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Abstract

Investigators often change how variables are measured during the middle

of data collection, for example in hopes of obtaining greater accuracy or re-

ducing costs. The resulting data comprise sets of observations measured on

two (or more) different scales, which complicates interpretation and can create

bias in analyses that rely directly on the differentially measured variables. We

develop multiple approaches for handling mid-study changes in measurement

for settings in the absence of calibration data, i.e., no subjects are measured

on both (all) scales. This setting creates a seemingly insurmountable problem

for multiple imputation: since the measurements never appear jointly, there is
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no information in the data about their association. We resolve the problem

by making an often scientifically reasonable assumption that each measure-

ment regime accurately ranks the samples but on differing scales, so that, for

example, an individual at the qth percentile on one scale should be at about

the qth percentile for the other scale. We use rank-preservation assumptions

to develop three imputation strategies that flexibly transform measurements

made in one measurement scale to measurements made in another: an MCMC-

free approach based on permuting ranks of measurements, and two approaches

based on dependent Dirichlet process mixture models for imputing ranks con-

ditional on covariates. We use simulations to illustrate conditions under which

each strategy performs well, and present guidance on when to apply each. We

apply these methods to a large study of birth outcomes in which investigators

collected mothers’ blood samples to measure levels of environmental contam-

inants. Mid-way through data ascertainment, the study switched from one

analytical laboratory to another, and it is clear that the two labs report the

measurements according to different measurement scales. We use nonparamet-

ric Bayesian imputation models to obtain sets of plausible measurements on

a common scale, and estimate quantile regressions of birth weight on various

environmental contaminants. The results suggest that blood lead levels inter-

act with smoking status in ways not previously reported in the epidemiologic

literature.

Keywords: Dirichlet process, Gaussian process, Permutation, Rank

1 INTRODUCTION

In large-scale data collections, it is not uncommon for the investigators to switch

measurement procedures during the data collection phase. As examples, investigators
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collecting biomedical data may switch assay labs or instruments to reduce costs or

improve accuracy; and, investigators running prospective studies may change question

wording or survey mode for some variables. Hence, at the end of collection, the data

comprise some participants measured one way and others a different way. When the

two (or more) measurement scales differ, inferences based on the combined data can

be inaccurate and difficult to interpret.

It is relatively straightforward to adjust for differing scales when investigators can

measure subsets of data subjects on the multiple scales. For example, one can use

missing data methods to create plausible values of all measurements (Schenker and

Parker, 2003; Cole et al., 2006; Durrant and Skinner, 2006; Thomas et al., 2006), and

analyze the imputed data using the preferred measurement scales. Sometimes, how-

ever, it is not practical or feasible to measure data subjects on more than one scale

simultaneously. When faced with this situation for numerical measurements, analysts

often use the simple approach of standardizing the measurements to get them on a

common scale. However, a one unit change on some scale may mean something dif-

ferent on another scale, and the extent of that difference may change for low and high

levels of the measured variable. Furthermore, standardizing fails when background

characteristics related to the measured variable differ across measurement groups.

Another approach is to delete all but the preferred measurements, and use missing

data methods on the remaining data. This sacrifices potentially useful information

in the measurements, leading to inefficient inferences.

In this article, we present three alternative strategies for handling mid-study

changes in measurement for numerical data. We present the strategies for two mea-

surement scales; the methods easily extend to more than two scales. To aid descrip-

tion, we define the destination scale to comprise the values after the mid-study change

in measurement, and define the source scale to comprise the initial measurements.
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The key assumption underlying the approaches is that rankings are roughly preserved

across the measurement scales; e.g., if an individual is at the 10th percentile on the

source scale, she should be at about the 10th percentile of the destination scale.

Such assumptions are reasonable in many settings. For example, the procedures used

by two assay labs may report different levels of some agent, but it may be biolog-

ically sensible to assume that someone who measures high (low) by one procedure

would measure high (low) by the other procedure. Using only rank-preservation as-

sumptions, it is possible to impute the missing destination scale measurements for

source-scale records, either as part of parameter estimation in Bayesian models or as

part of a multiple imputation analysis. We pursue the latter here.

The three methods can be ordered based on the extent to which they make use

of information about covariates related to the differentially measured variables for

imputation. The first method, which we call the rank permutation (RP) method,

involves imputing the destination ranks—and subsequently the destination values—

of the measurements in the source data independently of covariates. The second

method, which we call rank-preserving prediction (RPP), involves imputing the des-

tination values of the measurements in the source data while taking covariate infor-

mation into account and maintaining the observed within-lab rankings. The third

method, which we call matched conditional quantiles (MCQ), equates conditional

quantiles in density regressions of the values in each measurement scale. Roughly, if

an observation is at the qth conditional quantile in one scale, MCQ imputes it at the

qth conditional quantile in the other scale. MCQ ensures that ranks from the source

data are preserved locally with respect to the space of the covariates, whereas RPP

ensures that ranks from the source data are preserved globally.

For both RPP and MCQ, we estimate conditional densities using nonparametric

Bayesian approaches based on dependent Dirichlet process mixture models (MacEach-
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ern, 1999; De Iorio et al., 2004; Fronczyk and Kottas, 2010). These flexible models

are advantageous for imputation, since they enable the analyst to relate two mea-

surement scales using minimal assumptions while controlling for relevant background

characteristics. RP involves simple permutations of observed ranks and so is less com-

putationally demanding, which may make it more appealing to analysts than RPP

and MCQ in some settings.

The remainder of the paper is arranged as follows. In Section 2, we describe the

motivating example for the development of these methods, namely a mid-study change

in assay labs during a prospective study of the relationships between environmental

exposures and adverse birth outcomes. In Section 3, we describe the three proposed

methods in the context of two measurement scales. In Section 4, we present results of

simulation studies that illustrate the methods and illuminate conditions under which

each performs well. In Section 5, we apply the results on the motivating example,

with a focus on mothers’ blood lead concentrations that were made by different assay

labs. Finally, in Section 6, we conclude with a brief discussion of broad applications

of these methodologies.

2 MOTIVATING EXAMPLE: THE HEALTHY PREG-

NANCY, HEALTHY BABY STUDY

The Healthy Pregnancy, Healthy Baby Study (HPHBS) is an ongoing observational

cohort study that is focused on the etiology of adverse birth outcomes. The intent of

the study is to investigate how environmental, social, and host factors are related to

outcomes like birth weight and gestational age at birth. Since July 2005, the study has

recruited women aged 18 and up who are pregnant with a singleton gestation. These

expectant mothers are recruited at the Duke University Obstetrics Clinic and the
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Durham County Health Department Prenatal Clinic, both of which are in Durham,

NC (http://epa.gov/ncer/childrenscenters/duke.html). As of this analysis,

the data comprise 1435 non-Hispanic black and white women who have given birth.

The study investigators collect blood samples from the expectant mothers to mea-

sure their exposures to the pollutants lead, mercury, cadmium, and cotinine. In the

third year of data collection, the investigators switched from one analytical lab to

another that promised finer assay resolution. However, after enough samples were

taken from the new lab, the investigators noticed that the marginal distributions

of the pollutants’ concentrations differed greatly between the two labs in ways not

explainable solely by the differing degrees of coarseness of the reported values. For

example, Figure 1 displays the two sets of marginal concentrations for mothers’ blood

lead levels, broken down by race. If one scale were a rounded version of the other, we

would expect more of the mothers to be above the detection limit in the coarser scale;

or, we would expect the finer scale’s values to rise less quickly. On the other hand,

the coarser scale has more high values than we would expect if it were a rounded

version of the finer scale.

The differences in marginal distributions could result from differences in the back-

ground characteristics of the samples between labs. In fact, a greater percentage

of mothers identify their race as white in the lab with finer assay resolution com-

pared to those who were measured in the original lab. However, within racial groups,

other characteristics of study participants are not appreciably different for the co-

horts measured in the two labs: logistic regressions of lab assignment on a function of

tobacco use, age, and birth weight yield no coefficients that are significant at the 10%

level. Therefore, we attribute within-race differences in the marginal distributions to

differences in the two labs’ measurement methods.

Due to the difficulties of getting blood samples from pregnant women and the
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Figure 1: Normal quantile/quantile plots of lead data from the two labs, by mother’s
race.

need to preserve as much sample as possible for various assays, no mothers were

measured in both labs. However, it is reasonable to assume that the two labs have

low measurement errors but differing intrinsic scales; that is, each lab can properly

rank samples (perhaps up to ties). Put another way, we assume that if the true value

of an assay were y, lab 1 would report f1(y) and lab 2 would report f2(y) where f1 and

f2 are increasing—but perhaps quite complicated—unknown functions. We do not

have any information to determine whether f1 or f2 is the identity function. Hence,

the best that we can do with the HPHBS data is to create a coherent scale for the

measurements across samples. We cannot claim that to create imputed values that

are in some true scale.

The HPHBS is a large study with many investigators analyzing the data. Hence,

we adopt a multiple imputation approach (Rubin, 1987) to impute plausible values of
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the pollutants on a coherent scale defined by the finer-resolution measurements. In

particular, we use the methods described in Section 3 to create ten completed datasets

so that each mother has either an actual concentration measurement (if she was

measured by the finer-resolution lab) or a set of ten imputed concentration values (if

she was measured by the original, coarser-resolution lab or not measured at all). With

these completed datasets, investigators can use complete-data techniques on each

imputed dataset, and combine results using simple rules (Reiter and Raghunathan,

2007).

3 DESCRIPTION OF THE METHODS

We now describe the rank permutation (RP), rank-preserving prediction (RPP), and

matched conditional quantiles (MCQ) methods. Let Y represent the variable mea-

sured on two different scales, and let X represent all other variables in the dataset.

We suppose that the values of Y observed in the source scale, yis where i = 1, . . . , ns,

are ordered from smallest to largest, as are the values of Y observed in the destination

scale, yid where i = 1, . . . nd. Let ys and yd be the vectors of all individuals’ observed

data in the source and destination scales, respectively. Let yc denote the complete

set of nc = ns + nd observations in the destination scale. Note that elements of yc

are observed for records in the destination-scale data but missing for records in the

source-scale data.

3.1 Rank Permutation

We begin with RP, which does not explicitly include covariate information in the

imputation process and is simplest to implement computationally. RP relies on the

factorization p(yc|ys, yd) = p(yc|rc, ys, yd)p(rc|ys, yd), where rc is the unobserved set
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of ranks of yc. If the elements of yc are assumed to be drawn independently from

some common distribution, then p(rc|ys, yd) can be sampled as follows. Imagine

an urn with ns red balls for the source-scale observations and nd blue balls for the

destination-scale observations. Sample all nc balls without replacement, numbering

each ball after it is drawn with consecutive numbers from 1 to nc. The numbers on

the red balls are a draw of the ranks of the source-scale measurements if they were

transformed into the destination scale.

For example, suppose that ns = 3 and nd = 2. A drawn sequence from the urn

might be B1R2R3B4R5, with B for blue and R for red. The observed destination

values are retained, so that y1c = y1d and y4c = y2d. We would sample—according

to some distributional estimator applied to yd—imputed values of y2c and y3c so

that y1c < y2c < y3c < y4c. Similarly, we sample y5c restricted to be larger than

y4c. For simplicity, we draw from a discretized version of a Gaussian kernel density

estimate, as implemented in the density() function in R (Venables and Ripley, 2002;

R Development Core Team, 2010). This is a Monte Carlo technique, but not MCMC,

so there are no significant computational concerns. An R implementation is available

from the authors.

To illustrate the RP method, we consider the following data-generating setup.

The marginal distribution of the nd = 500 destination measurements is standard

normal. We transform from destination to source measurements using f(y) = −2.5+

5 exp{−.5 + .2y}. We then apply RP to impute plausible values of the ns = 200

source scale measurements in the destination scale. Figure 2 shows the marginal

distribution of yc for ten realizations of RP. The imputed distributions are centered

around yd with uncertainty comparable to the difference between yd and the source-

scale observations after transformation by the true inverse of f . Because RP only

uses the ranks of the source lab observations, we note that any strictly increasing
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function f would yield qualitatively similar results.

It is possible to incorporate some auxiliary information by stratifying the observa-

tions according to covariates, and performing RP within each stratum. This approach

can produce imputed values that do not respect the within-lab marginal ranks. It

also can increase variance when sample sizes are small in some strata.
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Figure 2: Example of the rank permutation (RP) method. The top panel displays
density histograms of the observations from the source lab (gray) and destination lab
(black). In the lower panel, the true density histogram of the transformed values is
the gray line. Ten realizations of the RP method are displayed (thin dashed lines),
along with the observed destination lab measurements (solid black).

3.2 Rank-Preserving Predictions

RPP is a natural extension to RP, as it gives priority to preserving the observed

rankings for the source-scale records. The key modification is that RPP overcomes
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the lack of covariate information in the RP approach, which for many settings would

be problematic. For example, average blood lead levels tend to be higher for older

women. This is partially due to a cohort effect: environmental lead exposure in the

U.S. is lower now than it was several decades ago, with reductions in lead-containing

paint and the 1996 ban on leaded gasoline (Thomas, 1995; Jacobs and Nevin, 2006).

There is also an age effect, because lead accumulates in the skeletal system over the

life course, with some of the stored lead being released during pregnancy (Gulson

et al., 1999). If the women measured on the destination scale are mostly older than

the women measured on the source scale, using RP could impute younger women

with high ranks in the source scale to have lead values comparable to those for older

women in the destination scale, which would not be appropriate.

To implement RPP, we estimate the conditional distribution of yc given covariates

xc using the destination-scale data. For each source-scale record i, we sample a

value of yic from this conditional distribution with the constraint that the rank of yic

among all source records’ ranks must be preserved; for example, if yis was at the 20th

percentile among source records, then its imputed yic should be at the 20th percentile

among the imputed values for all source records.

More formally, the imputation proceeds as follows. We estimate the conditional

distributions via a Bayesian density regression fit with the observed destination data,

as described in Appendix A. In particular, we use a dependent Dirichlet process

(DDP) model to capture the distribution of yd across the observed covariate space

xd (MacEachern, 1999). Let θ
(j)
d be a draw from the posterior distribution of the

parameters that index that model, where j indicates the iteration in the MCMC

algorithm. We set up initial starting values for each source record’s yic so that the

source ranks are preserved. We then update yic for each source record sequentially

using Gibbs sampling: we sample from the truncated posterior distribution of yic
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given θ
(j)
d with truncation points defined by the values of yic at the (i − 1)th and

(i + 1)th ranks in the source data. This is shown graphically in Figure 3. This

process is repeated until the imputation values settle down into a stable distribution.

We repeat this process for other sampled θ
(j)
d (for a well-spaced sequence of j values)

to get the multiple imputations of yc. It is possible to update the missing yic at

each iteration of the MCMC; however, we have found that can lead to numerical

instabilities.
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Figure 3: Schematic of the method of rank-preserving predictions (RPP). In the left-
hand panel, the curving lines summarize the regression model at a particular iteration
in the MCMC, as implied by a single, drawn θ

(j)
d . The point being updated is the black

circle. Gray symbols are current imputed values of the destination lab measurements,
with circles for ties in the source lab scale and triangles for observations that must
be larger or smaller than the update. Black horizontal lines give the bounds for the
update, as dictated by the triangles. The right-hand panel displays the conditional
density for the update, with the area of allowable draws in gray.
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As a note on practical implementation, when the initial imputed values in the

Gibbs sampler are poorly chosen, the Gibbs updates can be slow to mix, especially

when the source observations are not in a coarse scale. We have found that making

a set of predictions (conditional on a single draw from the posterior of the density

regression) that does not respect the ordering forms the basis of a useful starting

point for the imputed values. We set the starting quantiles of the imputed values at

the empirical quantiles of the draw. It would also be possible to take an annealing

approach, starting with a coarse scale where the imputations mix more easily, and

gradually enforcing the full observed ordering.

3.3 Matched Conditional Quantiles

RPP incorporates covariate information in an auxiliary manner, with the source ranks

trumping the covariates. However, in some settings it makes more sense to preserve

source rankings within covariate patterns than to preserve them across all source

records. For an example in an educational testing context, suppose that questions on

an initial version of a test disfavor selected demographic groups—e.g., the content is

unfamiliar to them—and that a later version of the test is fair to all groups. A global

rank preservation method like RP or RPP would force individuals in the disfavored

subgroups to be inaccurately imputed as low scoring on the fair test. It makes more

sense to preserve ranks conditional on demographic profile, since one would expect

students who score low compared to their like-profiled peers on the unfair test to

score low on the neutral test as well.

MCQ is designed to preserve rankings of Y within covariate patterns. To imple-

ment MCQ, we fit two DDP models for Y given X: one using the destination-scale

observations and the other for the source-scale observations. The models condition

on the same covariates, but they are estimated independently. To impute the missing
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elements of yc, we draw a value of θ
(j)
s from the posterior distribution of the param-

eters in the source DDP model. For each record i in the source data, we use the

drawn θ
(j)
s to compute the conditional quantile corresponding to the observed yis;

call this quantile q. We then draw a value of θ
(j)
d from the posterior distribution of

the parameters in the destination DDP model. We use the drawn θ
(j)
d to compute

the value of the destination scale at the qth conditional quantile among records with

covariate pattern xi. This process is displayed graphically in Figure 4. We repeat

this process multiple times to get the multiple imputations of yc.
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Figure 4: Schematic of matched conditional quantiles (MCQ) approach, with median

and 95% predictive bounds for the density regressions, conditional on drawn θ
(j)
s and

θ
(j)
d values. The observed value yis = 0.5 (circle) is approximately at the q = 0.73

conditional quantile when xi = 0. This quantile corresponds to 1.35 in the destination
lab regression (plus sign), which becomes the imputed value.
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4 ILLUSTRATIVE SIMULATIONS

To illustrate the performances of the three methods, we undertake a series of simula-

tion studies. The simulations involve a full factorial design for three binary factors.

The first factor is whether or not the covariate matrix X has a similar distribution in

the destination and source data; we call this the balance factor. We expect imbalance

in X to result in comparatively poor performance for RP, whereas RPP and MCQ

are intended to adjust for imbalance. The second factor pertains to whether or not

there are many ties in the marginal rankings of Y ; we call this the coarseness factor.

Some settings, including the motivating HPHBS example, have ordered categorical

data with many ties in at least one of the scales, as opposed to approximately contin-

uous data with few if any ties. Ties can be problematic for the RP method because

a small change in the imputed rank can imply a large change in the imputed value.

The third factor is whether the transformation function from one scale to the other

preserves ranks of Y globally or only locally. Global preservation of ranks underlies

RPP, whereas local preservation of ranks within covariate patterns underlies MCQ.

We generate data from this factorial design using one measurement variable Y

and two covariates (X0, X1). We set sample sizes ns = 700 in the source scale and

nd = 300 in the destination scale, which are similar to the sample sizes in the HPHBS

application. For any level of the factorial design, we generate replications as follows.

• IF BALANCED: Generate Xi,0 ∼ Bern(.5) for all i.

• IF NOT BALANCED: Generate Xi,0 ∼ Bern(pi), where pi = 0.25 for the ns

source lab observations and pi = 0.75 for the nd destination lab observations.

• Generate Y = X0 + 0.5N(0, I).

• Generate X1 = X0 + 0.5Y + 0.2N(0, I).
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• IF GLOBAL: Transform the source lab observations via the function f(y) =

−.5 exp{−1 + y}.

• IF LOCAL: Transform the source lab observations via the function f(y; x0) =

−.5 exp{−1 + y − x0}.

• IF COARSE: Round the transformed source lab observations to the nearest 0.5.

We evaluate the abilities of the methods to estimate the regression coefficient of Y in

the regression of X1 on (Y, X0). Because of the computational demands of the MCMC,

we limit the simulation study of RPP and MCQ to ten simulations in each of the eight

scenarios. The parameters used to simulate the data are chosen to highlight relative

advantages of the methods in various situations so that differences appear even with

a small number of simulated repetitions.

Figure 5 summarizes the results of the full factorial simulation study. For com-

parison, it also includes results from using a method of moments approach to put

all source-scale data on a common scale, i.e., we transform the source-scale values

to have the same mean and standard deviation as the destination-scale values. In

all cases, this simple approach fails to result in unbiased estimates of the regression

coefficient. In contrast, the RP method performs favorably when the background

covariates are roughly balanced, the source lab scale is not coarse, and the ranks are

preserved globally. In these situations, RP performs well even though it ostensibly

ignores the strong correlations between X and Y . This is because most of the infor-

mation about the transformed source lab values is contained in the observed ranks,

so that preserving ranks essentially preserves correlational structures. In more exten-

sive comparisons, we found that the RP method strongly outperformed the method

of moments approach and typically resulted in low bias and proper coverage rates

regardless of the correlational structure in the data, provided that the scales are not
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Figure 5: 95% confidence intervals for the regression coefficient associated with
the variable measured in two scales. The true value the regression coefficient
is 0.5. The simulation examines balanced/unbalanced covariate configurations,
coarse/continuous source lab scales, and local/global rank preservations.
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coarse, the background covariates are balanced, and global rank preservation holds.

However, when any of those three conditions are violated, the performance of the

RP method degrades substantially, as evidenced by the large bias in the estimated

coefficient.

The RPP method results in approximately unbiased estimates in the four scenar-

ios where global rank preservation holds. The RPP does not suffer from bias due to

imbalanced covariates (when global rank preservation holds) because it makes use of

background information to anchor imputations. It does not suffer from bias due to

coarseness (when global rank preservation holds) because it makes use of covariates

to smooth out the coarseness in the source scale measurements. When only local rank

preservation holds, RPP results not only in biased estimates, but some of the intervals

have large widths. This results from the poor fit of models that incorrectly presume

globally rank-preserved predictions, which can yield instability in the imputed val-

ues of the observations that are observed in the source lab; it is not a product of

inadequate convergence in the MCMC.

The MCQ method is the only method that results in approximately unbiased

estimates in all eight scenarios. However, this flexibility comes with a price: the

intervals can have comparatively larger widths. For example, in the balanced and

not coarse condition with globally-preserved ranks, the confidence intervals resulting

from RPP are uniformly narrower than those from MCQ, while still displaying good

coverage. Also, if it is the case that the source lab has very few observations, we

would expect the source lab model to be quite sensitive to the prior specification.

The results in Figure 5 suggest a two-step decision process for determining which

methods can be used, as summarized in Figure 6. First, the analyst should ask

whether or not it is sensible to assume global rank preservation. As the stronger

assumption, global rank preservation is less flexible than the local assumption, but
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Figure 6: Flow chart summarizing recommended imputation type for various situa-
tions.

assuming it results in simpler procedures and possible efficiency gains when global

rank preservation is true. Thus, when preserving global ranks is not sensible, or

when there is insufficient basis to decide on the local versus global distinction, the

analyst should use MCQ; otherwise, the analyst should choose between RPP and

RP. When the Y values are coarse—such that a small change in the imputed rank

can correspond to a large change in the imputed Y value—we recommend RPP.

Coarseness in this sense will typically correspond to discrete-valued measurements or

multimodality where the modes are well-separated. These can be detected visually

in graphs of the marginal distributions of Y . We also recommend RPP when the

distributions of background covariates differ in the two sources. This can be assessed

via a regression model of the scale indicator as a function of covariates in X, much

like diagnostics for covariate balance in propensity score matching contexts (Stuart,

2010). When the Y values are not coarse and the X values are relatively balanced

(and global rank preservation is sensible), the simulations suggest that analysts can

use the RP method.
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These recommendations also account for the relative computational expenses of

the three algorithms. Of the three approaches, the RP method demands the smallest

computational burden, requiring only calculations that are essentially instantaneous.

Because the resulting draws are independent, the analyst does not need to worry about

Markov chain convergence. The other two approaches require density regressions that

are more computationally demanding, with the MCQ method calling for two such

regressions; this makes the computational load nearly twice as heavy for the MCQ,

though not much extra programming effort is required.

5 APPLICATION TO ASSAY LAB CHANGES

IN THE HPHBS

We now turn to the mid-study lab assay change in the HPHBS. We focus on mea-

surements of blood lead levels, although some of the other metals also had dissimilar

distributions in the two labs. Of the 1435 women, 323 have blood lead levels measured

on the destination scale; 807 are measured on the source scale; and, the remainder

are missing a lead measurement. Although typically one would rather the destination

scale have more observations than the source scale so as to reduce reliance on impu-

tations, the investigators specified the second set of measurements as the destination

scale because it offers finer resolution and lower detection limits. We also transform

to the log concentration scale so that negative imputations are not a concern.

Based on scientific grounds, we find little reason to believe that one or both of the

labs would use a scale that reports different measurements depending on background

covariates. Hence, we believe it is sensible to assume global rank preservation when

imputing to a common scale. Therefore, we do not use MCQ. As mentioned in

Section 2, maternal race is not balanced across laboratory assignments. Additionally,
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the source lab observations are coarse, as they are reported in an integer-valued scale

(Figure 1). For these reasons, we prefer RPP over RP. As covariates in X, we include

race, age, self-reported smoking status (non-smoker, quit, smoker), and birth weight

rounded to the nearest 500g. Exploratory regression analyses indicate that these

variables are associated with lead levels.

Because of the modest sample size in the destination scale, the density regression

is somewhat sensitive to the prior specifications, especially for the parameter that

records the conditional variances of yi (called σ
2
j in Appendix A). We judge the

suitability of prior specifications based on the resulting marginal distributions of the

transformed lab values. In our experience, there is a range of specifications where the

marginal distributions are insensitive to the prior distribution, and zones where the

marginal distribution of the transformed values is too diffuse or too concentrated to

be plausible. The study is still accruing destination-scale data, so that the sensitivity

to the prior distribution should diminish as nd increases.

The data have missing values for several other variables, although the covariates

in the models for RPP are essentially fully observed. We first run the RPP method

to form m = 10 completed sets of lead observations in the destination lab scale. As

shown in Figure 7, the distributions of the transformed source lab measurements are

comparable to the observed destination lab measurements. For each of the completed

sets of lab observations, we perform a single imputation for any other missing values

via chained equations (Van Buuren and Oudshoorn, 1999; Raghunathan et al., 2001)

using a classification and regression tree-based approach (Burgette and Reiter, 2010).

Using the completed datasets, we estimate several quantile regressions (Koenker

and Bassett Jr, 1978; Koenker and Hallock, 2001) involving birth weight and mothers’

blood lead levels. In this analysis, we restrict our attention to the non-Hispanic black

mothers. The models include the baby’s gender, an indicator of whether this was the
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Figure 7: Normal quantile-quantile plots of ten realizations from the RPP method
(solid lines) and the observed destination lab observations (broken line).
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mother’s first pregnancy, the mother’s age and age squared; all of these are known to

be important correlates of birth weight (e.g., Koenker and Hallock, 2001; Abrevaya

and Dahl, 2008). The models also include lead, an indicator of whether the mother

is a current smoker or not, and their interaction. We include the interaction because

exploratory data analyses involving the lead measurements from the source lab suggest

it may be important.

Table 1 displays the results of quantile regressions at the 10th through 90th per-

centiles of birth weight. The lead/smoking interaction is estimated to be negative

across the range of response quantiles. For the low response quantiles, 95% con-

fidence intervals for the interaction do not cover zero. These results—including the

positive estimates for lead exposure—are similar to those from source lab scale, where

the exploratory analysis was performed.

Although the lead/tobacco interaction is the product of high-dimensional ex-

ploratory analysis, epidemiological considerations suggest that it deserves attention.

Lead exposure has been linked causally to increased blood pressure (Navas-Acien

et al., 2007), and nicotine exposure causes short-term spikes in blood pressure (Omvik,

1996). Hypertension is in turn associated with pre-term births (Miranda et al.,

2010). On the other hand, smoking during pregnancy surprisingly reduces the risk

of preeclampsia (Cnattingius et al., 1997). A primary symptom of preeclampsia is

elevated maternal blood pressure, and the condition can be an indication to induce

birth. These results suggest that—to improve our understanding of adverse birth

outcomes—we should carefully consider the effects of lead exposure, tobacco expo-

sure, hypertension, and their interactions. Such work is part of our ongoing research

agenda, and the ability to sensibly aggregate measurements from two laboratories is

key to this effort, especially as the study accrues more data in the destination lab

scale.
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6 FINAL REMARKS

We conclude with a brief discussion of applications of the methods described in this

article beyond harmonizing laboratory assay data. For instance, the precise word-

ing of census or survey questions may change over time (Jaeger, 1997). It may not

be practical to ask individuals multiple versions of the same question, yet longitu-

dinal comparisons may require data on common scales. In large-scale epidemiologic

or psycho-social contexts, analysts may seek to combine information from multiple

datasets in which key variables are measured or defined differently. Without access

to a validation sample on which individuals are measured with the multiple methods,

these methods can offer an approach to data harmonization. In education and other

contexts, there can be significant rater-to-rater differences (Johnson, 1996). If these

differences are not simply additive shifts, it may be desirable to flexibly put all raters’

scores on one scale.

APPENDIX A: GAUSSIAN AND DIRICHLET PRO-

CESSES

Recent Bayesian research has demonstrated the flexibility of mixture modeling ap-

proaches (e.g., Escobar and West, 1995; Müller et al., 1996; Griffin and Steel, 2006;

Dunson et al., 2007; Dunson and Park, 2008). The Dirichlet process (DP) (Ferguson,

1973; Blackwell and MacQueen, 1973) has become a popular choice for the mixing

distribution in such models. Technically, the DP describes a distribution on a col-

lection of distributions that are defined on some measurable space Θ. The DP is

parametrized by a base measure G0 defined on Θ and a concentration parameter α,

which we will write G ∼ DP(α, G0).
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Sethuraman (1994) showed that the DP can be constructed via a stick-breaking

process. If G ∼ DP(α, G0), then we can write

G =
∞�

j=1

pjδθj , with θj
iid∼G0

where p = {pj} are drawn according to the so-called stick-breaking construction. If

we start with a stick of unit length, and break off a segment of length v1 ∼ beta(1, α),

then the first mixture weight p1 = v1. From the portion of the stick that remains,

we remove a proportion v2 ∼ beta(1, α) of it as the next mixture weight, so p2 =

v2(1− v1). This continues on so that in general

pj = vj

j−1�

k=1

(1− vk) with vk
iid∼ beta(1, α),

which is often written as p ∼ GEM(α). From this definition, one can see that a

smaller α value will typically result in a few heavily-weighted components, with the

weights decaying very quickly since vk values will be close to one on average. A larger

α will result in mixture weights that decay more slowly.

This constructive representation makes it clear that the DP would be a poor choice

for a data model for a continuous response, since it is almost surely discrete. However,

as a mixing distribution, this discreteness induces desirable sparsity: n data points

typically will be assigned to fewer than n mixture components.

The dependent Dirichlet process (DDP) (MacEachern, 1999; De Iorio et al., 2004;

Gelfand et al., 2005) induces a DP at each covariate value, but allows for flexible

sharing of information across the covariate space. We adopt the DDP that takes on

the form

G(x) =
∞�

j=1

pjδηj(x), with ηj
iid∼G0X (1)
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where ηj are IID realizations of a base Gaussian process (GP) G0X defined on the

covariate space X (Fronczyk and Kottas, 2010). This is a “single p” DDP, as the pj

values are fixed across the covariate space.

The sharing of information across covariate values is a consequence of the continu-

ity of realizations of the base stochastic process G0X (e.g., Rasmussen and Williams,

2006). Conditional on hyperparameters, G0X is parametrized so that Eηj(xi) = x�
iβ,

Var(ηj(xi)) = σ
2
η, Corr(ηj(xi), ηj(xj)|φ) = exp(−φ|xi − xj|2) with φ > 0 for any

xi, xj ∈ X . We collect these parameters as ψ = (β, σ
2
η, φ).

Our hierarchical model is then

yi
ind∼ N(ηw(i)(xi), σ

2
w(i)) (2)

Pr(w(i) = j) = pj (3)

p ∼ GEM(α) (4)

ηj(·)
iid∼ G0X (·; ψ) (5)

σ
2
j

iid∼ inv-gamma(aσ, bσ) (6)

α ∼ gamma(aα, bα) (7)

φ ∼ unif(0, bφ) (8)

β ∼ normal(0, B−1
0 ) (9)

σ
2
η ∼ inv-gamma(aη, bη) (10)

In practice, we choose to truncate the DP such that the stick-breaking represen-

tation of G ∼ DP(α, G0) is

G =
L�

j=1

pjδθj (11)

by assigning pL = 1−
�L−1

k=1 pk for a fixed L. This allows us to use the blocked Gibbs
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sampler of Ishwaran and James (2002), which samples the mixture components w(i)

jointly. (See also Ishwaran and James (2001).) Otherwise, it is possible to use the full

DP and sample according to the Polya urn representation conditioning on the other

the others. See the Appendix B for details of the MCMC algorithm.

If observations yi are rounded to a small number of possible outcome values,

or if there is a known detection limit associated with the measurement, then the

conditional normality implied by our model may be unrealistic. In such cases we

augment the model with latent quantities that represent the pre-rounding quantity,

or the quantity that was not truncated at the detection limit. This standard data

augmentation method is easy to add to the proposed model (Tanner and Wong, 1987).

APPENDIX B: MCMC DETAILS

Following Rasmussen and Williams (2006), we use K(X1, X2) to denote matrix of

pairwise GP covariances (conditional on the mixture indictor) between the points

described by the rows of X1 and X2. We factor K(X1, X2) = σ
2
ηH(φ). Further, we

denote with Xu the matrix of unique predictor values.

Updates should be as follows:

• Update ηj for j = 1, . . . , L.

– If no observations are currently assigned to the jth mixture component,

then ηj ∼ N(Xuβ, K(Xu, Xu)).

– Else, ηj|all ∼ normal(µη, Ση) where

µη = Xuβ + K(Xu, Xj)[K(Xj, Xj) + σ
2
j I]−1(yj −Xjβ)

Ση = K(Xu, Xu)−K(Xu, Xj)[K(Xl, Xl) + σ
2
j I]−1

K(Xj, Xu).
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Here, Xj and yj collect the observations that are assigned to the jth mix-

ture component.

(See Chapter 2 of Rasmussen and Williams (2006).)

• For j = 1, . . . , L, update

σ
2
j ∼ inv-gamma(aσ + .5n∗j , bσ + .5

�

i:w(i)=j

(yi − ηj(xi))
2)

where n
∗
j counts the number of elements assigned to the jth mixture component.

• For i = 1, . . . , n, sample

w(i) ∼
L�

j=1

p̃jδj(w(i)) where p̃j ∝ pjN(yi; ηj(xi), σ
2
j )

• Update p:

p ∼ generalized-Dir((n∗1, . . . , n
∗
L−1 + 1); (α +

L�

j=2

n
∗
k, . . . , α + n

∗
L)),

which can be sampled as described in Ishwaran and James (2002) or Fronczyk

and Kottas (2010).

• Sample α:

α ∼ gamma(shape = L + aα, rate = bα − log(pL))

• Sample β ∼ normal(β̂, B
−1) where

B = n
∗
ηX

�
uK

−1
Xu + B0 and β̂ = B

−1
�

j:n∗j >0

XuK
−1

ηj(Xu).
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Here, K is shorthand for K(Xu, Xu), and n
∗
η counts the number of mixture

components that have at least one assigned observation.

• Following Fronczyk and Kottas (2010), we specify the prior p(φ) ∝ 1{φ < bφ}.

We also require φ > aφ for a small aφ to avoid proposing H(φ) matrices that are

ill-conditioned. We sample φ in a random walk MH step with the conditional

density proportional to

|H(φ)|−n∗η/2 exp

�
− .5σ−2

η

�

j:n∗j >0

(ηj −Xuβ)�H−1(φ)(ηj −Xuβ)

�
1{aφ < φ < bφ}.

• Sample σ
2
η from

inv-gamma(aη + .5n∗η, bη + .5
�

j:n∗j >0

(ηj −Xuβ)�H−1(φ)(ηj −Xuβ)).

To generate m completed datasets, record m well-spaced draws of the parameters

from the density regression described above. For each of these m draws, sample

imputed values in the destination lab scale as follows:

• For RPP, generate a starting set of imputed values. Then repeatedly update the

imputed values one at a time. Let bL be the maximum of the current imputed

values that are required to be smaller than the observation whose value we are

updating. Let bU be the minimum of the observations that are required to be

larger. We then wish to update the imputed value from the conditional density,

restricted to be in the interval (bL, bU). To achieve this, first calculate the

probability that the restricted draw will come from the jth mixture component,

which is proportional to pj[Φ(bU ; ηj(xi), σ2
j )−Φ(bL; ηj(xi), σ2

j )], where Φ is the

normal CDF. After sampling the mixture indicator, sample the imputed value
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according to a truncated univariate normal distribution. Observations without a

measurement in either lab are easily handled: simply impute into the destination

lab scale without any truncation in the conditional distributions.

• For MCQ, determine the conditional quantile for each source lab observation in

the source lab scale, which is described by a linear combination of normal CDF

values. Numerically invert the conditional CDFs in the destination lab scale to

produce the imputed values.
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