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Summary:

We describe a Bayesian quantile regression model that uses a factor structure for part of the

design matrix. This model is particularly useful when the data comprise numerous indicators of

underlying latent factors that analysts wish to include as covariates. We apply the model to a study

of birth weights, for which the effects of covariates on the lower quantiles of the response distribution

are of interest. The factor structure is appealing in this study because there are many explanatory

variables—each with low signal-to-noise ratios—that can be grouped into scientifically meaningful

factors. We also show via simulation that the latent factor quantile regression can have greater

power to detect covariate effects than standard quantile regression. The methods are available in an

R package called factorQR.
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1. Introduction

In many applications, analysts are interested in the effects of covariates on one or both of

the tails of the response distribution. These effects can be analyzed directly with quantile

regression (Koenker and Bassett Jr, 1978; Koenker and Hallock, 2001). In some studies,

however, the individual covariates have low signal-to-noise ratios, making it difficult to detect

covariate effects on the quantiles. This is particularly likely when the data comprise many

correlated covariates and only a modest sample size.

This is the case in our motivating application: to describe the predictors of low birth

weight from demographic, environmental, genetic, and psychosocial variables. The data come

from the Healthy Pregnancy, Healthy Baby Study (HPHBS), an ongoing prospective cohort

study of women in Durham, NC, run by the Southern Center on Environmentally Driven

Disparities in Birth Outcomes. The HPHBS comprises dozens of variables recorded on 1288

non-Hispanic black and white mothers. In general, the predictive abilities of the explanatory

variables individually are quite weak.

Many of the explanatory variables can be viewed as indicators of underlying latent factors.

Arguably, these latent factors are what should be included as predictors of birth outcomes.

For example, in the HPHBS there are six moderately correlated variables related to psy-

chosocial health. Taken together, they indicate a clearer measure of a person’s mental and

social well-being than any one variable alone. Thus, if we wish to assess the association

between psychosocial health and pregnancy outcomes, we are better served modeling the

latent variable of psychosocial health than the variables individually, which may not show

up as significant due to colinearities and low signal-to-noise ratios.

To this end, we present a model for quantile regression that uses a latent factor structure

for part of the design matrix. We take a fully Bayesian approach, melding what would

be considered a confirmatory factor analysis in the structural equation modeling literature
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(Bollen, 1989; Lee, 2007) with a quantile regression model for the response variable (Yu and

Moyeed, 2001; Reed and Yu, 2009; Kozumi and Kobayashia, 2009). Using this model, we

find that the latent factor of smoking is strongly associated with adverse effects on quantiles

of birth weight, whereas a factor for psychosocial health is not. We also present a simulation

study illustrating that the latent factor quantile regression can avoid some of the pitfalls

of standard procedures for selecting important covariates, in that it can have smaller Type

I error rates and greater power than standard approaches when the covariates do in fact

correspond to the proposed factor structure. The methods are available in the R package

called factorQR.

2. Background on adverse birth outcomes

Before describing the model, we give further background on adverse birth outcomes and why

a latent factor quantile regression is appropriate for modeling them. Children classified as

having a low or very low birth weight (below 2500g and 1500g, respectively) or a premature

birth (less than 37 full weeks of gestation at birth) face increased risks of a range of

problems (Hack et al., 1995), including those in the physical (Crofts et al., 1998), behavioral

(McCormick et al., 1990) and mental (Lorenz et al., 1998) domains. An estimated 8% of births

in the U.S. are low weight and 12.8% are preterm, so that the “average” birth in the U.S. is

well above the cutoffs (Behrman and Butler, 2007). Thus, if a particular exposure decreases

the birth weights of babies who would otherwise have average to high birth weights by some

modest amount, it might not be considered deleterious. On the other hand, if an exposure

lowers the birth weights of babies who would already be low—by the same modest amount—

the exposure would be troubling. Thus, it is appropriate to consider quantile regression over

standard linear regression for modeling birth weights.

Researchers have examined numerous variables to explain these adverse birth outcomes.

These include environmental variables like air quality, tobacco smoke exposure, and pesticide
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exposure (Miranda et al., 2009); psychological stress (Rondo et al., 2003; Orr et al., 2007); and

maternal nutrition (Kramer, 1987), among many others. There is considerable disagreement

in the literature on the importance of the various proposed explanations of adverse birth

outcomes. For example, Rondo et al. (2003) found that maternal stress was associated with

both low weight and preterm births, though this conflicts with the findings of Brooke et al.

(1989) who found no effect. Peacock et al. (1995) found that stress decreases the length of

the pregnancy, but increases birth weight after controlling for gestational age.

Some of this discordance might be attributable to measurement issues. For example,

suppose that an analyst is interested in tobacco smoke exposure as an explanatory variable.

In practice, it is not clear which single exposure metric of tobacco smoke exposure one should

use. Lab assays of cotinine (a metabolite of nicotine) levels in maternal blood or urine are

a common measure of tobacco smoke exposure, but cotinine has a half-life of around nine

hours in pregnant women (Dukic et al., 2007). Hence, a single cotinine measurement may

inaccurately reflect exposure over the course of the pregnancy. Alternatively, self-reported

smoking measures can be biased by poor recall and misreporting. Wang et al. (1997) struggle

with this exact issue. They find that cotinine levels are an important predictor of lower

average birth weights, but that the evidence is “less clear when maternal self-reports of

smoking were used” (p. 984). They go on to write that, “The stronger exposure-response

relationship for cotinine concentrations suggests that this objective measure more accurately

represents the individual differences in smoking behaviour” (p. 984). While this may be true,

it seems risky to judge the reliability of competing measurements based on the strength of

a relationship that one simultaneously attempts to estimate.

Assuming a factor structure partially resolves this issue. It enables analysts to pool the

information from these multiple, imperfect measurements in hopes of more accurately rep-

resenting the exposure in the quantile regression. Because the method accounts for the
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uncertainty between the observed measures and the underlying latent factor, this method is

more principled than, for example, taking simple averages or choosing the most significant

measure in a multiple regression.

As a related measurement issue, some individual exposures arguably affect birth outcomes

through a common causal pathway, so that in actuality they are indicators of an underlying

factor. For example, suppose that psychological stress presents differently for many mothers.

Some may feel stress because they are socially isolated, some because their pregnancy was

unwanted, and others because they feel they are incapable of influencing events that affect

their lives (Bandura, 2010). Further, suppose that high levels of psychological stress, however

presented, have a negative effect on birth weights. If the indicators are modestly correlated

and have low incidence rates marginally, individually they may not be strongly associated

with birth weight in analyses, even though their underlying factor is. The factor structure

enables analysts to represent such underlying constructs accurately in regression models.

Another reason for discordance is sample size. Most studies with sufficiently detailed data

to address complex hypotheses typically have modest sample sizes and, therefore, low power;

this makes it challenging to replicate findings. Additionally, analyses often involve many

comparisons, thus augmenting the chances of Type 1 errors. This provides further motivation

for the factor model: as illustrated with simulations in Section 3, the factor model can improve

both power and Type 1 error compared to standard quantile regression.

3. A quantile regression factor model

We now turn to the Bayesian latent factor quantile regression. For each record i = 1, . . . , n,

let yi be the response variable (e.g., birth weight) and xi = (x�
i,ω, x�

i,β)� be the vector of

covariates, where xi,ω are indicators of the latent factors and xi,β are exogenous to the latent
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factors. We assume that, for all i,



xi,ω

yi



 = Λωi +




0

x�
i,ββ



 +




εi,−s

εi,s



 . (1)

Here, Λ is a s × t matrix of factor loadings, ωi is a t × 1 vector of latent factors and β

is the vector of regression coefficients for xi,β. We assume that εi,−s
iid∼ normal(0, Ψ) where

Ψ = diag(ψ1, . . . ,ψs−1).

To model conditional quantiles of yi, we assume that εi,s follow an asymmetric Laplace dis-

tribution AL(0, τ, p), where the parameters are the location, scale and skewness, respectively

(Yu and Zhang, 2005). We have

p(εi,s) = τp(1− p) exp{−τρp(εi,s)}, (2)

where ρp is the tilted absolute value or check function

ρp(x) =






px if x � 0

(1− p)|x| if x < 0

. (3)

The asymmetric Laplace distribution is commonly used as the basis of Bayesian quantile

regression because Pr(εi,s � 0) = p. This error distribution also connects the Bayesian

analysis to frequentist quantile regression, which proceeds semi-parametrically using ρp as a

loss function.

The asymmetric Laplace distribution is a convenient choice from a computational stand-

point. Reed and Yu (2009) and Kozumi and Kobayashia (2009) independently demonstrated

that this distribution can be represented as a mixture of normal distributions. If

yi|wi, µ, τ ∼ normal

�
1− 2p

p(1− p)
wi + µ,

2wi

τp(1− p)

�
(4)

and wi|τ, µ are independent with an exponential distribution with rate τ , then marginalizing

over wi gives us yi|β, τ ∼ AL(µ, τ, p). Thus, augmenting the parameter space with the latent

wi enables Bayesian inference using the usual normal distribution theory.

In this model, we assume that scientific considerations allow the analyst to specify structure
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in the matrix of factor loadings Λ. In particular, we assume

Λ =





�t
j=1 λj

Λs



 , (5)

where λj are column vectors whose first element is fixed at 1 and ⊕ indicates the direct sum

such that

A⊕B =




A 0

0 B



 . (6)

Λs is a t-vector of factor loadings related to the response y; it is analogous to the regression

parameters in a standard regression model.

With structural zeros in the Λ matrix, this model is related to but distinct from less

structured Bayesian factor models (e.g., Geweke and Zhou, 1996; Aguilar and West, 2000).

In a continuum of statistical methods with classical methods designed for n > p at one end

and p� n factor models at the other extreme (West, 2003), this model is somewhere in the

middle. It can significantly reduce the dimension of the predictor space, though it requires

the analyst to specify a priori which observed variables relate to each latent factor.

Specifying the block diagonal pattern in Λ−s aids interpretation of the factors, especially

compared to tools like the singular value decomposition, which often provides factors that

are difficult to interpret. For instance, in the HPHBS application, we consider λ1 to measure

tobacco smoke exposure and λ2 to relate to psychosocial health. The factors have this

interpretation because investigator-specified zeros in Λ−s ensure that, for instance, only

smoking-related measures are tied to λ1. In some cases—particularly those with extremely

large numbers of explanatory variables like exploratory genetic association studies—it may

not be possible to sensibly segment the predictors in this way; we do not focus on such

situations.
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3.1 Prior distributions

We hierarchically specify the following prior distributions for the parameters of (1) as follows.

τ ∼ gamma(cτ , dτ ) (7)

ψk
ind∼ inv-gamma(ck, dk) (8)

β ∼ normal(aβ, B−1
β ) (9)

Λs ∼ normal(as, B
−1
s ) (10)

λk|ψ ∼ normal(aλ,k, ψk/h0,k) (11)

Φ ∼ inv-Wishart(R0, ν0) (12)

vi|τ
iid∼ inv-gamma(1, τ) (13)

ωi|Φ
iid∼ normal(0, Φ) (14)

In this specification, vi is the inverse of the mixing weight wi in (4). This set of prior

distributions combines those of the Bayesian confirmatory factor analysis (Lee, 2007) and the

scale mixture representation of the asymmetric Laplace distribution (Reed and Yu, 2009).

We use weakly informative prior distributions in the analyses. In particular, for the gamma-

distributed components, we use cτ = dτ = 1 and ck = dk = 1 for all k. This results in a

proper but diffuse distribution that lacks a prior first moment for ψk or τ−1. For the factor

loadings of interest, Λs, the prior distribution is centered at zero with variance 100; β is given

the same distribution. For the other factor loadings λk, we center the prior distributions at

one (a neutral value) and specify h0,k = 1 for all k. We center Φ at the identity matrix,

and use prior degrees of freedom equal to t + 1. In the HPHBS application, we find little

sensitivity to making the normal distributions more or less diffuse. In some cases, using a

larger ν0 may speed convergence to regions of high posterior probability.
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3.2 Estimation

The posterior distributions of parameters in the model can be simulated via Gibbs sampling.

Because of the mixture representation of the asymmetric Laplace distribution, the sampling

requires draws from standard distributions. The algorithm proceeds as follows:

(1) Sample τ |all ∼ gamma(c0 + n, rate = d0 +
�n

i=1 ρp(yi − Λsωi))

(2) Sample vi|all
ind∼ inv-Gaussian

�
1

p(1−p)|yi−Λsωi| ,
τ

2p(1−p)

�

(3) Sample

ωi|all
iid∼ normal((Φ−1 + Λ�Ψ̃−1Λ)−1Λ�Ψ̃−1ỹi, (Φ

−1 + Λ�Ψ̃−1Λ)−1), (15)

where ỹi = (x�
i, ui)� with ui = yi − (1− 2p)/(p(1− p)vi) and

Ψ̃−1 = diag(ψ−1
1 , . . . ,ψ−1

s−1, .5τp(1− p)vi)

(4) Sample (ψk, λk)|all for the rows of Λ−q that have free elements:

• Draw from

ψ−1
k |x, ω ∼ gamma(n/2 + ck, dk + .5

�

i

(xik − ωi,j(k)λ̂k)
2 + .5h0,k(λ̂k − aλ,k)

2)

where λ̂ =
P

i xiωi+aλ,kh0,k

h0,k+
P

i ω2
i

and where j(k) refers to the dimension of ωi that is

activated when we take the inner product of ωi and the kth row of Λ−s

• Draw from λk|x, ω,ψk ∼ normal
�
λ̂k, ψk/(h0,k +

�
i ω

2
i,j(k))

�

(5) For the rows of Λ−s that do not have any free elements, sample ψ−1
k ∼ gamma(ck, dk +

.5
�

i(xik − ωi,j(k))2)

(6) Sample Λs|all ∼ normal(Λ̂s, (.5τp(1− p)Ω�V Ω + Bs)−1), where

Λ̂s = (.5τp(1− p)Ω�V Ω + Bs)
−1(.5τp(1− p)Ω�V u + Bsas),

V = diag({vi}) and Ω is the n × t matrix of ωi. If some covariates do not relate to the

latent factors, sample (Λs, β) jointly.

(7) Sample Φ|all ∼ inverse-Wishart(Ω�Ω + R−1
0 , n + ν0).



Latent factor quantile regression 9

In general, the mixing of the Markov chains resulting from this algorithm tends to be quite

good. However, for certain initial values in the estimation algorithm, the MCMC can remain

for a time in a region where the variance/covariance matrix Φ is very small, with large Λs to

compensate. In our experience, chains starting in such regions would eventually settle into

areas of high posterior probability with more moderate Φ and Λs values. We recommend at

least one long run (at least 100,000 iterations) to build confidence that the chain is not stuck

in some local posterior mode. When the long run reveals no problems, we have found that

2500 burn-in and 5000 stored iterations suffice.

3.3 Model extensions

The base model in (1) can be extended in several directions. Here, we describe some that

were useful for the HPHBS analysis.

3.3.1 Dichotomous predictors. When some of the indicators of the latent factor are di-

chotomous, the assumption of normality is clearly unrealistic. In this case, analysts can

employ a probit model for the Bernoulli indicators. This assumes a latent normal quantity

whose sign alone is observed. The scale of such models is not identified; this is taken care

of by assuming unit variance for the latent quantity. With a normal prior distribution on a

common location parameter for the latent variables, augmenting the parameter space with

the latent quantities fits naturally into the sampler described above.

3.3.2 Manifest/latent variable interactions. Often scientific hypotheses relate to interac-

tions involving the latent factors in the models. For example, in the HPHBS we are interested

in interactions between a latent tobacco exposure factor and manifest (i.e., observed) genetic

measures. For such manifest/latent interactions, one can express yi in (1) as

yi = Λsωi + Λs,int(xi,int ⊙ ωi,int) + xi,ββ + εis, (16)
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where Λs,int is a row vector of interaction effects, xi,int is a vector of manifest variables related

to the interaction, ωi,int is a vector of (perhaps repeated) elements of ωi, and ⊙ indicates the

Hadamard (component-wise) product. Variables in xi,int can be repeated in xi,β.

Sampling proceeds in roughly the same manner as in the base model without interactions,

albeit with minor modifications. Let Ω∗ = [Ω, Ωint⊙Xint], where Ωint and Xint contain ωi,int and

xi,int in their rows, respectively. In the draw of Λs in Step 6 of the algorithm, Ω is replaced

by Ω∗, which yields a joint draw of Λs and Λs,int. In Steps 1, 2 and 3, the sth row of Λ (Λs)

is replaced by Λs + Λs,int ⊙ xi,int.

3.3.3 Latent variable interactions. Analysts might be interested in estimating interactions

between two (or more) of the latent factors. For instance, rather than modeling yi = Λsωi+εi,

one might have yi = Λsωi +ωi,1ωi,2λ1,2 + εi. Conditional on the latent factors, the estimation

strategy is not complicated, just as linear regression with interaction terms is not materially

different from one that only contains main effects. However, the interaction complicates the

sampling of ωi somewhat, as they are no longer conditionally conjugate.

Analysts can use a Metropolis-Hastings step to sample the ωi. We have found that a

proposal distribution based on the Gibbs transition that does not account for the interaction

works sufficiently well. We perturb the current ωi value by adding a normally distributed

draw with mean zero and covariance (Φ−1 + Λ�Ψ−1Λ)−1. When the effect of the interaction

is weak, this proposal should be very competitive. We accept the proposed value of ωi with

probability

min

�
1,

p(ωprop

i |yi, θ)

p(ωcurr
i |yi, θ)

�
(17)

where “curr” and “prop” stand for current and proposed values, respectively, and

p(ωi|yi, θ) ∝ exp{−.5ω�
iΦ

−1ωi − .5(xi − Λ−s)
�Ψ−1(xi − Λ−s)− .5(yi − µyi)

2/σ2
y} (18)

where µy and σ2
y are the mean and variance in (4).

Since all ωi are conditionally independent of one another, only one observation affects the
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acceptance probabilities. This means that the conditional density of ωi tends to be relatively

flat, and that the contribution of the interaction term should not dominate the distribution,

making it relatively easy to make competitive Metropolis proposals.

4. Simulation results of power and Type 1 error

4.1 Factor models and power

One primary motivation for using the factor model is the desire to make the most of data

characterized by a relatively modest sample size and weak signals. In this section, we present

a simulation study of the statistical power of the latent factor quantile regression. We

proceed by comparing the estimates from the quantile factor regression model to those of

standard quantile regressions that ignore the factor structure. We simulate data from the

factor model, so it should be no surprise that the factor model outperforms the standard

quantile regressions; the question is whether the standard regressions adequately uncover

the underlying structure.

We simulate data using a one factor (t = 1) model with

Λ = [1, 0.5, 1.5, 0.5, 1.5, 0.2]�, (19)

and Ψ equal to the identity matrix. This gives us a theoretical variance in the explanatory

variables of 



2 0.5 1.5 0.5 1.5

0.5 1.25 0.75 0.25 0.75

1.7 0.75 3.25 0.75 2.25

0.5 0.25 0.75 1.25 0.75

1.5 0.75 2.25 0.75 3.25





. (20)

We model the 20th percentile, which corresponds to the true asymmetric Laplace error

distribution.

To carry out the simulation, we consider sample sizes between 250 and 1,000. We fit
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the data using the (correct) factor model, and frequentist and Bayesian quantile regression

models that do not model the observed covariates as being related to an underlying factor.

For the Bayesian analyses, we assign a prior variance of 10 (centered at zero) to the regression

coefficients. We run the Bayesian estimation algorithms for 10,000 iterations, and discard

the first 5,000 as burn-in. Rarely, the Bayesian methods gave results that indicated that

convergence was not reached (see the end of section 3.2). We re-ran the estimation procedure

in such cases.

We summarize the results in Table 1. Even with the smaller sample sizes, the factor model

nearly always estimates the regression coefficient of interest to be different from zero. On

the other hand, the standard quantile regressions often result in confidence (or credible)

intervals that overlap zero for all coefficients. Although this does not imply that hypothesis

tests would select a null model, the lack of marginally significant variables at the very least

makes interpretation more difficult.

With a sample size of 750 or 1000, the standard quantile regressions typically find at least

one variable with an associated 95% interval that does not cover zero. However, among the

800 datasets that we simulated, in only one case were all five intervals completely above zero

for the frequentist regression, and this never happened for the standard Bayesian quantile

regression. Even with 1000 observations, the most common outcome was two intervals that

did not cover zero for both of the non-factor approaches. Thus, if scientific considerations

suggest an underlying factor structure, ignoring it can harm analysts’ ability to detect signals

in the data.

[Table 1 about here.]

[Table 2 about here.]
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4.2 Factor models and multiple comparisons

In addition to facilitating detection of effects that may go unnoticed, factor models also can

reduce exposure to the issue of multiple comparisons. For example, with five measures of

tobacco smoke exposure, it would be easy to inflate the chance of a Type 1 error by choosing

the measure that yields the most significant effect. Yet, with relatively high correlations

amongst the predictors, a Bonferroni-type correction is an unappealing option as it is likely

to be overly conservative.

To demonstrate this lower risk of making a Type 1 error when accounting for the factor

structure, we repeat the previous simulations, this time with Λs = 0. For this simulation,

we count the percent of fits that have credible or confidence intervals that do not overlap

zero. (See Table 2.) In this situation, we find that the factor model indeed does produce such

intervals much less often. Both the Bayesian factor and non-factor models use a prior for the

regression coefficients centered at zero with variance 10. The effect of this weak prior along

with the correctly specified likelihood explain the superior performance of the standard

Bayesian quantile regression compared to the frequentist version (the default behavior of

the rq function in the quantreg package (Koenker, 2009)), which appears somewhat anti-

conservative in this case.

5. Analysis of the HPHBS

We now turn to the analysis of the HPHBS data. Among the eligible cases (singleton births

in Durham, NC), 1009 mothers are non-Hispanic black women and 279 are non-Hispanic

white women. Among these cases, 203 of the births qualify as preterm births; 184 of the

births are below the 2500g cutoff for the low birth weight classification; and, 38 are below

the 1500g very low birth weight cutoff. We focus on only birth weight as the outcome variable

here.
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As with many observational studies, there is a modest amount of missing data spread over

many variables. We address this though multiple imputation (Rubin, 1987) of ten completed

datasets using sequential regression trees; see Burgette and Reiter (2010) for details. To

estimate the posterior distributions of the parameters in the Bayesian quantile regressions,

we run separate Gibbs samplers on each of ten completed datasets. After convergence of

each sampler, we mix the resulting parameter draws to form a sample from the posterior

distribution; see (Gelman et al., 2004, p. 520) and Zhou and Reiter (2010) for justification

of this approach.

5.1 Factor main effects: smoking and psychosocial health

We begin with an analysis of birth weight that includes factors related to smoking and

psychological and social well-being. For the smoking latent factor, we use laboratory measures

of blood levels of nicotine and cotinine, along with self-reported measures of tobacco use at

the time of delivery, exposure to environmental tobacco smoke, and an indicator of whether

the mother is a current or former smoker, taken earlier in the pregnancy.

The psychosocial health factor is conceptually broader, though mothers with high values

would seem to be well-adjusted and exposed to low stress. The indicators of the factor include

the total score on the Center for Epidemiologic Studies Depression Scale (CES-D), which

summarizes 20 aspects of depressive feelings and actions (Radloff, 1977); an indicator of

whether the pregnancy was unwanted rather than wanted or merely mistimed; a measure

of paternal support; a measure of perceived self-efficacy; and a score on the Interpersonal

Support Evaluation List (ISEL) test, which measures the availability of social support (Cohen

et al., 1985). See the online supplementary material for further descriptions of these variables.

We standardize all of these quantities (other than dichotomous variables), and switch signs

as needed so that “higher is better” for each indicator variable. Thus, a mother with a low
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score on this factor might be pregnant with an unwanted baby, feel unable to control the

course of her own life, have little support and feel depressed.

Pointing each manifest variable in the same direction is desirable because we center the

prior distribution for the free elements in Λ−q at one; making the switch in scale makes the

prior-induced regularization more consistent. However, negative factor loadings are allowable.

In the fitted model, both sets of the factors have estimated loadings in Λ−s that are positive

and effectively bounded well away from zero. This suggests that the chosen manifest variables

capture meaningful latent quantities.

In addition to the factors, we include a set of standard controls. These include the mother’s

age, race, marital status (married or cohabiting versus separated) and the sex of the child,

since boys are known to be heavier on average.

[Figure 1 about here.]

Figures 1 and 2 graphically summarize the results. The factor loading connecting the

response with the tobacco exposure factor is estimated to be significantly below zero at the

50th percentile. The effect is slightly less strong on the lower percentiles of the response

distribution. In comparison, the results of a frequentist median regression indicate that none

of the tobacco-related variables have significant t-values at the 95% level when they are all

included in the model; the point estimates associated with nicotine and cotinine are even

positive. On the other hand, when we include nicotine or cotinine as the only tobacco-related

measure, the associated estimate is negative and quite significant. Hence, the factor structure

simplifies interpretation of the results and does not require us to choose from the available

measures of smoking exposure.

The estimated loadings for the psychosocial factor are centered firmly on zero, indicating

no significant effect at any of the response quantiles. Even in our failure to find an interesting

effect, we see the advantage of the factor model. If we do not assume the latent structure,
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the individual point estimates cover a range of positive and negative estimates, but with

credible intervals that all cover zero. It can be difficult to distill these varying estimates into

a statement of whether there is even weak evidence for the effects of measures in this domain.

The factor model is less ambiguous in this regard: it simply does not support the hypothesis

that the psychosocial variables are associated with low birth weights in these data.

[Figure 2 about here.]

Among the standard controls in Figure 2, the results are in accord with what has been

reported elsewhere. Male babies tend to be heavier, though this effect decays at the low end

of the response distribution. Black babies are significantly lower in weight, especially at the

low end of the response distribution. Additionally, there is some evidence that women who

are married or cohabiting have better birth outcomes.

5.2 Including interactions: a genetic analysis

A specific hypothesis of interest is the presence of an interactive effect between the interleukin

6 (IL-6) gene (or more precisely the protein that is encoded by that gene) and tobacco smoke

exposure. This is plausible because there is evidence that the IL-6 protein is a key player

in the inflammatory response pathway (Kaplanski et al., 2003), and that tobacco exposure

can induce this type of inflammation (Van der Vaart et al., 2004). Similar gene/tobacco

interactive effects have been implicated previously in the study of low birth weights (Wang

et al., 2002).

In the HPHBS data, we have single nucleotide polymorphism (SNP) information at three

loci in the IL-6 gene. It is not known a priori how the SNP markers relate to IL-6 expression,

merely that they capture genetic diversity in this important gene. The SNP observations are

unordered, with three levels at each site, so we use two dummy variables to encode the

information with the most common variant as the base category. We interact these dummy

variables with the latent tobacco factor, which is modeled using the manifest indicators
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described in the previous subsection. We keep the same two-factor form as in the previous

section, simply adding on the SNP/tobacco interaction.

In short, the genetic information described by the SNP observations do not describe

a meaningful amount of the variability in birth weight outcomes at the 20th and 50th

percentiles. All of the 90% credible intervals comfortably cover zero (Table 3). Even though

the factor model failed to detect a meaningful interaction in these genetic analyses, as well

as several others not reported here, the factor model is useful in two respects. First, by

allowing for a latent tobacco factor, we make use of all of the available information on tobacco

exposure, which should capture more information than any single manifest variable in the

data. Thus, if there is an effect, we would expect that the factor model would give us a better

chance of detecting it than a single, noisier measurement would. Second, the factor structure

eliminates an aspect of the problem of multiple comparisons. If the interaction between one

tobacco-related measure and a SNP indicator were significant, but the relationship between

the same SNP and another tobacco measure were not, it is not entirely clear what our

conclusion should be.

[Table 3 about here.]

5.3 Model checking

Checking model fit is an important step in the modeling process (Gelman et al., 1996). In this

study, we use a method suggested by Lee and Neocleous (2010), which compares predicted

quantiles to the observed data. Specifically, we examine the quantity

Tp =
1

n

n�

i=1

I{yi � Q̂p(i|Ω, β, Λs, xi,β)}, (21)

where Q̂p(i|·) is the predicted pth quantile for the ith record in the dataset. Because we

have multiple draws of the parameters that define these predictions, we average Tp across

the stored MCMC draws. If the quantile regression model of the pth quantile fits well, we

expect Tp ≈ p, so we focus on plots of Tp versus p.
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From the dashed line in Figure 3, we can see that Tp is close to p across the range of quantiles

for our Bayesian factor model, though Tp does tend to be lower than p. We compare this

to a standard frequentist quantile regression that does not assume the factor structure, so

that xβ and xω are included as standard explanatory variables. Examining the dotted line

in the figure, we can see that Tp is much smaller than p for larger values of p. This may be

evidence that the standard quantile regression is over-fitting the data for large values of p

since, for example, nearly one third of the observations are larger than the corresponding

fitted, conditional 90th percentiles.

[Figure 3 about here.]

6. Summary

We developed an approach for Bayesian quantile regression when some covariates are indi-

cators of underlying common factors. We applied this model in a study of the predictors

of birth weights. The results suggested that smoking during pregnancy is associated with

decreased birth weight, even at the lower end of the response distribution. This is in accord

with the meta-analysis of Shah and Bracken (2000). However, the results did not suggest

a significant effect of psychosocial factors on birth weights. Of course, we could be missing

important confounders that mask effects in the study, as is the case with any observational

study. Nonetheless, we hope that the methodology presented here is useful in other analyses

of birth outcomes and related contexts.

Received September 2010.
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the Biometrics website http://www.biometrics.tibs.org.
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Figure 1. Middle 95%, 90% and 50% confidence bands and median for response factor
loadings Λs. The tobacco loading includes five measures of tobacco-smoke related exposure,
and the psychosocial health factor relates to six measures of well-being. The coefficient
estimates correspond to a change of two standard deviations in the latent factor scale.
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Figure 2. Middle 95%, 90% and 50% confidence bands and median for standard control
variables across various response quantiles. The mother’s age is measured in decades.
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Figure 3. Percent of observations less than the fitted quantile (Tp) as a function of the
response quantile, for the Bayesian factor model (dashed line) and standard frequentist
quantile regression (dotted line), with the y = x line for reference (solid line).
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Table 1
Simulation results of estimated statistical power. The first column is the estimated power for the factor model. The

next two columns are from the standard Bayesian quantile regressions, with the left column estimating the probability
of having at least one variable’s 95% credible interval not overlap 0; the right column is average number of such

variables. The last two columns repeat this, except with 95% frequentist confidence intervals. Each cell represents the
results from 200 simulated datasets.

Bayes Frequentist
N Factor � 1 significant Number significant � 1 Number

250 0.95 0.54 0.64 0.73 0.97
500 1 0.72 1 0.84 1.27
750 1 0.91 1.32 0.97 1.7
1000 1 0.96 1.59 0.995 1.96
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Table 2
Estimated risks of committing Type 1 errors. The columns display the percent of fitted models that have 95% credible
intervals or confidence intervals that do not cover zero, which is the true value. Each cell represents the results from

200 simulated datasets.
N Factor Non-factor Bayes Frequentist

250 6.5 25 44
500 3.5 24.5 42
1000 5.5 25 42.5
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Table 3
Posterior 90% credible regions for IL-6 SNP/tobacco interactions. Estimates are in grams, for a change in two

standard deviations in the latent tobacco scale.

Dummy 1 Dummy 2
SNP Response percentile 5th 95th 5th 95th

1 0.2 -160 113 -187 84
1 0.5 -135 138 -205 58
2 0.2 -243 111 -135 155
2 0.5 -172 240 -121 292
3 0.2 -137 105 -109 131
3 0.5 -104 122 -78 136


