposeof this preprocess-
ing stageis to binarizethedatain aninformativeway. First
the skewnessof eachfeatureis calculatedacrossthe data
set. If a speci�c featureis positively skewed, the images
for which the value of that featureis above the 80th per-
centileassignthe value '1' to that feature,the restassign
the value '0'. If the featureis negatively skewed, the im-
agesfor which the value of that featureis below the 20th
percentileassignthevalue'1', andtherestassignthevalue
'0'. This preprocessingturnstheentireimagedatasetinto
asparsebinarymatrix,which focusesonthefeatureswhich
mostdistinguisheachimagefrom the restof the dataset.
Theone-timecostfor this preprocessingis a total of 108.6
secondsfor 31,992imageswith the240featuresdescribed
in theprevioussection,ona2GHzPentium4 laptop.

2.3.Algorithm

Using the preprocessedsparsebinary data,our system
takes asinputauser-speci�edtext queryfor categorysearch
andoutputsimagesranked asmost likely to belongto the
category correspondingto the query. The algorithm our
systemusesto perform this task is an extensionof a re-
cently proposedmethodfor clusteringon-demand,called
BayesianSets[4].

First thealgorithmlocatesall imagesin the trainingset
with labelsthat correspondto the query input. Then,us-
ing the binary featurevectorswhich representthe images,
the algorithmusesa Bayesiancriterion basedon marginal
likelihoods,to scoreeachunlabelledimageasto how well
thatunlabelledimage�ts in with thetrainingimagescorre-
spondingto the query. This Bayesiancriterion canbe ex-
pressedasfollows:

score(x � ) =
p(x � ; Dq)

p(x � )p(Dq)
(1)

whereDq = f x1; : : : xN g are the training imagescorre-
spondingto thequery, andx � is theunlabelledimagethat
we would like to score.We usethe symbolx i to refer in-
terchangablybothto imagei , andto thebinaryfeaturevec-
tor which representsimagei . Eachof the threetermsin
equation1 aremarginal likelihoodsandcanbe written as
integralsof thefollowing form:

p(x � ) =
Z

p(x � j� )p(� )d� (2)

Here � are the parametersof somedistribution which has
beenchosento modeltheimagefeaturevectors,p(� ) is the

prior over theseparameters,andp(x � j� ) is the likelihood,
theprobabilityof observingx � giventhatour modelis pa-
rameterizedby � . Integratingover � in equation2 corre-
spondsto computingthe prior probability of observingx �

by averagingover all possiblesettingsof themodelparam-
eters.For thequerysetwehave:

p(Dq) =
Z "

NY

i =1

p(x i j� )

#

p(� )d� (3)

Hereeveryimagex i in thequerysetis assumedto bedrawn
i.i.d. from our modelwith unknown, but thesameparame-
ters� . Finally, for thenumeratorof 1 wehave:

p(x � ; Dq) =
Z "

NY

i =1

p(x i j� )

#

p(x � j� )p(� )d� (4)

Similarly to equation3, equation4 assumesevery imagein
thequerysetandtheimageto bescored,x � , all comei.i.d.
from ourmodelwith unknown, but thesameparameters,� .

Giventhesemarginal likelihoods,wecannow intuitively
interpretequation1 asthe ratio of the probability that Dq

andx � belongto thesamemodelwith thesame,thoughun-
known, parameters� , and the probability that Dq and x �

belongto modelswith differentparameters,� 1 and� 2. The
largerthis score,themorelikely it is that theimagewe are
evaluating,x � , belongsin thesamecategoryasthequeryset
of images,Dq. Notethat this is not thesameascomputing
the point-wisemutual information or testingfor indepen-
dence,sincewe arecomparingmodelsratherthanlooking
at empiricaldistributions. Moreover, the model in the nu-
meratorassumesthat thequeryandthe imagewe areeval-
uatingaredependentthroughparameterswhich have been
integratedout. After computingthis scorefor every unla-
belledimage,thehighestscoringimagesarereturnedto the
user.

A generalsummaryof ourBayesianCBIR framework is
givenin thefollowing psuedocode:

BayesianCBIR System

background: asetof labelledimagesD` ,
a setof unlabelledimagesDu ,
aprobabilisticmodelp(x j� ) de�ned on
binaryfeaturevectorsrepresentingimages,
aprior on themodelparametersp(� )

computetextureandcolor featuresfor eachimage
preprocess:Binarizefeaturevectorsacrossimages
input: a text query, q
�nd imagescorrespondingto q, Dq = f x i g � D`

for all x � 2 Du do

compute score(x � ) =
p(x � ; Dq)

p(x � )p(Dq)
end for
output: sortedlist of topscoringimagesin Du



We still have not describedthe speci�c model,p(x j� ),
or addressedthe issueof computationalef�ciency of com-
puting the integralsin 2, 3,and4. Eachimagex i 2 Dq is
representedasa binary vectorx i = (x i 1; : : : ; x iJ ) where
x ij 2 f 0; 1g. We de�ne a modelin which eachelementof
x i hasanindependentBernoulli distribution:

p(x i j� ) =
JY

j =1

� x ij
j (1 � � j )1� x ij (5)

The conjugate prior [5] for the parametersof a Bernoulli
distribution is theBetadistribution:

p(� j� ; � ) =
JY

j =1

�( � j + � j )
�( � j )�( � j )

� � j � 1
j (1 � � j ) � j � 1 (6)

where� and � are hyperparametersof the prior, and the
Gammafunction, �( �) is a generalizationof the factorial
function. Thehyperparameters� and� aresetempirically
from the data,� = � m, � = � (1 � m), wherem is the
meanof x over all images,and� is a scalingfactor. For a
queryDq = f x1 : : : xN g consistingof N vectorsit is easy
to show that:

p(Dqj� ; � ) =
Y

j

�( � j + � j )
�( � j )�( � j )

�( ~� j )�( ~� j )

�( ~� j + ~� j )
(7)

where~� j = � j +
P N

i =1 x ij and ~� j = � j + N �
P N

i =1 x ij .
The other two marginal likelihoods,p(x � ) and p(x � ; Dq)
from equation1 cananalogouslybecomputed.By combin-
ing these threemarginal likelihoodsin equation1, we can
computethescore:

score(x � ) =
p(x � ; Dq)

p(x � )p(Dq)

=
Y

j

�( � j + � j + N )
�( � j + � j + N +1)

�( ~� j + x � j )� ( ~� j +1 � x � j )
�( ~� j )� ( ~� j )

�( � j + � j )
�( � j + � j +1)

�( � j + x � j )� ( � j +1 � x � j )
�( � j )� ( � j )

(8)

We can simplify this expressionby using the fact that
�( x) = (x � 1) �( x � 1) for x > 1. Also, for eachj wecan
considerthetwo casesx � j = 0 andx � j = 1 separately. For
x � j = 1 we have acontribution � j + � j

� j + � j + N
~� j

� j
. For x � j = 0

we have acontribution � j + � j

� j + � j + N

~� j

� j
. Puttingthesetogether

wecanseethat:

score(x � ) =
Y

j

� j + � j

� j + � j + N

�
~� j

� j

� x � j
 

~� j

� j

! 1� x � j

(9)
Thelog of this scoreis linear in x:

logscore(x � ) = c +
X

j

qj x � j (10)

where

c =
X

j

log(� j + � j ) � log(� j + � j + n) + log ~� j � log � j

and
qj = log ~� j � log � j � log ~� j + log � j (11)

If we put theentiredatasetinto onelargematrix X with J
columns,we cancomputethevector s of log scoresfor all
imagesusingasinglematrix vectormultiplication

s = c + Xq (12)

For our sparsebinary imagedata,this linearoperationcan
be implementedvery ef�ciently . Each query Dq corre-
spondsto computingvectorq andscalarc, which canbe
donevery ef�ciently as well. The total retrieval time for
31,992imageswith 240 featuresand1.34million nonzero
elementsis 0.1 to 0.15seconds,on a 2GHzPentium4 lap-
top.

We cananalyzethe vectorq, which is computedusing
thequerysetof images,to seethatour algorithmimplicitly
performsfeatureselection. We canrewrite equation11 as
follows:

qj = log
~� j

� j
+ log

~� j

� j

= log
�

1 +
P

i x ij

� j

�
� log

�
1 +

N �
P

i x ij

� j

�
(13)

If the datais sparseand� j and� j areproportionalto the
datameannumberof onesandzerosrespectively, thenthe
�rst term dominates,and featurej gets weight approxi-
mately:

qj � log
�

1 + const
querymeanj

datameanj

�
(14)

whenthat featureappearsin thequeryset,anda relatively
small negative weight otherwise. A featurewhich is fre-
quentin thequerysetbut infrequentin theoverall datawill
have high weight. So, a new imagewhich hasa feature
(value 1)which is frequentin the querysetwill typically
receive ahigherscore, but having a featurewhich is infre-
quent(or notpresentin) thequerysetlowersits score.

3. Results

We usedour BayesianCBIR systemto retrieve images
from aCoreldatasetof 31,992images.10,000of theseim-
ageswereusedwith their labelsasa trainingset,D` , while
the restcomprisedthe unlabelledtestset,Du . We tried a
total of 50 differentqueries,correspondingto 50 category
searches,andreturnedthe top 9 imagesretrieved for each
queryusingbothtextureandcolor features,texturefeatures
alone,andcolor featuresalone. We usedthe given labels



for theimagesin orderto selectthequeryset,Dq, outof the
training set. To evaluatethe quality of the labelling in the
trainingdatawealsoreturnedarandomsampleof 9 training
imagesfrom thisqueryset.In all of ourexperimentsweset
� = 2.

The above processresultedin 1800images:50 queries
� 9 images� 4 sets(all features,texture featuresonly,
color featuresonly, and sampletraining images).Two un-
informedhumansubjectswerethenasked to label eachof
these1800imagesasto whether they thoughteachimage
matchedthegivenquery. We choseto computeprecisions
for thetopnineimagesfor eachquery basedonfactorssuch
aseaseof displayingthe images,reasonablequantitiesfor
humanhandlabelling, and becausewhen peopleperform
category searchesthey generallycaremostaboutthe �rst
few resultsthat arereturned. We found the evaluationla-
bellingsprovided by the two humansubjects tobe highly
correlated,having correlationcoef�cient 0.94.

WethencomparedourBayesianCBIR resultsonall fea-
tureswith theresultsfromusingtwodifferentnearestneigh-
bor algorithmsto retrieve imagesgiven the sameimage
dataset,querysetsandfeatures.The�rst nearestneighbor
algorithm found the nine imageswhich were closest(eu-
clideandistance)to anyindividualmemberof thequeryset.
This algorithmis approximately200timesslower thanour
Bayesianapproach.More analagousto our algorithm,the
secondnearestneighboralgorithm found the nine images
which wereclosestto themeanof thequeryset.Lastly we
comparedto theBeholdImageSearchonline[17]. Behold
ImageSearchonlinerunsona moredif�cult 1.2million im-
agedataset.Wecompareto theBeholdsystembecauseit is
a currentlyavailableonlineCBIR systemwhich is fastand
handlesquerywords,andalso becauseis was part of the
inspirationfor ourown BayesianCBIR system.Theresults
given bythesethreealgorithmsweresimilarly evaluatedby
humansubjects.

Theresultsfrom theseexperimentsaregiven in table1.
The�rst columngivesthequerybeingsearchedfor, thesec-
ondcolumnis thenumberof imagesoutof thenineimages
returnedby our algorithmwhich were labelledby the hu-
mansubjectsasbeingrelevantto thequery(precision � 9).
The third andfourth columnsgive the samekind of score
for our system,but restrictingthe featuresusedto texture
only andcolor only, respectively. The �fth columnshows
theresultsof theBeholdonlinesystem,whereN/A entries
correspondto querieswhich werenot in theBeholdvocab-
ulary. Thesixthandseventhcolumnsgivetheresultsfor the
nearestneighboralgorithmsusingall membersof thequery
setandthe meanof the querysetrespectively. The eighth
columngivesthenumberof imagesout of the9 randomly
displayedtrainingimagesthatwerelabelledby oursubjects
asbeingrelevant to the query. This givesan indicationof
thequality of the labelling in theCoreldata. The last col-

umn shows the numberof training images,n, which com-
prise the queryset (i.e. they were labelled withthe query
word in thelabellingswhichcomewith theCoreldata).

Lookingat thetablewecannoticethatouralgorithmus-
ing all features(BIR) performsbetterthaneitherthetexture
features(BIRtex) or color featuresalone(BIRcol); the p-
valuesfor aBinomial testfor textureor color featuresalone
performingbetterthanall featuresare lessthan0.0001in
both cases. In fact our algorithm can do reasonablywell
evenwhenthereareno correctretrievalsusingeithercolor
or texture featuresalone(see,for example,the query“eif-
fel”). Ouralgorithmalsosubstantiallyoutperformsall three
of the comparisonalgorithms(BO, NNmean,NNall). It
tendsto perform betteron exampleswherethereis more
training data, although it does not always need a large
amountof trainingdatato getgoodretrieval results;in part
this may result from the particularfeatureswe are using.
Also, thereare queries(for example, “desert”) for which
the resultsof our algorithmare judgedby our two human
subjects tobebetterthanaselectionof theimagesit is train-
ing on. This suggestsboththat theoriginal labelsfor these
imagescould be improved,andthat our algorithmis quite
robust to outliersandpoor imageexamples.Lastly, our al-
gorithm �nds at least1, andgenerallymany more,appro-
priateimages,in thenineretrievedimages,on all of the50
queries.

The averagenumberof imagesreturned,acrossall 50
queries,which werelabelledby our subjectsasbelonging
to thatquerycategory, aregivenin �gure 1. Theerrorbars
show thestandarderroraboutthemean.Somesampleim-
agesretrieved by our algorithm are shown in �gures 4-7,
wherethequeriesarespeci�ed in the�gure captions.

By looking at theseexampleswe canseewherethe al-
gorithmperformswell, andwhat thealgorithmmistakenly
assignsto a particularquerywhenit doesnot do well. For
example,whenlooking for “building” the algorithmocca-
sionally�nds a large verticaloutdoorstructurewhich is not
a building. This givesus a senseof what featuresthe al-
gorithm is payingattentionto, andhow we might be able
to improveperformancethroughbetterfeatures,moretrain-
ing examples,andbetterlabellingof the trainingdata.We
also �nd that imageswhich are prototypical of a particu-
lar querycategory tendto gethigh scores(for example,the
query“sign” returnsveryprototypicalsignimages).

We also computeprecision-recallcurves for our algo-
rithm andbothnearestneighbor variantsthatwe compared
to (�gure 2). For the precision-recallcurves we use the
labellingswhich comewith the Corel data. Both nearest
neighboralgorithmsperform signi�cantly worsethan our
method. NNall hasa higherprecisionthanour algorithm
at the lowestlevel of recall. This is becausethereis often
at leastone imagein the Corel testsetwhich is basically
identicalto oneof thetrainingimages(a commoncriticism
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Figure 2. Precision-recallcurves for our method (blue) and
both nearestneighborcomparisonmethods,averagedover all 50
queries,andusingtheCoreldatalabellings

of this particulardataset). The precisionof NNall imme-
diately falls becausetherearefew identicalimagesfor any
onequery, andgeneralizationis poor. Our algorithmdoes
not preferentiallyreturn theseidentical images(nor does
NNmean),andthey areusuallynot presentin the top 9 re-
trieved.

Four setsof retrieved images(all features,texture only,
color only, andtraining) for all 50 queriescanbe found in
additionalmaterials1, which we encouragethe readerto
have alook through.

4. RelatedWork

Thereis agreatdeal ofliteratureoncontent-basedimage
retrieval. An oft citedearlysystemdevelopedby IBM was
“Query by ImageContent”(QBIC [6]). A thoroughreview

1http://www.gatsby.ucl.ac.uk/˜heller/BIRadd.pdf

of thestateof theart until 2000canbefoundin [7].
We limit our discussionof relatedwork to (1) CBIR

methodsthat make use of an explicitly probabilistic or
Bayesianapproach,(2) CBIR methodsthatusesetsof im-
agesin the context of relevancefeedback,and (3) CBIR
methodsthatarebasedon queriesconsistingof setsof im-
ages.

Vasconcelosand Lippman have a signi�cant body of
work developinga probabilisticapproachto content-based
imageretrieval (e.g. [8]). They approachtheproblemfrom
the framework of classi�cation, and use a probabilistic
modelof the featuresin eachclassto �nd the maximuma
posterioriclasslabel. In [9] thefeaturedistribution in each
classis modelledusinga Gaussianmixtureprojecteddown
to a low dimensionalspaceto avoid dimensionalityprob-
lems.Themodelparametersare�t usingEM for maximum
likelihoodestimation. Our approachdiffers in several re-
spects.Firstly, weemploy a fully Bayesianapproachwhich
involves treatingparametersas unknown and marginaliz-
ing themout. Second,we usea simplerbinarizedfeature
modelwherethis integral is analyticandno iterative �tting
is required.Moreover, we representeachimageby a single
featurevector, ratherthana setof queryvectors. Finally,
we solve adifferentproblemin thatour systemstartswith
a text queryandretrieves imagesfrom an unlabelleddata
set—thefactthatthetrainingimagesaregivena largenum-
berof non-mutuallyexclusive annotationssuggeststhatthe
classi�cationparadigmis notappropriatefor ourproblem.

PicHunter[10] is aBayesianapproachfor handlingrele-
vancefeedbackin contentbasedimageretrieval. It models
the uncertaintyin the users'goal asa probability distribu-
tion over goalsandusesthis to optimally selectthenext set
of imagesfor presentation.

PicHunterusesa weightedpairwisedistancemeasureto
modelthesimilarity betweenimages,with weightschosen
by maximumlikelihood.Thisis quitedifferentfrom ourap-
proachwhichmodelsthejoint distributionof setsof images
averagingovermodelparameters.

Rui et al [11] explore using the tf-idf2 representation
from documentinformationretrieval in the context of im-
ageretrieval. They combinethis representationwith a rele-
vancefeedbackmethodwhichreweightsthetermsbasedon
the feedbackandreportresultson a datasetof textures. It
is possibleto relatetf-idf to thefeatureweightingsobtained
from probablisticmodelsbut this relationis not strong.

Yavlinsky et al [12] describea systemfor both retrieval
andannotationof images.Thissystemis basedonmodeling
p(x jw) wherex are imagefeaturesand w is someword
from the annotationvocabulary. This density is modeled
usinganon-parameterickerneldensityestimator, wherethe
kernelusestheEarthMover's Distance(EMD). Bayesrule
is usedto getp(wjx) for annotation.

2term-frequency inverse-document-frequency



Figure3. Query:desert

Figure4. Query:building

Figure5. Query:sign

Gosselinand Cord [13] investigate active learningap-
proachesto ef�cient relevancefeedbackusingbinaryclas-
si�ers to distinguishrelevantandirrelevantclasses.Among

Figure6. Query:pet

Figure7. Query:penguins

other methods,they comparea “Bayes classi�er” which
usesParzendensity estimatorswith a �x ed-width Gaus-
sian kernel to model P(x jrelevant) and P(x jir relevant)
wherex are imagefeatures.Our approachdiffers in sev-
eralrespects.First,we modeltheprobablityof thetargetx
belongingto a clusterwhile integratingout all parameters
of the cluster, andcomparethis to the prior p(x). Strictly
speaking,ParzendensityestimatorsarenotBayesianin that
they do not de�ne a prior modelof thedata,but rathercan
bethoughtof asfrequentistsmoothersfor theempiricaldis-
tribution of the data. They therebyloseimportantproper-
ties of Bayesianmethods—namelythe ability to compute
marginal likelihoods,whicharekey to ourmethod.

The combinationof labeledandunlabeleddataandthe
sequentialnatureof relevancefeedback,meanthat active
learning approachesare very natural for CBIR systems.
Hoi and Lyu [14] adaptthe semi-supervisedactive learn-
ing framework of Zhu et al [15] asa way of incorporating



relevancefeedbackin imageretrieval.

In [16], theuser manuallyspeci�esaqueryconsistingof
a setof positive andnegative exampleimages.Thesystem
then�nds imageswhichminimizethedistancein colorhis-
togramspaceto the positive examples,while maximizing
distanceto thenegative examples.While our methodis not
directly basedon querying byexamples,sinceit usestext
input to extractimagesfrom a labelledset,it implicitly also
usesa setof imagesasthequery. However, in our system
the setonly containspositive examples,the useronly has
to type in sometext to index this set,and the subsequent
retrieval is basedondifferentprinciples.

5. Conclusionsand Futur eWork

We have describeda new Bayesian framework for
content-basedimageretrieval. We show theadvantagesof
usinga set of imagesto performretrieval insteadof a sin-
gle imageor plain text. We obtaingoodresultsfrom using
a Bayesiancriterion,basedon marginal likelihoods,to �nd
imagesmostlikely to belongto a querycategory. We also
show that this criterion canbe easilyandef�ciently com-
putedasa matrix-vectormultiplicationwhenimagefeature
vectorsaresparseandbinary.

In all of our experiments,the two free parameters,the
preprocessingpercentilethresholdfor binarizingthefeature
vectorsand� , thescalingfactorfor settingthehyperparam-
eters,aresetto 20and2 respectively. In ourexperience,this
initial choiceof valuesseemedto work well, but it wouldbe
interestingto seehow performancevariesaswe adjustthe
valuesof thesetwo parameters.

In thefuturetherearemany extensionswhich we would
like to explore.Weplanto extendthesystemto incorporate
multiple word querieswherethequerysetsfrom all words
in thequeryarecombinedby eithertakingtheunionor the
intersection.We would alsolike to look into incorporating
relevancefeedback,developing revised query sets,in our
BayesianCBIR system.By combiningwith relevancefeed-
back,the principlesusedherecanalsobe appliedto other
typesof seaches,suchassearchingfor a speci�c target im-
age. Lastly, we would like to explore usingour Bayesian
CBIR framework to performautomaticimageannotationas
well asretrieval.

Acknowledgements: Thanksto Alexei Yavlinsky for help
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Query BIR BIRtex BIRcol BO NNmean NNall Train # Train
abstract 8 4 8 5.5 2 1 5 391
aerial 4 0.5 2 0 2 3 8 201
animal 8 5 6 1 3 9 9 1097

ape 4 1 0 0 2 7 8.5 27
boat 1 0 1 0.5 1 1 7 61

building 7.5 9 2.5 4 6 5.5 8 1207
butter�y 5 4 1 1 2 0 9 112
castle 3.5 2 2 1 0 3 8 229
cavern 5.5 1 2.5 0.5 2 1 9 34

cell 6 0 5 9 5 4 8 29
church 3.5 1 2 0 5 0 6 173
clouds 5 5.5 1.5 0 3 5 5.5 604
coast 7 3 2 1 2 2 9 299
desert 4.5 0 1 1 0 1.5 2 168
door 8.5 8 1 0 2 0 5.5 92

drawing 4 0 0 2 7 3 9 69
eiffel 6 0 0 N/A 0 0 8.5 15

�re works 9 9 3 0 1 3 9 76
�o wer 9 1 7.5 2 3 1 9 331
fractal 3 0 5.5 0.5 0 2 8.5 43
fruit 5.5 0.5 6.5 0 0 1 8 199

house 6 8 0 1.5 1 2 8 184
kitchen 6 1 2 N/A 5 3 9 32
lights 6.5 3 1.5 N/A 1 0 7 203
model 5 4 0 N/A 3 4 9 102

mountain 6 1 2.5 1 2 3 8 280
mountains 7 2 8 N/A 1 3 8.5 368
penguins 6 1 5 N/A 0 0 8.5 34
people 6 2 0 1.5 4 5 8.5 239
person 4 0.5 1.5 1.5 4 5 7.5 114

pet 3 2 2 0.5 0 4.5 8.5 138
reptile 3 1 1 1 0 1 9 99
river 4.5 1.5 4.5 1.5 2 4 7 211
sea 7.5 6 3 0.5 2 3 6 90
sign 9 9 1 8 1 0 9 53
snow 6 0 4 1 2 3 9 259
stairs 3 3.5 2 0 1 2 8 53
sunset 9 7.5 4 2.5 3 2.5 8.5 187

textures 7 8 1 N/A 0 8 3 615
tool 4 1 4 1 1 5 9 28

tower 7.5 3.5 0.5 2.5 3 2.5 6 138
trees 9 1 8 N/A 6 8 8.5 1225
turtle 2 0 1 N/A 0 0 9 13
urban 7.5 4.5 2 N/A 3 3 9 133

volcano 2 0 3 0 0 0 3 54
water 9 3 5.5 0 5 9 5.5 1863

waterfall 2 0 2 1 0 3 9 103
white 9 3 9 4.5 1 6.5 7.5 240

woman 4 2 0 3 2 3 8.5 181
zebra 2 0 0 N/A 0 2 8 21

Table1. Resultstableover50queries


