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Abstract
This paper shows that the space of persistence diagrams has properties that
allow for the definition of probability measures which support expectations,
variances, percentiles and conditional probabilities. This provides a theoretical
basis for a statistical treatment of persistence diagrams, for example computing
sample averages and sample variances of persistence diagrams. We first prove
that the space of persistence diagrams with the Wasserstein metric is complete
and separable. We then prove a simple criterion for compactness in this space.
These facts allow us to show the existence of the standard statistical objects
needed to extend the theory of topological persistence to a much larger set of
applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A central idea in topological data analysis (TDA) is to start with point cloud data and compute
topological summaries of this data. These summaries should provide useful information about
the structure and geometry of the data. The majority of the literature in TDA has focused
on the mathematical properties captured by the summaries and the computational issues that
arise in obtaining these summaries [1–3]. This ignores a fundamental aspect of classical data
analysis—quantification of the uncertainty, noise and reproducibility of summaries computed
from data. In the framework of statistical inference, the objects of study are expectations,
variances and conditional probabilities of these topological summaries. The objective of our
paper is to formalize these objects and show that they are well defined.

In this paper, we focus on a commonly used topological summary, the persistence diagram
[1]. We develop the probability theory needed to define basic statistical objects such as
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means, variances and conditional probabilities on the space of persistence diagrams. The
following simple problem motivates the theory. Given persistence diagrams from one hundred
realizations of point cloud data obtained from one geometric object, what is the average
diagram and how much do these diagrams vary? The fundamental difficulty in evaluating
averages and variances on persistence diagrams is the lack of a clearly defined probability
space on persistence diagrams. Statistical inference requires probability spaces with clear
definitions of expectations and variances.

In this work, we start with the assumption that the point cloud data is generated by
a stochastic process with a well-defined probability distribution. An example would be
n points drawn independently and identically from the uniform distribution on a torus in
R3. Throughout this paper we will refer to a realization of the point cloud data as a point
sample—a point sample will typically consist of n points drawn from a geometric object with
a specified sampling distribution. We will show that the probability distribution on the point
sample induces a probability distribution on persistence diagrams with well-defined notions
of expectation, variance, percentiles and conditional probabilities. The key challenge in this
construction is to show that the space of persistence diagrams is a Polish space—a topological
space homeomorphic to a separable complete metric space [4]. We also provide a simple
characterization of compactness in the space of persistence diagrams. These two results allow
us to define Fréchet expectations and variances as well as conditional probabilities.

Most of the related work on stochastic aspects of topological summaries can be subdivided
into two categories: the study of random abstract simplicial complexes generated from
stochastic processes [5–10] and non-asymptotic bounds on the convergence or consistency of
topological summaries as the number of points increase [11–15]. Neither of these categories
are concerned with developing a framework to allow for statistical operations on topological
summaries such as persistence diagrams. An effort closer in spirit to our work is developed
in Chazal et al [16] where a distance metric between the empirical measure of a point sample
and a probability measure is defined and topological summaries of this metric are examined.
The key idea in this paper is that the metric between measures is more robust than standard
distance metrics used in the analysis of point samples. They do not attempt to define probability
measures on the topological summaries and define averages and variances.

The paper is structured as follows. In section 2, we provide an overview of persistent
homology and its properties and define the space of persistence diagrams. In section 3, we
prove that the space of persistence diagrams is complete and separable and provides a simple
criterion for compactness. Section 4 is devoted to proving existence of Fréchet expectations.
We finish by discussing our results in section 5.

2. Persistent homology

In this section, we provide a brief description of persistent homology and persistence diagrams
and define the space of persistence diagrams.

2.1. Sublevelset filtration

Let us consider a topological space X and a bounded continuous function f : X → R. Let
Xa = f −1(−∞, a] denote the sublevel set of f at the threshold a. Inclusions Xa ⊂ Xb,
a � b, induce homomorphisms of the homology groups of sublevel sets:

f a,b
� : H�(Xa) → H�(Xb),

for each dimension �. We call a value c ∈ R a homological critical value of f if there exists
� such that fc−δ,c

� is not an isomorphism for any δ > 0. We call f tame if it has only a finite
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number of homological critical values and if H�(Xa) are finitely generated for all a ∈ R and
all dimensions �. For the rest of the section, we assume that f is tame and bounded, and that
homology groups are defined over field coefficients, e.g. Z2.

2.2. Birth and death groups

Note that the assumption of tameness implies that the image Imfa−δ,b
� ⊂ H�(Xb) is independent

of δ > 0 if δ is sufficiently small. We denote such an image by Fa−,b
� . Now, consider the

following quotient group:

Ba
� = H�(Xa)/Fa−,a.

This group is the cokernel of fa−δ,a
� and it captures homology classes which did not exist in

sublevel sets preceding Xa . We call this group the �th birth group at Xa , and we say that a
homology class α ∈ H�(Xa) is born at Xa if it represents a nontrivial element [α] ∈ Ba

� , that
is, the canonical projection of α is not zero. The tameness assumption implies that there are
only a finite number of nontrivial birth groups.

Let us now consider the map

ga,b
� : Ba

� → H�(Xb)/Fa−,b,

defined as ga,b
� ([α]) = [

fa,b
� (α)

]
, where α ∈ H�(Xa), and the square brackets denote the images

under the corresponding canonical projections. We set ga,b
� = 0 if b = supx∈X f (x), so that

each homology class has finite persistence (as defined in section 2.3). The kernel of this
map, which we denote by Da,b

� , captures homology classes that were born at Xa but at Xb are
homologous to homology classes born before Xa . We call Da,b

� the death subgroup of Ba
� at Xb,

and we say that a homology class α ∈ H�(Xa) dies entering Xb if [α] ∈ Da,b
� but [α] /∈ Da,b−δ

�

for any δ > 0. We also call b a degree-r death value of Ba
� if rankDa,b

� − rankDa,b−δ
� = r > 0

for all sufficiently small δ > 0. Note that the sum of the degrees of all the death values of a
birth group is equal to its rank.

2.3. Persistence diagrams

If a homology class α is born at Xa and dies entering Xb we set b(α) = a, d(α) = b. The
persistence of α is the difference between the two values, pers(α) = d(α)−b(α). We represent
the births and deaths of �-dimensional homology classes by a multiset of points in R2, the �th
persistence diagram denoted by Dgm�(f ). For each nontrivial birth group Ba

� , the diagram
contains points xi = (a, bi), where bi are the death values of Ba

� , and the multiplicity of xi

is equal to the degree of the corresponding death value bi. Thus, we draw births along the
horizontal axis, deaths along the vertical axis and since deaths happen only after births, all
points lie above the diagonal, each point representing the group of homology classes that were
born and died at the corresponding values. The diagram also includes points on the diagonal.
We can think that such points correspond to trivial homology classes which are born and die
at every level. The persistence of a point x ∈ Dgm�(f ), denoted by pers(x), is the persistence
of the corresponding homology classes, and is equal to the horizontal (or vertical) distance
from x to the diagonal.

2.4. Wasserstein distance and the space of persistence diagrams

To measure similarities between persistent homology of two functions we use the following
definition of a distance between persistence diagrams, which are defined in the previous section
as finite multisets of points in a plane.
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Definition 1 (Wasserstein distance). The pth Wasserstein distance between two persistence
diagrams, d1 and d2, is defined as

Wp(d1, d2) =
(

inf
γ

∑
x∈d1

‖x − γ (x)‖p
∞

) 1
p

,

where γ ranges over all bijections from d1 to d2. The set of bijections is nonempty because of
the diagonal.

We can now regard a persistence diagram as an element of a metric space—the set of
all persistence diagrams endowed with the Wasserstein distance. Unfortunately, this space is
not complete, hence not appropriate for statistical inference. Indeed, let xn = (0, 2−n) ∈ R2,
n ∈ N, and let dn be the persistence diagram containing x1, . . . , xn (each with multiplicity 1).
Then

Wp(dn, dn+k) � 1

2n+k
,

so dn is Cauchy. It is clear, however, that the number of off-diagonal points in dn grows to ∞
as n → ∞, so this sequence cannot have a limit in our space. This example suggests that the
set of the diagrams forming the space be modified. Note that the space of all finite sequences
endowed with the lp metric is also not complete for a very similar reason. Hence, we extend
the definition of a persistence diagram as follows.

Definition 2. A generalized persistence diagram is a countable multiset of points in R2 along
with the diagonal � = {(x, y) ∈ R2 | x = y}, where each point on the diagonal has infinite
multiplicity.

The pth Wasserstein distance applies naturally to generalized persistence diagrams. We
omit the word ‘generalized’ for the rest of the paper, as these are the only diagrams that we
will consider.

While we do not have a notion of a norm of a persistence diagram, we can impose
a finiteness condition on the distance to a particular diagram. Let d∅ denote the empty
persistence diagram, that is, the persistence diagram containing only the diagonal. Note
that

pers(x) = 2 inf
y∈�

‖x − y‖∞,

and the infimum is attained at y = (
(x1+x2)

2 , (x1+x2)

2

)
, where x = (x1, x2). Therefore,

(Wp(d, d∅))p = 2−p
∑
x∈d

(pers(x))p.

Recall from [17] the following definition.

Definition 3 (Total persistence). The degree-p total persistence of a persistence diagram d is
defined as

Persp(d) =
∑
x∈d

(pers(x))p.

Thus, Persp(d) = 2p(Wp(d, d∅))p, and we see that requiring finiteness of the distance to
the empty diagram is equivalent to requiring finiteness of total persistence.

4
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Definition 4 (Space of persistence diagrams). We define the space of persistence diagrams
as

Dp = {d|Wp(d, d∅) < ∞} = {d|Persp(d) < ∞}.

In this paper, we consider only the case p � 1.
Let us point out that our definition of the pth Wasserstein distance is a modification

of the classical concept from probability theory which has applications in the theory of
optimal transportation [18–20] as well as in computer vision [21] and image retrieval [22].
Given probability measures μ, ν with finite pth moments on a metric space (X, ρ), the pth
Wasserstein distance between μ and ν is defined as follows:

Wp(μ, ν) =
(

inf
γ∈	(μ,ν)

∫
X×X

ρp(x, y) dγ (x, y)

) 1
p

,

where 	(μ, ν) is a collection of probability measures on X × X whose marginals on the first
and second factors are μ and ν, respectively. Requiring finiteness of the pth moment of a
probability measure μ is similar to requiring finiteness of the degree-p total persistence of a
diagram d, and means that for some x0 ∈ X we have∫

X

ρp(x0, x) dμ(x) < ∞.

The crucial difference between the Wasserstein distance for persistence diagrams and the
Wasserstein distance for probability measures is due to the unique role of the diagonal in
the former case. The result on completeness and separability of Dp proved in section 3.1 is
analogous to the classical result for the space of probability measure with finite pth moment
endowed with the Wasserstein distance [23, 24]. We have not considered the case p = ∞,
when the Wasserstein distance between persistence diagrams becomes the bottleneck distance,
but we suspect that our results will still hold.

We finish this section by stating an important stability result from [17] which shows that
under mild assumptions on X computing a persistence diagram of a tame Lipschitz functions
is a continuous map. Suppose that X is a metric space such that for any persistence diagram
d computed for a Lipschitz function f with the Lipschitz constant Lip(f ) � 1 we have
Persp(d) � CX, where CX is a constant that depends only on X. We say in this case that X

implies bounded degree-p total persistence.

Proposition 5 (Wasserstein stability). If X is a triangulable, compact metric space that
implies bounded degree-k total persistence for some k � 1 and f1, f2 : X → R are tame,
Lipschitz functions, then for all dimensions � and p � k we have

Wp(Dgm�(f1), Dgm�(f2)) � C
1
p ‖f1 − f2‖1− k

p∞ ,

where C = CX max{Lip(f1)
k, Lip(f2)

k}.

3. Properties of the space of persistence diagrams

Before we define expectations, variances and conditional probabilities for persistence diagrams
we need to prove that the space of persistence diagrams has particular properties. This space
needs to be a Polish space. We also need to understand what subspaces of Dp are compact.
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3.1. Completeness and separability of Dp

We begin by addressing the issue of completeness.

Theorem 6. Dp is complete in the metric Wp.

Let dn ∈ Dp be a Cauchy sequence. There are three main steps in the proof. First, we
show that dn converges ‘persistence-wise’ (we make this statement precise later) to a diagram
d∗. Second, we show that d∗ belongs to Dp. Third, we show that dn converges to d∗ in the
metric Wp.

Given a persistence diagram d ∈ Dp, we use |d| to denote the total multiplicity of d, that
is, the cardinal number of (off diagonal) points in d counting multiplicities. For α > 0 let
uα : Dp → Dp be defined by

x ∈ uα(d) ⇐⇒ x ∈ d and pers(x) � α.

The diagram uα(d) contains only those points in d that have persistence at least α; we call it
the α-upper part of d. Similarly, we define lα : Dp → Dp by

x ∈ lα(d) ⇐⇒ x ∈ d and pers(x) < α.

Thus, lα(d) is the α-lower part of d as it contains only those points in d that have persistence
less than α.

We have introduced the upper and lower parts of persistence diagrams in order to define
an analog of pointwise convergence. Since the α-upper part of a diagram has finite total
multiplicity for any α > 0, it is reasonable to consider convergence of the α-upper part of each
element of the sequence dn. If these converged to an element of Dp, the union of such elements
over all α would be a natural candidate for the limit of dn. Unfortunately, the situation is
more complicated due to convergence from below, when points in lα(dn) converge to points
with persistence α (see figure 1). The following lemma is critical as it shows that we can
control such behavior because points in dn start separating according to their persistence as n
increases.

Lemma 7 (Persistence-wise separation). Let α > 0. Then there exist Mα ∈ Z+ and δα ,
0 < δα < α, such that ∀δ in the interval [δα, α), eventually |uδ(dn)| = Mα; i.e. ∃Nδ > 0 such
that |uδ(dn)| = Mα whenever n > Nδ .

Proof. For each δ with 0 < δ < α let Mδ
sup = lim supn→∞ |uδ(dn)|, Mδ

inf =
lim infn→∞ |uδ(dn)|. Note that Mδ

sup < ∞; otherwise, we could find a subsequence dnk
such

that |uδ(dnk
)| > k so that Wp(dnk

, d∅) � k1/pδ/2 → ∞ as k → ∞. However, Wp(dn, d∅) is
bounded because dn is Cauchy.

If δ1 > δ2, |uδ1(dn)| � |uδ2(dn)|, so Mδ1
sup � Mδ2

sup and M
δ1
inf � M

δ2
inf . Therefore, the limits

limδ→α Mδ
sup = Msup and limδ→α Mδ

inf = Minf exist. Moreover, for arbitrary δ0 > 0 the range
of values of Mδ

sup and Mδ
inf for δ � δ0 is finite, so there is δα > 0 such that Msup = Mδ

sup and
Minf = Mδ

inf whenever δα � δ � α.
Suppose now that Minf < Msup. Take δ ∈ (δα, α), and let ε = δ − δα > 0. Let dns

and dni
be two subsequences such that |uδ(dns

)| = Msup and |uδα
(dni

)| = Minf . On one
hand, we can pick K > 0 such that Wp(dns

, dni
) < ε/4 ∀s, i > K . On the other hand,

|uδ(dns
)| > |uδα

(dni
)|, which implies that for any bijection γ : dns

→ dni
there is a point

x ∈ dns
such that pers(x) � δ, pers(γ (x)) < δα ⇒ ‖x − γ (x)‖∞ > ε/2. Therefore,

Wp(dns
, dni

) > ε/2, which is a contradiction. We then set Mα = Msup = Minf . �

6
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Figure 1. Example of convergence from below. Shown are the first three diagrams from the
sequence dn such that |dn| = 1, b(x) = 0 for all x ∈ dn and n ∈ N, and pers(x) = 1 − 2−n for
x ∈ dn. The sequence of off-diagonal points converges to a single point with persistence 1. It is
clear, however, that the 1-upper part of any dn is empty.

Given α > 0, let dα
n = uδα

(dn), dα
n contain points whose persistence (in the limit) is at

least α. We also denote dn,α = lδα
(dn).

Lemma 8. For any α > 0 the sequence dα
n is Cauchy.

Proof. Use lemma 7 to choose δα . Let δ ∈ (δα, α). Then by lemma 7 ∃N > 0 such
that ∀n > N , dn contains no points with persistence in the range [δα, δ). Let ε > 0,
ε0 = min {ε/2, (δ − δα)/8}. Increase N so that ∀n,m > N we have Wp(dn, dm) < ε0. Then,
there is a bijection γ : dn → dm such that( ∑

x∈dn

‖x − γ (x)‖p
∞

) 1
p

< 2ε0 � δ − δα

4
<

α

4
.

This inequality implies that γ maps points in dα
n to points in dα

m; therefore,

Wp

(
dα

n , dα
m

)
�

( ∑
x∈dα

n

‖x − γ (x)‖p
∞

) 1
p

< 2ε0 � ε.

�

The following lemma shows that for each persistence level α the sequence dα
n converges.

Lemma 9 (Persistence-wise convergence). For any α > 0 ∃ dα ∈ Dp such that
limn→∞ Wp(dα

n , dα) = 0; hence, |dα| = Mα and uα(dα) = dα . Moreover, dα1 ⊂ dα2 if
α1 > α2.

7
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Proof. Let α > 0, δ ∈ (δα, α), and let N > 0 be such that
∣∣dα

n

∣∣ = |uδ(dn)| = Mα for
all n > N . Let ε be such that 0 < ε < δ/2. Choose a subsequence dα

nk
, k ∈ N, such that

n1 > N and Wp

(
dα

nk
, dα

m

)
< 2−kε for m � nk . Let γk : dα

nk
→ dα

nk+1
be a bijection realizing the

Wasserstein distance Wp

(
dα

nk
, dα

nk+1

)
. Note that our choice of ε guarantees that each γk maps

off diagonal points to off diagonal points. Let x1, . . . , xMα be off-diagonal elements of dα
n1

.
We can now construct Mα sequences of points in a plane

{
x1

k

}
, . . . ,

{
x

mα

k

}
, k ∈ N, such that

xi
1 = xi , i = 1, . . . ,Mα , and xi

k+1 = γk

(
xi

k

)
. Note that each sequence xi

k is Cauchy. Indeed,
Wp

(
dα

nk
, dα

nk+1

)
< 2−kε implies ‖xi

k − xi
l ‖∞ < 21−kε for all l > k, i = 1, . . . ,Mα . Taking

limits we obtain a collection of points x̂1, . . . , x̂Mα . Let dα be the diagram whose off diagonal
elements are x̂1, . . . , x̂Mα (note that the multiplicity of a point x ∈ dα is equal to the number
of sequences whose limit is x). We now show that dα is the limit of dα

n and hence is unique,
which also implies that the collection of limits x̂1, . . . , x̂Mα does not depend on the choice of
bijections γk , subsequence dα

nk
, or ε.

Let ε0 > 0 and pick K > 0 such that ∀k > K we have ‖xi
k − x̂i‖ < 0.5ε0M

−1/p
α

and Wp(dnk
, dm) < ε0/2, m � nk . Then, we also have Wp

(
dα

m, dα
)

� Wp

(
dα

m, dα
nk

)
+

Wp

(
dα

nk
, dα

)
< ε0/2 + ε0/2 = ε0.

The last statement of the lemma follows from the fact that if α1 > α2, then points
x ∈ dα2

n such that x /∈ dα1
n have pers(x) < δα1 < α1. Indeed, repeating the above argument

with α = α2, N > 0 such that
∣∣dα1

n

∣∣ = |uδ1(dn)| = Mα1 and
∣∣dα2

n

∣∣ = |uδ2(dn)| = Mα2 , for all
n > N , where δ1 ∈ (δα1 , α1), δ2 ∈ (δα2 , α2), and ε > 0 such that ε < min {δ2/2, (δ1 − δα1)/2},
we see that each γk : dα

nk
→ dα

nk+1
maps off-diagonal points in dα1

nk
to off-diagonal points in

dα1
nk+1

. Therefore, the collection of limits x̂1, . . . , x̂Mα2 contains the limits that we obtain for the
case α = α1. �

Lemma 9 allows us to define d∗ = ∪α>0d
α . It is not difficult to show that d∗ ∈ Dp.

Lemma 10. d∗ ∈ Dp. Furthermore limα→0 Wp(dα, d∗) = 0.

Proof. First note that since dn is Cauchy, there is a constant C > 0 such that
∀n,Wp(dn, d∅) � C. Let α > 0, and let N > 0 be such that ∀n > N,Wp

(
dα, dα

n

)
< 1. Take

any such n; then

Wp(dα, d∅) � Wp

(
dα, dα

n

)
+ Wp

(
dα

n , d∅
)

� 1 + C.

Since the right-hand side is independent of α, we obtain Wp(d∗, d∅) � 1 + C.
Finally, note that

Wp(dα, d∗)p � Wp(lα(d∗), d∅)p =
∑
x∈d∗

pers(x)<α

(
pers(x)

2

)p

→ 0 as α → 0.

�

By the triangle inequality Wp(d∗, dn) � Wp(d∗, dα) + Wp

(
dα, dα

n

)
+ Wp

(
dα

n , dn

)
. The

completeness of Dp follows from lemmas 9–11.

Lemma 11. ∀ε > 0, ∃α0 > 0 such that ∀n ∈ N and 0 < α � α0 we have Wp(dn,α, d∅) < ε

and hence Wp

(
dα

n , dn

)
< ε.

Proof. We prove the lemma by contradiction. Suppose that ∃ε > 0 such that ∀α > 0
∃nα ∈ N with Wp(dnα,α, d∅) � ε. Take such an ε. Let {αi}i∈N be a sequence of positive values
monotonically decreasing to 0. Since αi → 0, nαi

→ ∞. Then, we can find a subsequence

8
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dni
such that Wp(dni ,αi

, d∅) � ε. Let 0 < δ < ε/4, and pick k ∈ N such that Wp(dnk
, dni

) < δ

for all i � k. Now pick j � k such that Wp(dnk,αi
, d∅) < δ for all i � j . This implies that

Wp(dni ,αi
, dnk,αj

) � Wp(dni ,αi
, d∅) − Wp(dnk,αj

, d∅) � ε − δ > 3δ.

We now show that this inequality leads to a contradiction. For i � j , let γi : dni
→ dnk

be a
bijection such that∑

x∈dni

‖x − γi(x)‖p
∞ < 2δp.

Then, we have the same inequality for the part of the sum over points x ∈ dni ,αi
, that is∑

x∈dni ,αi

‖x − γi(x)‖p
∞ =

∑
x∈dni ,αi

γi (x)∈dnk ,αj

‖x − γi(x)‖p
∞ +

∑
x∈dni ,αi

γi (x)/∈dnk ,αj

‖x − γi(x)‖p
∞ < 2δp.

Note that δαj
> 0, so let us pick l > j such that δαj

> 2αi for all i � l. Then, taking x ∈ dni ,αi

such that γi(x) /∈ dnk,αj
we see that

‖x − γi(x)‖∞ � |pers(x) − pers(γi(x))|
2

�
δαj

− αi

2
� αi

2
� pers(x)

2
,

where i � l. Let γ̂i : dni ,αi
→ dnk,αj

be the bijection such that γ̂i (x) = γi(x) if x ∈ dni ,αi

and γi(x) ∈ dnk,αj
, and points x ∈ dni ,αi

with γi(x) /∈ dnk,αj
as well as points y ∈ dnk,αj

with
γ −1(y) /∈ dni ,αi

get mapped to the diagonal. Then, for i � l we have

∑
x∈dni ,αi

‖x − γ̂i (x)‖p
∞ =

∑
x∈dni ,αi

γi (x)∈dnk ,αj

‖x − γi(x)‖p
∞ +

∑
x∈dni ,αi

γi (x)/∈dnk ,αj

(
pers(x)

2

)p

+
∑

y∈dnk ,αj

γ −1
i (y)/∈dni ,αi

(
pers(y)

2

)p

�
∑

x∈dni ,αi

γi (x)∈dnk ,αj

‖x − γi(x)‖p
∞ +

∑
x∈dni ,αi

γi (x)/∈dnk ,αj

‖x − γi(x)‖p
∞ + δp

< 2δp + δp = 3δp.

Therefore, Wp(dni ,αi
, dnk,αj

) < 3δ if i � l, which is a contradiction. �

We finish this section by proving separability of Dp.

Theorem 12. Dp is separable.

Proof. Let S ⊂ Dp be a set of persistence diagrams with finite total multiplicity and such
that their points have rational coordinates, that is,

S = {d ∈ Dp | |d| < ∞ & x ∈ Q2 ∀x ∈ d}.
If d ∈ Dp, then ∀ ε > 0 we can find α > 0 such that Wp(lα(d), d∅) < ε/2. Then, we have
Wp(d, uα(d)) � Wp(lα(d), d∅) < ε/2. Since Q2|uα(d)| is dense in R2|uα(d)|, we can find ds ∈ S

such that Wp(ds, uα(d)) < ε/2. Then, Wp(d, ds) � Wp(d, uα(d)) + Wp(ds, uα(d)) < ε,
which implies that S is dense.

Note that S = ∪∞
m=0Sm, where Sm = {d ∈ S | |d| = m}. Each Sm is isomorphic to subset

of Q2m and thus is countable. Hence, S is countable. �

9
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2nε 2(n + 1)ε 2(n + 2)ε

(2n + 1)ε

(2n + 3)ε

(2n + 5)ε

dn

dn+1

dn+2

(a) (b)

21−n
p ε

21−n+1
p ε

21−n+2
p ε

|dn| = 2n

|dn+1| = 2n+1

|dn+2| = 2n+2

0

0

Figure 2. (a) Illustration of three consecutive diagrams from the sequence in example 16. Each
point represents a separate diagram with a single off-diagonal point of multiplicity 1. (b) Illustration
of three consecutive diagrams from the sequence in example 19. Each point represents a separate
diagram with a single off-diagonal point whose multiplicity increases as its persistence decreases.

3.2. Compactness in Dp

Of a particular interest are subspaces of persistence diagrams which are compact. We will
characterize relatively compact subsets of persistence diagrams. This will require mild
conditions which we specify in this subsection.

Definition 13 (Totally bounded). A subset S of a metric space X is called totally bounded if
∀ε > 0 there exists a finite collection of open balls in X of radius ε whose union contains S.

Definition 14 (Relative compactness). A subset of a topological space is called relatively
compact if its closure is compact.

Proposition 15. In a complete metric space X a subset S is totally bounded iff it is relatively
compact iff every sequence in S has a subsequence convergent in X.

We first state some examples of sets of persistence diagrams that are not relatively
compact in Dp. We then define restrictions to a set S ⊂ Dp that ensure relative compactness
by eliminating such examples.

Example 16. Consider S ⊂ Dp consisting of diagrams with a single off-diagonal
point of multiplicity 1 and persistence exactly ε > 0. Take a sequence dn ∈ S such
that the birth of the off-diagonal point of dn is equal to 2nε (see figure 2(a)). We have
Wp(dn, dm) = ((ε/2)p + (ε/2)p)1/p = 21/p−1ε for all n �= m. Hence, dn does not have a
convergent subsequence. Thus, this set is not relatively compact.

We can eliminate this example by imposing one of the following two conditions.

10
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Definition 17 (Birth–death bounded). A set S ⊂ Dp is called birth–death bounded, if there
is a constant C > 0 such that ∀d ∈ S and ∀x ∈ d max{|b(x)|, |d(x)|} � C.

We denote bd(x) = max{|b(x)|, |d(x)|}.

Definition 18 (Off-diagonally birth–death bounded). A set S ⊂ Dp is called off-diagonally
birth–death bounded if ∀ε > 0 uε(S) is birth–death bounded.

These two conditions are not enough to ensure relative compactness as is shown in the
following example.

Example 19. Let ε > 0 and C > ε. Consider the set S = {d | Wp(d, d∅) � ε} ∩ {d |
b(x) � 0 & d(x) � C ∀x ∈ d}. For n ∈ N, let dn ∈ S be the diagram consisting of a single
off-diagonal point xn = (0, 21−n/pε) with multiplicity 2n (see figure 2(b)). It is easy to see that

for all n,m ∈ N, m > n, we have Wp(dn, dm) �
(
2m−1

(
1
2 21− m

p ε
)p) 1

p = 2−1/pε, as there will
be at least 2m−1 (counting multiplicities) points of persistence 21−m/pε paired to the diagonal.
Thus, no subsequence of dn can be Cauchy and S is not relatively compact.

To deal with the above case we introduce the following notion.

Definition 20. A set S ⊂ Dp is called uniform if for all ε > 0 there exists α > 0 such that
Wp(lα(d), d∅) � ε for all d ∈ S.

It turns out that excluding cases that fall under the above examples is enough to achieve
total boundedness.

Theorem 21. A set S ⊂ Dp is totally bounded if and only if it is bounded, off-diagonally
birth–death bounded and uniform.

Proof. First, we prove the necessary part.
Assume that S is totally bounded, and let ε > 0. Since S is totally bounded it is bounded.

Take 0 < δ < ε/4 and let Bn = B(dn, δ) for n = 1, . . . , N be a collection of balls of radius
δ which cover S. For each dn we can find a constant Cn such that bd(x) � Cn for x ∈ dn with
pers(x) � ε, and pers(x) � ε/4 for all x ∈ dn with bd(x) > Cn. Let C = max{C1, . . . , CN }.
Also, we can find α > 0 such that Wp(lα(dn), d∅) � ε/4 for n = 1, . . . , N .

We now prove by contradiction that S is off-diagonally birth–death bounded. Suppose
that d ∈ Bn and there is an x ∈ d such that pers(x) � ε and bd(x) > C + ε. Then, for any
bijection γ : d → dn we have ‖x−γ (x)‖∞ � ε/2−ε/8 which implies that Wp(d, dn) > ε/4.
This contradicts d ∈ Bn and implies C + ε as a birth–death bound for uε(S).

The proof of the necessity of S being uniform also follows from contradiction. Suppose
that d ∈ Bn and Wp(lα/2(d), d∅) > ε. Consider a bijection γ : d → dn and let db and dt be
maximal subdiagrams of lα/2(d) such that pers(γ (x)) < α for x ∈ db and pers(γ (x)) � α for
x ∈ dt . If Wp(db, d∅) > ε/2, then( ∑

x∈db

‖x − γ (x)‖p
∞

) 1
p

� Wp(db, γ (db)) � Wp(db, d∅) − Wp(γ (db), d∅) >
ε

2
− ε

4
,

where γ (db) denotes the subdiagram of dn which coincides with the image of db under γ .
Since db and dt do not have common off-diagonal points and lα/2(d) the union of db and dt

we have Wp(lα/2(d), d∅)p = Wp(db, d∅)p + Wp(dt , d∅)p. Thus, if Wp(db, d∅) � ε/2, then

11
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Wp(dt , d∅) > (εp − 2−pεp)
1
p � ε/2. Note also that if x ∈ dt , then ‖x − γ (x)‖∞ > α/4 �

pers(x)/2. Therefore,( ∑
x∈dt

‖x − γ (x)‖p
∞

) 1
p

>

( ∑
x∈dt

(
pers(x)

2

)p) 1
p

= Wp(dt , d∅) >
ε

2
.

Thus, for any bijection γ : d → dn we have( ∑
x∈d

‖x − γ (x)‖p
∞

) 1
p

>
ε

4
.

Therefore, Wp(d, dn) � ε/4 which contradicts d ∈ Bn. Consequently, Wp(lα/2(d), d∅) � ε

for all d ∈ S which implies that S is uniform.
We now prove sufficiency. Given ε > 0, let δ > 0 be such that Wp(lδ(d), d∅) < ε/2

∀d ∈ S. Take C such that for all d ∈ S and all x ∈ uδ(d) we have bd(x) � C. Since S
is bounded, we can also find a constant M ∈ N such that |uδ(d)| � M for all d ∈ S. Let
R ⊂ R2 be the subset of the plane corresponding to points whose birth and death are bounded
by C. Since R is a bounded subset of the plane, it is also totally bounded, and we can find
points x1, . . . , xN ∈ R such that for any x ∈ R we have ‖x − xn‖∞ � M−1/pε/2 for some xn.
Let d∗ be the diagram consisting of points xn, 1 � n � N , each with multiplicity M and let
d1, . . . , dL with L = NM+1 be all subdiagrams of d∗. If d ∈ S, we can find dn and a bijection
γ : uδ(d) → dn such that( ∑

x∈uδ(d)

‖x − γ (x)‖p
∞

) 1
p

<
ε

2
.

Let γ̄ : d → dn be the extension of γ to d obtained by mapping the points in lδ(d) to the
diagonal. Then,( ∑

x∈d

‖x − γ̄ (x)‖p
∞

) 1
p

=
( ∑

x∈uδ(d)

‖x − γ (x)‖p
∞ +

∑
x∈lδ (d)

‖x − γ̄ (x)‖p
∞

) 1
p

< 2
1
p
−1

ε � ε.

Therefore, Wp(d, dn) < ε. �

4. Existence of Fréchet expectations

In this section, we define expectations and variances on the space of persistence diagrams.
To this end we require a probability measure PD on (Dp,B(Dp)) where B(Dp) is the Borel
σ -algebra on Dp. Later in this section, we will relate the PD to the measure Pθ from which
the data was generated. We will require that the measure PD have a finite second moment

FPD
(d) =

∫
Dp

Wp(d, e)2 dPD(e) < ∞, ∀ d ∈ Dp.

4.1. Existence of Fréchet expectations

The idea of the Fréchet expectation and variance [25, 26] was to extend means and variances to
general metric spaces. In the case of persistence diagrams the following definition is relevant.

12
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Definition 22 (Fréchet expectation). Given a probability space (Dp,B(Dp),P), the quantity

VarP = inf
d∈Dp

[
FP(d) =

∫
Dp

Wp(d, e)2 dP(e) < ∞
]

is the Fréchet variance of P and the set at which the value is obtained

EP = {d | FP(d) = VarP}
is the Fréchet expectation, also called Fréchet mean.

Being the result of a minimization, the Fréchet mean may be non-unique or empty.
There are several results on the existence (and uniqueness) of the Fréchet mean for particular
manifolds and distributions [27, 28]. Typically, a local compactness condition as well as
convexity and curvature constraints on the metric space are required. It is not clear how to
directly apply the results developed in these papers to our setting.

We provide a proof for the existence of the Fréchet expectation under mild regularity
conditions on P specific for the space of persistence diagrams. The main idea here is to show
that if {dn} is a sequence which is not off-diagonally birth–death bounded or not uniform
but such that FP(dn) → VarP , then we can construct a subsequence dnk

and subdiagrams
d̄nk

⊂ dnk
such that FP(d̄nk

) � FP(dnk
) − ε for some fixed ε, which implies VarP < VarP , a

contradiction. The following lemma provides a crucial component of this idea.

Lemma 23. Let P be a finite measure on (Dp,B(Dp)) with a finite second moment and
compact support S ⊂ Dp, and let {dn} ⊂ Dp, n ∈ N, be a bounded sequence which is not
off-diagonally birth–death bounded or/and not uniform. Also let C1 > 1 and C2 > 1 be
bounds on S and dn, respectively, that is, Wp(d, d∅) � C1 and Wp(dn, d∅) � C2. Then, there
is δ > 0 (depending only on dn), a subsequence dnk

, k ∈ N, and subdiagrams d̄nk
such that∫

S

Wp(d̄nk
, d)2 dP(d) �

∫
S

Wp(dnk
, d)2 dP(d) − ε0P(S),

where

ε0 = (2
2
s − 1)(C1 + C2)

2−sδs, s = max {2, p}.

Proof. First, consider the case when dn is not off-diagonally birth–death bounded. Then,
there exists 0 < ε < 1 such that for any C > 0 and N > 0 there is n > N and x ∈ dn

satisfying pers(x) � ε and bd(x) � C. Take 0 < δ < ε/4 and choose C0 > 1 such that for
all d ∈ S we have bd(x) � C0 for x ∈ uδ(d). Set C3 = C0 + C1 + C2 + 1. Let dnk

be a
subsequence of dn such that each dnk

contains a point x with pers(x) � ε and bd(x) � C3, and
let d̄nk

be the subdiagram of dnk
obtained by removing all such points x. Take d ∈ S and let

γ : dnk
→ d be a bijection such that∑

x∈dnk

‖x − γ (x)‖p
∞ � Wp(dnk

, d)p + δp.

Note that Wp(dnk
, d) � Wp(dnk

, d∅) + Wp(d, d∅) � C1 + C2, so bd(γ (x)) > C0 for all
x ∈ dnk

with bd(x) � C3. Thus, γ (x) ∈ lδ(d) for x ∈ dnk
with bd(x) � C3. Hence

‖x − γ (x)‖∞ � pers(x)/2 − δ/2 > δ. Let γ̄ : d̄nk
→ d be the bijection obtained from γ by

pairing points γ (x) such that pers(x) � ε and bd(x) � C3 to the diagonal. Then, we have∑
x∈dnk

‖x − γ (x)‖p
∞ =

∑
x∈d̄nk

‖x − γ (x)‖p
∞ +

∑
x∈dnk

−d̄nk

‖x − γ (x)‖p
∞

�
∑
x∈d̄nk

‖x − γ (x)‖p
∞ + δp �

∑
x∈d̄nk

‖x − γ̄ (x)‖p
∞ + δp.

13
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Using the inequalities

(x + y)α � xα + yα,

where x, y � 0, α � 1, and

(x + y)β � xβ + (2β − 1)cβ−1y,

where x, y ∈ [0, c], β ∈ (0, 1), we obtain( ∑
x∈dnk

‖x − γ (x)‖p
∞

) 2
p

�
( ∑

x∈d̄nk

‖x − γ̄ (x)‖p
∞

) 2
p

+ ε0,

where

ε0 = (2
2
s − 1)(C1 + C2)

2−sδs, s = max {2, p}.
Taking the infima, we obtain

Wp(dnk
, d)2 � Wp(d̄nk

, d)2 + ε0.

Therefore, ∫
S

Wp(d̄nk
, d)2 dP(d) �

∫
S

Wp(dnk
, d)2 dP(d) − ε0P(S).

Now, suppose that dn is not uniform. Let ε > 0 be such that for any α > 0 and N > 0
there is n > N such that Wp(lα(dn), d∅) � ε. If necessary, decrease the δ from the previous
case so that 0 < δ < ε/4 and choose α0 such that Wp(lα0(d), d∅) � δ for all d ∈ S. Take
M � 1 and C > δ such that for all d ∈ S we have |uα0(d)| � M and pers(x) � C for
x ∈ d. Define f : [0, 1] → [0, 1] as f (x) = 1 − (1 − x)p. Note that f is a continuous,
monotonically increasing function and f (0) = 0, f (1) = 1. Set δ0 = f −1(M−1C−pδp), and
α1 = min {δ0α0,M

−1/pδ}. Let dnk
be a subsequence of dn such that Wp(lα1(dnk

), d∅) � ε,
k � 1, and let d̄nk

= uα1(dnk
). Take d ∈ S and let γ : dnk

→ d be a bijection such that∑
x∈dnk

‖x − γ (x)‖p
∞ � Wp(dnk

, d)p + δp.

Let γ̄ : d̄nk
→ d be the bijection obtained from γ by pairing points in γ (lα1(dnk

)) to the
diagonal. For convenience, let s0 = d̄nk

, s1 = {x ∈ dnk
| pers(x) < α1, pers(γ (x)) < α0},

s2 = {x ∈ dnk
| pers(x) < α1, pers(γ (x)) � α0}. Note that

∑
x∈s2

(
pers(x)

2

)p

� M
α

p

1

2p
� δp

2p
.

Therefore, ∑
x∈s1

(
pers(x)

2

)p

� εp − δp

2p
.

Consequently,

Wp(s1, d∅) − Wp(γ (s1), d∅) =
(∑

x∈s1

(
pers(x)

2

)p
) 1

p

−
(∑

x∈s1

(
pers(γ (x))

2

)p
) 1

p

� ε

(
1 −

(
δ

2ε

)p) 1
p

− δ � 2.5δ,

14
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and thus( ∑
x∈s1

‖x − γ (x)‖p
∞

) 1
p

� Wp(s1, γ (s1)) � Wp(s1, d∅) − Wp(γ (s1), d∅) � 2.5δ.

Also ∑
x∈s2

‖x − γ (x)‖p
∞ � 2−p

∑
x∈s2

(pers(γ (x)) − α1)
p,

and∑
x∈s2

(pers(γ (x)) − α1)
p =

∑
x∈s2

(
pers(γ (x))p − pers(γ (x))pf

(
α1

pers(γ (x))

))

�
∑
x∈s2

(
pers(γ (x))p − Cpf

(
α1

α0

))

�
∑
x∈s2

pers(γ (x))p − δp.

Recall that we chose α0 such that Wp(lα0(d), d∅) � δ. Therefore,

2−p
∑
x∈s1

pers(γ (x))p � Wp(lα0(d), d∅)p � δp.

We then have∑
x∈dnk

‖x − γ (x)‖p
∞ =

∑
x∈s0

‖x − γ (x)‖p
∞ +

∑
x∈s1

‖x − γ (x)‖p
∞ +

∑
x∈s2

‖x − γ (x)‖p
∞

�
∑
x∈s0

‖x − γ̄ (x)‖p
∞ + 2−p

∑
x∈s2

pers(γ (x))p + (2.5)pδp − 2−pδp

�
∑
x∈s0

‖x − γ̄ (x)‖p
∞ + 2−p

∑
x∈s1

pers(γ (x))p

+ 2−p
∑
x∈s2

pers(γ (x))p + ((2.5)p − 1 − 2−p)δp

�
∑
x∈d̄nk

‖x − γ̄ (x)‖p
∞ + δp.

As in the previous case, this implies that( ∑
x∈dnk

‖x − γ (x)‖p
∞

) 2
p

�
( ∑

x∈d̄nk

‖x − γ̄ (x)‖p
∞

) 2
p

+ ε0,

where

ε0 = (2
2
s − 1)(C1 + C2)

2−sδs, s = max {2, p}.
Therefore,

Wp(dnk
, d)2 � Wp(d̄nk

, d)2 + ε0,

and consequently∫
S

Wp(d̄nk
, d)2 dP(d) �

∫
S

Wp(dnk
, d)2 dP(d) − ε0P(S).

�
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We now can prove existence of the Fréchet expectation for probability measures with
compact support.

Theorem 24. Let P be a probability measure on (Dp,B(Dp)) with a finite second moment.
If P has compact support, then EP �= ∅.

Proof. Let S ⊂ Dp be the support of P and let {dn}∞n=1 be a sequence in Dp such that
FP(dn) → VarP . We show that {dn} is bounded, off-diagonally birth–death bounded and
uniform. By theorem 21 it is totally bounded. By proposition 15 {dn} has a subsequence
convergent in Dp.

First, assume that {dn} is not bounded. Then, wn = infd∈S Wp(dn, d) is not bounded.
Thus, as n → ∞ we obtain

FP(dn) =
∫

S

W 2
p(dn, d) dP(d) � w2

nP(S) → ∞,

which is a contradiction.
Now assume that {dn} is not off-diagonally birth–death bounded or not uniform. By

lemma 23, we have a subsequence dnk
and subdiagrams d̄nk

⊂ dnk
such that∫

S

Wp(d̄nk
, d)2 dP(d) �

∫
S

Wp(dnk
, d)2 dP(d) − ε0P(S).

Taking the infimum over k, we obtain VarP � VarP − ε0P(S), which is a contradiction. �

Requiring compactness of the support of P may be too restrictive. A less stringent
condition is that the distribution has a particular tail decay for which we need the following
definitions.

Definition 25. Let X be a Hausdorff topological space, and let � be a σ -algebra on X that
contains the topology of X. A measure μ on the measurable space (X, �) is called inner
regular, or tight, if ∀ε > 0 there exists a compact set S ⊂ X such that μ(X − S) < ε.

Definition 26. Let (X, ρ) be a metric space, and let � be a σ -algebra on X that contains the
topology of X. A measure μ on the measurable space (X, �) has rate of decay at infinity q if
for some (hence for all) x0 ∈ X there exist C > 0 and R > 0 such that for all r � R we have
μ(Br(x0)) � Cr−q , where Br(x0) = {x ∈ X | ρ(x, x0) � r}.

We will also need the following lemma.

Lemma 27. Let P be a tight probability measure on (Dp,B(Dp)) with the rate of decay
at infinity q > max {2, p}, and let {dn} ⊂ Dp, n ∈ N, be a bounded sequence. Then, for
any ε > 0 there are M ∈ N and a compact set S ⊂ Dp such that for any subsequence of
subdiagrams d̄nk

⊂ dnk
, k ∈ N, we have∫

Dp

Wp(d̄nk
, d)2 dP(d) <

∫
S∩BM(d∅)

Wp(d̄nk
, d)2 dP(d) +

ε

Ms−2
,

where s = max {2, p} and BM(d∅) = {d ∈ Dp|Wp(d, d∅) � M}. Moreover, P(S∩BM(d∅)) >

1 − ε/4.

Proof. Let C > 0 and R > 0 be such that P(Br(d∅)) � Cr−q , r � R. Take M ∈ N such
that M > R, Wp(dn, d∅) � M (and hence Wp(d̄nk

, d∅) � M), M−s < ε/(8C), and

(M + 1)s

Mq
<

ε

16C
and

∑
m�M

(2m + 3)s−1

(m + 1)q
<

ε

16C
.
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Denote

Bm,m+1(d∅) = Bm(d∅) − Bm+1(d∅).

We have ∫
BM(d∅)

Wp(d̄nk
, d)2 dP(d) �

∫
BM(d∅)

(
Wp(d̄nk

, d∅) + Wp(d∅, d)
)2

dP(d),

�
∫

BM(d∅)
(2Wp(d∅, d))2 dP(d).

Note that ∫
BM(d∅)

(
2Wp(d∅, d)

)2
dP(d) = 4

∑
m�M

∫
Bm,m+1(d∅)

Wp(d∅, d)2 dP(d)

� 4
∑
m�M

(m + 1)2(P(Bm(d∅)) − P(Bm+1(d∅))).

Denote the right hand side of the above expression by L. Then

L = 4
∑
m�M

((m + 1)2P(Bm(d∅)) − (m + 2)2P(Bm+1(d∅))) + 4
∑
m�M

(2m + 3)P(Bm+1(d∅)).

Finally,

L � 4C

⎛
⎝ (M + 1)2

Mq
+

∑
m�M

2m + 3

(m + 1)q

⎞
⎠ <

ε

2Ms−2
.

Now let S ⊂ Dp be a compact set such that P(Sc) < M−sε/8, where Sc = Dp − S.
Then, we have ∫

Sc∩BM(d∅)
Wp(d̄nk

, d)2 dP(d) �
∫

Sc∩BM(d∅)

(
Wp(d̄nk

, d∅) + Wp(d∅, d)
)2

dP(d)

� 4M2P(Sc ∩ BM(d∅)) <
ε

2Ms−2
.

Combining the two results, we obtain∫
Dp

Wp(d̄nk
, d)2 dP(d) �

∫
S∩BM(d∅)

Wp(d̄nk
, d)2 dP(d) +

∫
Sc∩BM(d∅)

Wp(d̄nk
, d)2 dP(d)

+
∫

BM(d∅)
Wp(d̄nk

, d)2 dP(d) <

∫
S∩BM(d∅)

Wp(d̄nk
, d)2 dP(d) +

ε

Ms−2
.

To prove the last statement of the lemma, note that P(S) > 1 − ε/8 and P(BM(d∅)) < ε/8.
Since P(S) � P(S ∩ BM(d∅)) + P(BM(d∅)), we obtain P(S ∩ BM(d∅)) > 1 − ε/4. �

Now we can prove the following result.

Theorem 28. Let P be a tight probability measure on (Dp,B(Dp)) with the rate of decay at
infinity q > max {2, p}. Then EP �= ∅.

Proof. Let {dn}∞n=1 be a sequence in Dp such that FP(dn) → VarP . We show that {dn}
is bounded, off-diagonally birth–death bounded and uniform. By theorem 21 it is totally
bounded. By proposition 15 {dn} has a subsequence convergent in Dp.
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First, assume that {dn} is not bounded. SinceP is tight, we can find a compact set S0 ⊂ Dp

such that P(S0) � 0.5. Then, wn = infd∈S0 Wp(dn, d) is not bounded. Thus, as n → ∞ we
obtain

FP(dn) =
∫

Dp

W 2
p(dn, d) dP(d) �

∫
S0

W 2
p(dn, d) dP(d) � w2

nP(S0) → ∞,

which is a contradiction.
Let us assume now that dn is not off-diagonally birth–death bounded or not uniform. Let

δ0 > 0 be the δ from lemma 23. Take ε > 0 such that ε < (2
2
s − 1)21−sδs

0(1 − ε/4). By
lemma 27 the inequality∫

Dp

Wp(d̄nk
, d)2 dP(d) <

∫
S∩BM(d∅)

Wp(d̄nk
, d)2 dP(d) +

ε

Ms−2

holds for the subsequences of subdiagrams d̄nk
from lemma 23. Now, by lemma 23 we have∫

S∩BM(d∅)
Wp(d̄nk

, d)2 dP(d) �
∫

S∩BM(d∅)
Wp(dnk

, d)2 dP(d) − ε0P(S ∩ BM(d∅)),

where

ε0 = (2
2
s − 1)22−sδs

0

Ms−2
.

By lemma 27 we have P(S ∩ BM(d∅)) > 1 − ε/4. Therefore,∫
Dp

Wp(d̄nk
, d)2 dP(d) �

∫
Dp

Wp(dnk
, d)2 dP(d) − ε0(1 − ε/4)

2
.

Taking the infimum over k, we obtain

VarP � VarP − ε0(1 − ε/4)

2
,

which results in a contradiction. �

4.2. The measure PD and conditional probabilities

The point of the previous section was to prove that for natural restrictions of a distribution of
persistence diagrams PD the expected diagram and variance over these diagrams are defined.
In this section, we first show how a measure on the point samples Pθ implies measure on
persistence diagrams. We then define joint and conditional measures P(D, θ) and P(θ | D),
respectively. We later discuss the relevance of these measures in inference.

From the perspective of a probabilist or statistician there is a stochastic process that
generates the point cloud data. For example, a family of distributions on the (p − 1)-
dimensional sphere in Rp can be the von Mises–Fisher distribution, as considered in [29]. This
distribution has a parametric form with parameters θ and recovers the uniform distribution for a
particular parameter setting. Our point cloud data may be drawn identically and independently
from the von Mises–Fisher distribution Fθ :

X1, . . . , Xn

iid∼ Fθ .

This results in a likelihood for the observed point cloud data Z ≡ {X1, . . . , Xn}
Lik(Z; θ) ≡ fθ (Z),

where fθ is the probability density function corresponding to the probability distribution
function Fθ .
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We start with the premise that the point cloud data is generated from a probability measure
so we have a probability space (X,B(X),Pθ ) where X is a subset of Rd (for example a torus),
B(X) is the Borel σ -algebra on X and Pθ is the probability measure parameterized by θ . The

observed point cloud data Z ≡ {X1, . . . , Xn}, where X1, . . . , Xn

iid∼ Pθ , can be regarded
as an element of the probability space (Xn,�n,Pn

θ ), where Xn = ∏n
i=1 X, and �n and Pn

θ

denote the σ -algebra and probability measure induced by the product structure, respectively.
Alternatively, Z can be regarded as a compact subset of X, and we express this formally by
defining a map hn : Xn → K(X), hn(X1, . . . , Xn) = {X1, . . . , Xn}, where K(X) denotes the
space of compact subsets of X endowed with the Hausdorff metric. Suppose now that we have a
(continuous) map ρ : K(X) → Lip(X), where Lip(X) denotes the space of Lipschitz functions
on X with the supremum norm. For example, we can take ρ(S)(x) = dS(x) = infy∈S ‖x − y‖,
the usual distance function. Another choice is to regard S ∈ K(X) as a measure (which in
the case of the point cloud data will be an empirical probability measure) and map S to the
distance function to this measure as defined in [16]. Composing these maps and taking the
persistence diagram of the resulting function, we thus obtain a map g : Xn → Dp. The map
g is measurable if for every A ∈ B(Dp) the inverse image

g−1(A) = {ω : g(ω) ∈ A} ∈ �n.

Assuming that g is measurable, we then have the induced measure PD on (Dp,B(Dp)) defined
by

PD(A) = Pn
θ (g−1(A)), for A ∈ B(Dp).

Note that if X is triangulable, compact and implies bounded degree-k total persistence, and if
ρ maps point cloud data to only tame functions with bounded Lipschitz constants, then the
Wasserstein stability result from section 2 shows that g is, in fact, continuous when p > k and
continuous maps between Borel spaces are measurable. Since measurability is a much weaker
condition than continuity for Borel spaces, we expect that the induced probability measure on
the space of persistence diagrams can be defined in many more general cases.

The probability measurePD constructed above is conditioned on the parameter θ . Suppose
that we have a prior distribution of θ given by the measure μ. Then, the joint probability
measure P(D, θ) is given by the product measure

P(D, θ) = PD × μ.

Bayes’ rule also gives us the conditional measure P(θ | D):

P(θ | D) ∝ PD × μ.

Thus, we have the basic building blocks for performing statistical inference on topological
summaries such as persistence diagrams. An interesting subtle point about the above
conditional probability is that it is not strictly Bayesian since we substitute the likelihood
Pθ with the probability of the topological summary PD—this violates the likelihood principle
[30]. This idea of a substitution likelihood goes back to Jeffreys [31] and a basic question in
TDA is what properties of Pθ are preserved by PD .

4.3. An example

Assume that we obtain m point samples from the object O1 (for example a torus) and n point
samples from an object O2 (a double torus). For each point sample we obtain persistence
diagrams resulting in two sets of diagrams {x1, . . . , xm} ∈ Dp for O1 and {y1, . . . , yn} ∈ Dp

for O2. We are also given a persistence diagram z that comes from either object but we do not
know which one; we would like to assign this diagram to one of the two objects. This is the
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problem of classification in statistical inference and machine learning. In the following we
outline how we can use the results in the previous sections to classify the persistence diagram
z. Given the two sets {x1, . . . , xm} and {y1, . . . , yn}, we can use a variation of kernel density
estimation [32, 33] to provide the following density estimates for diagrams corresponding to
the objects O1 and O2, respectively:

p̂(x|O1) = 1

mκτ

m∑
i=1

e−W 2
p(x,xi )/τ , p̂(x|O2) = 1

nκτ

n∑
i=1

e−W 2
p(x,yi )/τ ;

here, τ > 0 is the bandwidth parameter that controls the smoothness of the density, and κτ is
a normalizing constant. If we assume that the objects have prior probabilities π1 = Pr(O1)

and π2 = Pr(O2), we can use Bayes’ rule to compute the posterior probability of membership
in class one (the torus) given the diagram z, p̂(O1 | z) :

p̂(O1 | z) = p̂(z | O1)π1

p̂(z)
= p̂(z | O1)π1

p̂(z | O1)π1 + p̂(z | O2)π2
;

note that we do not need to compute the normalization constant κτ to compute the posterior
probability since κτ appears in both the numerator and denominator.

The point of this example is to illustrate that probability distributions on the space of
persistence diagrams can be used to make decisions on new observations. Placing persistence
diagrams on a probabilistic footing allows for the application of standard ideas and tools in
statistical inference including classification, and estimates of variation and means.

5. Discussion

We have shown that persistence diagrams form a space on which basic statistical objects such
as means, variances and conditional probabilities are well defined. This result is crucial for our
ability to perform statistical inference on persistence diagrams and provides a foundation for
further integration of TDA methods into the standard statistical framework. For example, we
can consider homological estimators based on the Fréchet mean of persistence diagrams, and
we might be able to quantify the uncertainty of such an estimator using the Fréchet variance.

Existence of conditional probabilities on persistence diagrams provides a basis for
topology-based parameter estimators. For example, consider a stochastic dynamical system
depending on a parameter θ . Suppose we can obtain samples from the attractors of this system.
Then, we can try to estimate the distribution of θ using persistence diagrams of these samples.

We would like to emphasize that our result does not depend on a particular procedure used
to compute persistence diagrams. Hence, we are free to choose the best application-dependent
procedure as long as the resulting map from the sample space to the space of persistence
diagrams is measurable (see section 4.2 for details).

While our result shows a theoretical possibility of performing rigorous statistical inference
on persistence diagrams there remain several issues to address. For example, the Fréchet
expectation is not unique due to peculiarities of the Wasserstein distance, which complicates
standard statistical procedures. Also, we do not yet have an algorithm for computing
the Fréchet mean of persistence diagrams. An algorithm for variance decomposition for
persistence diagrams was developed in [34] using the Wasserstein distance metric and
multidimensional scaling. The framework in this paper may provide a theoretical basis for this
procedure. It is also important to better understand the conditions required for measurability
of the map from the sample space to the space of persistence diagrams.
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Notes in Mathematics vol 1934) pp 371–7

21

http://www.arxiv.org/abs/0910.1649
http://dx.doi.org/10.1016/j.disc.2008.02.037
http://www.arxiv.org/abs/0912.3648
http://www.arxiv.org/abs/1009.4130v3
http://dx.doi.org/10.1007/s00454-008-9053-2
http://dx.doi.org/10.1137/090762932
http://dx.doi.org/10.1007/s00454-009-9144-8
http://www.arxiv.org/abs/1008.3572
http://hal.inria.fr/inria-00383685/
http://dx.doi.org/10.1007/s10208-010-9060-6
http://dx.doi.org/10.1109/34.192468
http://dx.doi.org/10.1023/A:1026543900054


Inverse Problems 27 (2011) 124007 Y Mileyko et al
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