17.2 THE MULTIVARIATE NORMAL DISTRIBUTION

17.2.1 The univariate normal

A real random variable X has a normal (or Gaussian) distribution with mean (mode and median) m, and variance V if and only if

$$p(X) = (2\pi)^{-1/2} \exp \left[-\frac{(X - m)^2}{2V} \right], \quad (-\infty < X < \infty).$$

In this case we write $X \sim N[m, V]$.

SUMS OF NORMAL RANDOM VARIABLES.

If $X_i \sim N[m_i, V_i]$, $(i = 1, \ldots, n)$, have covariances $C[X_i, X_j] = c_{ij} = c_{ji}$, then $Y = \sum_{i=1}^{n} a_iX_i + b$ has a normal distribution with

$$E[Y] = \sum_{i=1}^{n} a_im_i + b \quad \text{and} \quad V[Y] = \sum_{i=1}^{n} a_i^2V_i + 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} a_ia_jc_{ij},$$

where a_i and b are constants. In particular, $c_{ij} = 0$ for all $i \neq j$ if and only if the X_i are independent normal, in which case $V[Y] = \sum_{i=1}^{n} a_i^2V_i$.

17.2.2 The multivariate normal

A random n-vector X has a multivariate normal distribution in n dimensions if and only if $Y = \sum_{i=1}^{n} a_iX_i$ is normal for all constant, non-zero vectors $a = (a_1, \ldots, a_n)$.

If X is multivariate normal, then $E[X] = m$ and $V[X] = V$ exist, and we use the notation $X \sim N[m, V]$. The moments m and V completely define the distribution whose density is

$$p(X) = \{(2\pi)^{n/2}|V|^{-1/2} \exp \left[-(X - m)^tV^{-1}(X - m)/2 \right].$$

The subvectors of X are independent if and only if they are uncorrelated. In particular, if V is block diagonal, then the corresponding subvectors of X are mutually independent.

LINEAR TRANSFORMATIONS.

For any constant A and b of suitable dimensions, if $Y = AX + b$, then $Y \sim N[Am + b, AVA']$. If AVA' is diagonal, then the elements of Y are independent normal.

LINEAR FORMS.

Suppose $X_i \sim N[m_i, V_i]$ independently, $i = 1, \ldots, k$, and consider constant matrices and vectors A_1, \ldots, A_k and b of suitable dimensions; $Y = \sum_{i=1}^{k} A_iX_i + b$ is multivariate normal with mean $\sum_{i=1}^{k} A_im_i + b$ and variance matrix $\sum_{i=1}^{k} A_iV_iA_i'$.

MARGINAL DISTRIBUTIONS.

Suppose that we have conformable partitions

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \quad m = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \quad \text{and} \quad V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix}.$$

Then $X_i \sim N[m_i, V_{ii}]$, $i = 1, 2$. In particular, if X_i is univariate normal, $X_i \sim N[m_i, V_{ii}]$ for $i = 1, \ldots, n$.

BIVARIATE NORMAL.

Any two elements X_i and X_j of X are bivariate normal with joint density

$$p_{ij}(x_i, x_j) = \left[(2\pi)\sqrt{V_{ii}V_{jj}(1-\rho_{ij}^2)} \right]^{-1} \exp \left[-Q(x_1, x_2)/2 \right],$$

where $Q(x_1, x_2)$ is the quadratic form

$$Q(x_1, x_2) = \frac{(x_i - m_i)^2}{V_{ii}} + \frac{(x_j - m_j)^2}{V_{jj}} - 2\rho_{ij} \frac{(x_i - m_i)}{\sqrt{V_{ii}}} \frac{(x_j - m_j)}{\sqrt{V_{jj}}}.$$
with \(\rho_{ij} = \text{corr}(X_i, X_j) = V_{ij}/\sqrt{V_{ii}V_{jj}} \).

CONDITIONAL DISTRIBUTIONS.

For the partition of \(X' \) into \(X_1' \) and \(X_2' \), we have

1. \((X_1 | X_2) \sim N[m_1(X_2), V_{11}(X_2)] \), where
 \[
 m_1(X_2) = m_1 + V_{12}V_{22}^{-1}(X_2 - m_2)
 \]
 and
 \[
 V_{11}(X_2) = V_{11} - V_{12}V_{22}^{-1}V_{21}.
 \]
 The matrix \(A_1 = V_{12}V_{22}^{-1} \) is called the *regression matrix* of \(X_1 \) on \(X_2 \). The conditional moments are given in terms of the regression matrix by
 \[
 m_1(X_2) = m_1 + A_1(X_2 - m_2)
 \]
 and
 \[
 V_{11}(X_2) = V_{11} - A_1V_{22}A_1'.
 \]

2. \((X_2 | X_1) \sim N[m_2(X_1), V_{22}(X_1)] \), where
 \[
 m_2(X_1) = m_2 + V_{21}V_{11}^{-1}(X_1 - m_1)
 \]
 and
 \[
 V_{22}(X_1) = V_{22} - V_{21}V_{11}^{-1}V_{12}.
 \]
 The matrix \(A_2 = V_{21}V_{11}^{-1} \) is called the *regression matrix* of \(X_2 \) on \(X_1 \). The conditional moments are given in terms of the regression matrix by
 \[
 m_2(X_1) = m_2 + A_2(X_1 - m_1)
 \]
 and
 \[
 V_{22}(X_1) = V_{22} - A_2V_{11}A_2'.
 \]

3. In the special case of the bivariate normal in (1) above, the moments are all scalars, and the correlation between \(X_1 \) and \(X_2 \) is \(\rho = \rho_{12} = V_{12}/\sqrt{V_{11}V_{22}} \). The regressions are determined by regression coefficients \(A_1 \) and \(A_2 \) given by
 \[
 A_1 = \rho\sqrt{V_{11}/V_{22}} \quad \text{and} \quad A_2 = \rho\sqrt{V_{22}/V_{11}}.
 \]
 Also
 \[
 V[X_1 | X_2] = (1 - \rho^2)V_{11} \quad \text{and} \quad V[X_2 | X_1] = (1 - \rho^2)V_{22}.
 \]

17.2.3 *Conditional normals and linear regression*

Many of the important results in this book may be derived directly from the multivariate normal theory reviewed above. A particular regression model is reviewed here to provide the setting for those results.

Suppose that the \(p \)-vector \(Y \) and the \(n \)-vector \(\theta \) are related via the conditional distribution

\[
(Y | \theta) \sim N[F'\theta, V],
\]

where the \((n \times p)\) matrix \(F \) and the \((p \times p)\) positive definite symmetric matrix \(V \) are constant. An equivalent statement is

\[
Y = F'\theta + \nu,
\]
where \(\nu \sim N[0, V] \). Suppose further that the marginal distribution of \(\theta \) is given by

\[
\theta \sim N[a, R],
\]

where both \(a \) and \(R \) are constant, and that \(\theta \) is independent of \(\nu \). Equivalently,

\[
\theta = a + \omega,
\]

where \(\omega \sim N[0, R] \) independently of \(\nu \).

From these distributions it is possible to construct the joint distribution for \(Y \) and \(\theta \) and hence both the marginal for \(Y \) and the conditional for \((\theta \mid Y) \).

Multivariate Joint Normal Distribution.

Since \(\theta = a + \omega \) and \(Y = F^T \theta + \nu = F^T a + F^T \omega + \nu \), then the vector \((Y', \theta')'\) is a linear transformation of \((\nu', \omega')'\). By construction the latter has a multivariate normal distribution, so that \(Y \) and \(\theta \) are jointly normal. Further

1. \(E[\theta] = a \) and \(V[\theta] = R \);
2. \(E[Y] = E[F^T \theta + \nu] = F^T E[\theta] + E[\nu] = F^T a \) and
3. \(C[Y, \theta] = C[F^T \theta + \nu, \theta] = F^T C[\theta, \theta] + C[\nu, \theta] = F^T R F \).

It follows that

\[
\begin{pmatrix} Y \\ \theta \end{pmatrix} \sim N \left[\begin{pmatrix} F^T a \\ 0 \end{pmatrix}, \begin{pmatrix} F^T R F + V & F^T R \\ R F & R \end{pmatrix} \right].
\]

Therefore, identifying \(Y \) with \(X_1 \) and \(\theta \) with \(X_2 \) in the partition of \(X \) in 17.2.2, we have

4. \(Y \sim N[F^T a, F^T R F + V]; \)
5. \((\theta \mid Y) \sim N[m, C], \) where

\[
m = a + RF[F^T R F + V]^{-1} [Y - F^T a]
\]

and

\[
C = R - RF[F^T R F + V]^{-1} F R.
\]

By defining \(e = Y - F^T a \), \(Q = F^T R F + V \) and \(A = RFQ^{-1} \), these equations become

\[
m = a + Ae \quad \text{and} \quad C = R - AQA'.
\]

Multivariate Bayes’ Theorem.

An alternative derivation of the conditional distribution for \((\theta \mid Y)\) via Bayes’ Theorem provides alternative expressions for \(m \) and \(C \). Note that

\[
p(\theta \mid Y) \propto p(Y \mid \theta)p(\theta)
\]

as a function of \(\theta \), so that

\[
\ln[p(\theta \mid Y)] = k + \ln[p(Y \mid \theta)] + \ln[p(\theta)],
\]

where \(k \) depends on \(Y \) but not on \(\theta \). Therefore

\[
\ln[p(\theta \mid Y)] = k - \frac{1}{2} \left[(Y - F^T a)' V^{-1} (Y - F^T a) + (\theta - a)' R^{-1} (\theta - a) \right].
\]

The bracketed term here is simply

\[
Y' V^{-1} Y - 2Y' V^{-1} F^T \theta + \theta F^T V F \theta + \theta R^{-1} \theta - 2a' R^{-1} \theta + a' R^{-1} a
\]

\[
= \theta' \left[F V^{-1} F^T + R^{-1} \right] \theta - 2 \left[Y' V^{-1} F^T + a' R^{-1} \right] \theta + h
\]
where h depends on Y but not on θ. Completing the quadratic form gives
\[(\theta - m)^\top C^{-1} (\theta - m) + h^* ,\]
where again h^* does not involve θ,
\[C^{-1} = R^{-1} + FV^{-1}F',\]
and
\[m = C \{ FV^{-1} Y + R^{-1} a \} .\]
Hence
\[p(\theta \mid Y) \propto \exp \left[-\frac{1}{2} (\theta - m)^\top C^{-1} (\theta - m) \right] \]
as a function of θ, so that \((\theta \mid Y) \sim N[\mathbf{m}, C]\), just as derived earlier.

Note that the two derivations give different expressions for m and C that provide, in particular, the matrix identity for C given by
\[C = [R^{-1} + FV^{-1}F']^{-1} = R - RF[RFR + V]^{-1}F'R,\]
that is easily verified once stated.

17.3 Joint Normal/Gamma Distributions

17.3.1 The Gamma Distribution

A random variable $\phi > 0$ has a gamma distribution with parameters $n > 0$ and $d > 0$, denoted by $\phi \sim G[n, d]$, if and only if
\[p(\phi) \propto \phi^{n-1} \exp(-\phi d), \quad (\phi > 0).\]
Normalisation leads to $p(\phi) = d^n \Gamma(n)^{-1} \phi^{n-1} \exp(-\phi d)$, where $\Gamma(n)$ is the gamma function. Note that $E[\phi] = n/d$ and $V[\phi] = E[\phi^2]/n$.

Two special cases of interest are
1. $n = 1$, when ϕ has a (negative) exponential distribution with mean $1/d$;
2. $\phi \sim G[n/2, d/2]$ when n is a positive integer. In this case $d\phi \sim \chi_n^2$, a chi-squared distribution with n degrees of freedom.

17.3.2 Univariate Normal/Gamma Distribution

Let $\phi \sim G[n/2, d/2]$ for any $n > 0$ and $d > 0$, and suppose that the conditional distribution of a further random variable X given ϕ is normal $(X \mid \phi) \sim N[m, C\phi^{-1}]$, for some m and C. Note that $E[X] \equiv E[X \mid \phi] = m$ does not depend on ϕ. However $V[X \mid \phi] = C\phi^{-1}$. The joint distribution of X and ϕ is called (univariate) normal/gamma. Note that
\[p(X, \phi) = \left(\frac{\phi}{2\pi C} \right)^{1/2} \exp \left[-\frac{(X - m)^2}{2C} \right] \times \frac{d^{n/2}}{2^{n/2} \Gamma(n/2)} \phi^{n-1} \exp \left[-\frac{\phi d}{2} \right] \times \phi^{(n+1)/2} \exp \left[-\frac{\phi (X - m)^2}{2C} + d \right] ,\]
as a function of ϕ and X.

\[p(\phi \mid X) \propto \phi^{(\frac{n+1}{2})-1} \exp \left[-\frac{\phi}{2} \left\{ \frac{(X-m)^2}{C} + d \right\} \right]. \]

so that

\[(\phi \mid X) \sim \mathcal{G} \left[\frac{n^*}{2}, \frac{d^*}{2} \right], \]

where \(n^* = n + 1 \) and \(d^* = d + (X - m)^2/C \).

(3) \[p(X) = p(X, \phi)/p(\phi \mid X) \]

\[\propto [n + (X - m)^2/R]^{-(n+1)/2}, \]

where \(R = C(d/n) = C/E[\phi] \). This is proportional to the density of the Student T distribution with \(n \) degrees of freedom, mode \(m \) and scale \(R \). Hence \(X \sim T_\nu[m, R] \), or \((X - m)/R^{1/2} \sim T_\nu[0,1] \), a standard Student T distribution with \(n \) degrees of freedom.

17.3.3 Multivariate normal/gamma distribution

As an important generalisation, suppose that \(\phi \sim \mathcal{G}[n/2, d/2] \) and that the \(p \)-vector \(X \) is normally distributed conditional on \(\phi \), as \(X \sim \mathcal{N}[m, C\phi^{-1}] \). Here the \(p \)-vector \(m \) and the \((p \times p)\) symmetric positive definite matrix \(C \) are known. Thus, each element of \(V[X] \) is scaled by the common factor \(\phi \). The basic results are similar to 17.3.2 in that

1. \((\phi \mid X) \sim \mathcal{G}[n^*/2, d^*/2], \) where \(n^* = n + p \) and \(d^* = d + (X - m)\mathcal{C}^{-1}(X - m)/2 \) (notice the degrees of freedom increases by \(p \)).
2. \(X \) has a (marginal) multivariate T distribution in \(p \) dimensions with \(n \) degrees of freedom, mode \(m \) and scale matrix \(R = C(d/n) = C/E[\phi] \), denoted by \(X \sim T_{\nu}[m, R] \), with density

\[p(X) \propto [n + (X - m)\mathcal{R}^{-1}(X - m)]^{-(n+p)/2}. \]

In particular, if \(X_i \) is the \(i \)-th element of \(X \), \(m_i \) and \(C_{ii} \) the corresponding mean and diagonal element of \(C \), then

\[X_i \sim T_{\nu}[m_i, R_{ii}], \]

where \(R_{ii} = C_{ii}(d/n) \).

17.3.4 Simple regression model

The normal/gamma distribution plays a key role in providing closed form Bayesian analyses of linear models with unknown scale parameters. Details may be found in De Groot (1971) and Press (1985), for example. A particular regression setting is reviewed here for reference. The details follow from the above joint normal/gamma theory. Suppose that a scalar variable \(Y \) is related to the \(p \)-vector \(\theta \) and the scalar \(\phi \) via

\[(Y \mid \theta, \phi) \sim \mathcal{N}[F\theta, k\phi^{-1}], \]

where the \(p \)-vector \(F \) and the variance multiple \(k \) are fixed constants. Suppose also that \((\theta, \phi)\) have a joint normal/gamma distribution, namely

\[(\theta \mid \phi) \sim \mathcal{N}[a, R\phi^{-1}] \]

and

\[\phi \sim \mathcal{G}[n/2, d/2] \]

for fixed scalars \(n > 0, d > 0 \), \(p \)-vector \(a \) and \((p \times p)\) variance matrix \(R \), and let \(S = d/n = 1/E[\phi] \). Then

1. \((Y \mid \phi) \sim \mathcal{N}[f, Q\phi^{-1}], \) where \(f = Fa \) and \(Q = FRF + k; \)
The probability that

If this probability is high, then connected regions, or intervals, and these provide interval-based inferences and tests of hypotheses through HPD regions the use of posterior normal, T and F distributions, described below. Fuller theoretical details are provided in the sense that X

\[\mathbf{X} \sim N[\mathbf{m}, \mathbf{C}] \]

MULTIVARIATE NORMAL POSTERIOR.

(1) Suppose that \(\mathbf{X} = \mathbf{x} \), a scalar, with posterior \(\mathbf{X} \sim N[\mathbf{m}, \mathbf{C}] \). Then, as is always the case with symmetric distributions, HPD regions are intervals symmetrically located about the median (here also the mode and mean) \(\mathbf{m} \). For any \(k > 0 \), the equal-tails interval

\[m - k\mathbf{C}^{1/2} \leq \mathbf{X} \leq m + k\mathbf{C}^{1/2} \]

is the HPD region with posterior probability

\[\Pr[|X - m|/\mathbf{C}^{1/2} \leq k] = 2\Phi(k) - 1, \]

where \(\Phi(\cdot) \) is the standard normal cumulative distribution function. With \(k = 1.645 \), so that \(\Phi(k) = 0.95 \), this gives the 90% region \(m \pm 1.645\mathbf{C}^{1/2} \). With \(k = 1.96 \), \(\Phi(k) = 0.975 \) and the 95% region is \(m \pm 1.96\mathbf{C}^{1/2} \). For any \(k > 0 \), the 100\%2\% HPD region for \(\mathbf{X} \) is simply \(m \pm k\mathbf{C}^{1/2} \).

(2) Suppose that \(\mathbf{X} \) is \(n \)-dimensional for some \(n > 1 \),

\[\mathbf{X} \sim N[\mathbf{m}, \mathbf{C}] \]

denote by elliptical shells centred at the mode \(\mathbf{m} \), defined by the points \(\mathbf{X} \) that lead to common values of the quadratic form in the density, namely

\[Q(\mathbf{X}) = (\mathbf{X} - \mathbf{m})'\mathbf{C}^{-1}(\mathbf{X} - \mathbf{m}). \]

For any \(k > 0 \), the region

\[\{\mathbf{X} : Q(\mathbf{X}) \leq k\} \]
is the HPD region with posterior probability
\[\Pr[Q(X) \leq k] = \Pr[\kappa \leq k], \]
where \(\kappa \) is a gamma distributed random quantity,
\[\kappa \sim G[n/2,1/2]. \]
When \(n \) is an integer, this gamma distribution is chi-squared with \(n \) degrees of freedom, and so
\[\Pr[Q(X) \leq k] = \Pr[\chi_n^2 \leq k]. \]

MULTIVARIATE T POSTERIORS.
The results for T distribution parallel those for the normal, T distributions replace normal distributions and F distributions replace gamma.

1. Suppose that \(X = X \), a scalar, with posterior \(X \sim T_r[m,C] \) for some degrees of freedom \(r > 0 \). Again, HPD regions are intervals symmetrically located about the mode \(m \). For any \(k > 0 \), the equal-tails interval
\[m - kC^{1/2} \leq X \leq m + kC^{1/2} \]
is the HPD region with posterior probability
\[\Pr[|X - m| / C^{1/2} \leq k] = 2\Psi_r(k) - 1, \]
where \(\Psi_r(.) \) is the cumulative distribution function of the standard Student T distribution on \(r \) degrees of freedom. For any \(k > 0 \), the \(100(2\Psi_r(k) - 1)\% \) HPD region for \(X \) is simply \(m \pm kC^{1/2} \).

2. Suppose that \(X \) is \(n \)-dimensional for some \(n > 1 \), \(X \sim T_r[m,C] \) for some mean vector \(m \), covariance matrix \(C \), and degrees of freedom \(r > 0 \). HPD regions are again defined by elliptical shells centred at the mode \(m \), identified by values of \(X \) having a common value of the quadratic form
\[Q(X) = (X - m)^T C^{-1} (X - m). \]
For any \(k > 0 \), the region
\[\{X : Q(X) \leq k\} \]
is the HPD region with posterior probability
\[\Pr[Q(X) \leq k] = \Pr[\xi \leq k/n], \]
where \(\xi \) is an F distributed random quantity with \(n \) and \(r \) degrees of freedom,
\[\xi \sim F_{n,r} \]
(tabulated in Lindley and Scott 1984, pages 50-55). Note that when \(r \) is large, this is approximately a \(\chi_n^2 \) distribution.