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SUMMARY 
A single agent (an individual, expert or model) provides a decision maker with probabilistic 
information partially or completely describing the agent's opinion about a collection of 
uncertain quantities or events. This paper discusses ways in which the decision maker may 
model the agent's opinion to provide rules for updating his own probability for a related 
event or random quantity of particular interest. Concepts discussed include the relevance of 
the agent's information and experience, the accord between the agent and decision maker in 
terms of common or conflicting information and calibration of probability assessments. 
New theory develops and extends that of Genest and Schervish, requiring only a partial 
specification of the decision maker's prior over the agent's opinion. Several illustrative 
examples are developed. 
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1. INTRODUCTION 

Applied inference typically involves the use of information from a variety of sources 
that may be quite disparate in nature, including data from separate surveys, observa- 
tional or experimental studies, inferences from formal or informal statistical analyses 
used in different subareas of a problem by different investigators under possibly quite 
widely varying circumstances, and purely subjective judgments of ostensibly 
informed individuals, or experts. Problems of considerable practical importance to 
personal and corporate decision makers rely on the coherent and efficient 
combination and synthesis of such information sources, and this leads to the need for 
appropriate statistical methodology for such synthesis. Several researchers have 
written on approaches to various problems in this area, notably on the analysis of 
'expert' opinion and the assessment and combination of forecasts from collections of 
individuals and models (Dawid, 1987; French, 1980, 1985; Genest and Schervish, 
1985; Genest and Zidek, 1986; Lindley, 1983, 1985, 1988; Morris, 1983; Schervish, 
1984; West, 1984, 1988, 1992; Winkler, 1981). The general problem area includes 
more specific issues such as calibration and adjustment of subjective judgments 
(DeGroot and Fienberg, 1983; French, 1986; Lindley, 1982; Schervish, 1984), data 
and forecast aggregation (West and Harrison, 1989), group decision-making (Genest 
and Zidek (1986) and references therein, and West (1984)) and overlapping and 
dependent information sources (Lindley, 1988; Winkler, 1981). 

This paper describes new and general results for the analysis of agent opinion by a 
decision maker. The term 'agent' is used to denote any individual, group of 
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individuals acting collectively in their inferences, statistical (or other) model or 
generally any process by which uncertain inferences are generated. Such an agent 
provides inferences about uncertain quantities of interest to the decision maker. The 
problems of agent opinion analysis concern the assessment by the decision maker of 
inferences received from one or more agents and ways in which the decision maker 
may use such inferences in revising his beliefs about uncertain quantities of interest. 
Attention is restricted to a single agent, the development being based on generaliza- 
tion and extension of a result of Genest and Schervish (1985). 

Initially, attention is restricted to a single event. It is convenient to suppose that I 
am the decision maker. A fundamental concept in such problems is that any form of 
inferential information provided by the agent be viewed as data informing on the 
quantity of interest. Typical of models developed from this viewpoint are French 
(1980) and Lindley (1988), in which I have access to the agent's probability 
distribution for the event; denote the event by E, with complement E. In medical 
diagnosis, E may indicate the presence of a disease, with the agent an informed 
clinician or technician, or a diagnostic test. In other examples, such as time series fore- 
casting, E is an unrealized future outcome and the agent an informed forecaster or 
forecasting model. My prior probability is p = P[E]. The problem of agent opinion 
analysis may be summarized as follows: 

I am to learn the agent's probability forecast f for E and may use it in forming a 
revised view about E. How should I do this? 

Formally, I must determine my posterior probability pf= P [EIf]. In practice, this is 
only needed for the particularf observed, thus providing the solution to my problem 
in that particular case, but a general model requires that it be specified as a function of 
all possible values of f. 

Two distinct approaches to calculating the required posterior appear in the above 
references. Firstly, I could directly model pf as a function of f and of my prior 
probabilityp. For example, I could simply take a weighted averagepf = cof + (1 - )p 
and, consequently, P[Elf] = 1 - pf = c((1 -f) + (1- c)(1 -p). The weight co 
reflects my view about the relevance of the agent's forecast and the information on 
which it is based, and would depend on various features of the particular problem and 
past experience with the agent. If the agent has been successful in forecasting similar 
events in the past, giving eventual outcomes high probability, then I am likely to 
weight the agent's opinion highly. The second, alternative, approach has more in 
common with standard statistical modelling, withfbeing viewed as data informing on 
E. Bayes's theorem provides the required posterior probabilities; namely, for all f 
(0 Sf < 1), pf a p p(f|E) and 1 - pf oc (1 -p)p(f|E). Modelling is involved inthe 
terms p(flE) and p(flE), my subjective probability densities for the random 
quantity f (0 < f < 1), conditional on the occurrence or non-occurrence of E. 
Together withp, this provides one way of specifying my views about how the agent's 
stated probabilities relate to E, based on any information I have about the agent's 
performance in forecasting in the past with similar or related events, and the relevance 
of the agent's available information in the context of the current events. These 
densities may also depend on my prior probabilityp, relating the agent's probability 
to my own. 

Models of this sort are discussed by many of the earlier referenced authors (e.g. 
French, Lindley, Schervish, Winkler, West). They follow the usual prior-to-posterior 
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approach to computing the conditional probabilities p (Elf) and p (Elf) of the full 
joint distribution over E and f. The modelling focus is on the specification of the 
necessary conditional distributions for (f IE) and (f IE). Any model should allow 
the decision maker to express beliefs about the expertise, honesty and calibration of 
the agent, and about the relationships between the decision maker and the agent. The 
problems of assessing and quantifying suitable model forms are usually very difficult. 
See comments in Genest and Schervish (1985) and Lindley (1985, 1988) for a thorough 
discussion. Genest and Schervish (1985) recognized these difficulties and developed 
what may be referred to as a robust Bayesian approach based on a partial specification 
of the distribution of f and E. They proved a remarkable result that provides the 
starting point for development here. Their result is as follows. 

Theorem I (theorem 2.1 of Genest and Schervish (1985)). Suppose that I specify 
my joint prior distribution over {E, f } only partially, providing values of p = P[E] 
and my prior mean forf, namely ,u = E [f], and assume that the marginal distribution 
forf has full support [0, 1]. Then my posterior probabilitypf = P[Elf] has the form 
of a linear function of f, 

Pf = P + X(f- ), (1) 

for some constant X depending on p and ,u but not on f. 
This simple result must be interpreted with care. In particular, it does not imply that 

pf is of the stated form for any particular joint prior that happens to be consistent with 
the given values of p and ,u (as simple examples will show). Rather, the interpretation 
reads as follows: for any particular joint distribution let g(f) = P[Elf] be the 
deducible conditional probability for E, for any f in [0, 1]. For many such joint 
distributions, g(f) will be a complicated non-linear function of f, as in Lindley's 
models (Lindley (1988), for example). Though not explicitly noted in their paper, the 
result of Genest and Schervish (1985) takes account of uncertainty about the 
functional form g( ) that results from the partial specification of the joint model. 
Without further specifications, my posterior probability pf is the expectation, 
conditional onf, of g(f), namely pf = E[g(f) If], where the expectation is now with 
respect to my posterior distribution of the function g( ) given f. It transpires, as 
proven indirectly by Genest and Schervish, that this posterior expectation, over all 
possible functional forms consistent with a joint prior having the stated values of p 
and ,u, is simply a linear function. What the result does not provide is the value of the 
linear coefficient X. 

This result, remarkable for its robustness and simplicity, is far reaching. It is 
reinterpreted and illustrated later and extended to problems in which the agent 
provides collections of probabilities for events related to E, such as discrete 
distribution functions for related variables. Further extensions provide novel 
updating results for problems in which the event E is replaced by a (discrete or) 
continuous random quantity, and the agent provides information partially or 
completely describing his distribution for that, or other, related random quantities. 

2. MODELLING AGENT OPINION 

In the Genest and Schervish result summarized in theorem 1, consider the choice of 
the linear coefficient X. Genest and Schervish note that I may choose X by directly 
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assessing pf at one particular value of f, requiring that I decide, in advance, on my 
posterior probability were I to learn that the agent's took that particular value. This is 
perhaps most easily considered by takingfto the extreme of 0 or 1, considering how I 
would react were I to learn that the agent actually believed in E or E. At f= 1, p, = 
p + X(1 - ,u). Fixingpl implies X = (Pi -p)/(l - ,u). Similarly, X = (p -po)/p. The full 
support assumption for my prior for f implies that ,u lies strictly between 0 and 1, so 
these values are well defined. Also, the argument can be followed by using any other 
two values off, such as values close to, though not necessarily equal to, 0 and 1 (i.e. p, 
and PI for small positive e), to determine the result. If p and ,u are specified, direct 
assessment of both po and Pi provides a coherency check, calculating X in two 
different ways. A practically important point, not noted by Genest and Schervish, is 
that I may feel it easier to assess directly my responses po and Pi to extreme agent 
probabilities (or top, andp, -p for small positive e) than to assess the prior expectation 
A. If this is so (as I believe is often the case), then the problem can be reformulated, as 
follows. 

Define probabilities (x and 3 via 

cX = P, = P[EIf= 1], 2 
1 = 1 -Po = P[EIf=0]. (2) 

Suppose that c( and 1 are specified directly. It is easily deduced that ,u = 
(P -Po)/(PI -Po) = (p + 13 - 1)/(a + 13 - 1), and X = P, - po = c( + 13- 1. As a 
result, the updating equation (1) may be rewritten as follows. 

Corollary 1. My posterior probability has the alternative representation 

pf = cxf + 0 - 0)( -f) - (3) 
Genest and Schervish require p, ,u and some means of determining X, whereas 

equation (3) requires only the probabilities c( and 1. Furthermore, since p = E [pf], 
the expectation being with respect to my prior for f, then p = ciA, + (1A-)(1 -). 
Given p, c( and 1, this relation allows ,u to be determined. 

More generally, Genest and Schervish prove a similar result to the effect that, given 
only p and the expectation ,u = E [r(f)] for a known and bounded function 7r(f) of 
the random quantityf, then, again, pf = p + X {7r(f) - AI for some constant X (not 
necessarily the same as that above). This has an obvious application to cases in which I 
may initially transformf, using historical data on observed events and the associated 
agent forecasts to (frequency-) recalibrate f (e.g. French (1986) and West and 
Mortera (1987); see also the comments in Section 3). 7r(f) is then a specified 
(frequency) recalibration function, and the updating formula may be rewritten as Pf 
= p + X{ix(f)-A4 = (r(f) + (1-13){1- 7r(f)}, where now u = E[7r(f)], cx = 
P [E ir(f) = 1 ] and 1 = P [F ir(f) = 0]. My posterior probability is the prior value p 
corrected by a term proportional to ir(f) - A, the difference between the observed 
value of ir(f) and its prior expectation ,u. The coefficient X = c( +1 - 1 takes larger 
values when c( +13 is large. If ir(f) exceeds expectation, the agent viewing the event 
more likely than expected, my probability increases if, and only if, (x > 1 - 1 or, 
naturally enough, P [E f = 1] > P [E f= 0]. Otherwise, it decreases. 

Here is an example in which the above ingredients ,u, c( and 1 are assessed through 
reference to information available in the context of the problem. In particular, this 
involves consideration of relevant information that the agent and I have in common, 
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and of the particular features of a problem about which the agent's information is 
deemed informative. 

Example 1. Let E indicate the occurrence of a disease in a given patient, E 
indicating absence of the disease. Suppose a particular symptom, or class of 
symptoms or test results, is used in diagnosis; occurrence of the symptoms, denoted 
by S, indicates that the patient belongs to a high risk group, whereas S indicates 
membership of a low risk group. I determine that the patient belongs to a popula- 
tion among which the disease is evidenced with chances P[EISI = 0.35 and 
P[EI S] = 0.05; thus, given the risk group classification S or S, residual uncertainty is 
described by the rates of 35% for high risk patients and 5%o for low risk patients. 
Suppose further that the symptoms are evident in 20% of the population, so that 
P[S] = 0.2 and P[S] = 0.8. My prior for E is now implicitly determined; it follows 
immediately that p = 0.35 x 0.2 + 0.05 x 0.8 = 0. 11, an overall disease incidence 
rate of 11 0Wo. Were I to learn the risk group classification, this would update to either 
0.35 (under S) or 0.05 (under 5). This risk group classification represents ideal, but 
currently unattainable, information. 

I am to consult the agent, an informed clinician, whose judgments I believe are also 
largely based on S, and I assume that his views are relevant only in so far as they 
provide me with additional information about S. Thus I assume that E given S (or 5) is 
conditionally independent of f, or P [E I S, f] = P [E I S] = 0. 3 5 and P [E I S, f] = 
PD [EI S] = 0.05, for allf. I can then write 

pf = P[EfS,1J P[SIf] + P[EYS,f] P[IYf] = 0.35P[SIf] + 0.05P[SIf]. (4) 

Following discussion with the agent, I hold the view that his experience is with similar 
patients but from a more disease-prone subset of the population, the incidence rates 
being 60%o for high risk (S) individuals and 5%7o for low risk (S). With the agent's 
probabilities denoted by PA[ I (and restricting the use of unsubscripted P[ ] for my 
own probabilities), this means that PA[EIS] = 0.6 and PA[EIN5] = 0.05. Thus, 
because of different information, I believe the agent to rather overestimate the 
strength of S as an indicator of the disease for the current patient, although his 
probabilities are acceptable for patients in the population subset of his experience. 
Finally, the agent agrees with me on the incidence rate of S, PA[S] = P[S] = 0.2. 

Thus I expect the agent to hold the view that the incidence rate of the disease is 

PA[EIS] PA[S] + PA[E S] PA[S] = 0.6 x 0.2 + 0.05 x 0.8 = 0.16. 

Assuming that the agent's probability assessment will honestly and accurately reflect 
his experience and information (with no need for recalibration), this is my expected 
value for the forecast, i = 0.16. 

Consider now my assessment of a = P[E If= 1]. From equation (4), substituting 
f= 1 leads to a = 0.35 P[Slf= 1] + 0.05 P[SIf= 1]. Since we agree on the prior 
probability of S, P[S] = PA[S] = 0.2, and since {f= 1} is equivalent to the 
occurrence E in the agent's opinion, then, applying Bayes's theorem, P[S If= 1] 
o 0.2 PA[EISJ = 0.2 x 0.6 = 0.12 and, similarly, P[Sff=1] oc.8 PA[EISJ = 0.8 
x 0.05 = 0.04; after normalization, P[S If= 1] = 0.75. Applying the same argument 
to (S If= 0) leads directly to P [S If = 0] = 0.095. Substituting these values in equation 
(4) then gives a = Pi = 0.35 x 0.75 + 0.05 x 0.25 = 0.275 and 3 = 1 - po = 
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1 - (0.35 x 0.095 + 0.05 x 0.905) = 0.922. (As a consistency check, equation (3) gives 
p = PI, = 0.275 x 0.16 + 0.078 x 0.84 = 0.11, as required.) 

Then, on learning the agent's prediction f for disease of the patient, my updated 
view is given by corollary 1 aspf = 0.195f + 0.08. The extremes arepo = 0.08 if the 
agent perfectly classifies the patient as healthy and Pi = 0.275 if he classifies the 
patient as diseased. (These probabilities are now marginal with respect to the risk 
group classification S (S); were S, or S, to become known, the agent's forecast would 
be irrelevant under the above assumptions, my posterior probability being given by 
0.35 to 0.05 respectively.) 

In a second example, and in contrast with the first, ,u and X are directly assessed by 
reference to my opinion about the agent's likely information sources. 

Example 2. Suppose that I model E as one of a sequence of Bernouilli trials 
with uncertain success probability 0, and my prior distribution for 0 is beta, 
0 - ? [cp; c(1 -p)], with meanp and variancep(1 - p)/(c + 1), for some c > 0. Then 
E[P[EJO]] = E[6] = p. Were I to learn 0, then the agent's opinion would be 
irrelevant. His views are of interest only in so far as they provide information about 
the success probability 0. 

Suppose that I further believe the agent's opinion to be largely based on his having 
observed a sequence of such trials in the past, independent of information in my 
experience, the (uncertain) number of trials being k, and having some (uncertain) 
number of successes y. Then, if I assume that the effects of any other agent 
information are negligible, standard Bayesian analysis of Bernouilli trials data leads 
me to believe the agent's prior for 0 to be approximately beta, 0 [y; k-y]. Hence I 
hold the view that the agent's forecast for E will bef = PA[E] = E[PA[E]1]] = y/k. 
Suppose that I further believe this experience to be similar to my own in the sense that 

= E[f] = p. 
Under the above assumption that our information sets are independent, full 

knowledge of the agent's data {y, k } would lead me to update my prior for 6 directly 
to the posterior (6 Iy, k) - ? [cp+y; c(1 -p) + k - y], or [cp + kf; c(1 -p) + 
k(1 -f)], having posterior mean P[EIy, k] = E[6 Iy, k] = (cp + kf)/(c + k). Of 
course, I learn onlyf, noty and k; taking expectations with respect to my beliefs about 
the uncertain number of trials k in the agent's experience, and noting that p = t,u it 
follows that pf = p + X(f- ,u) where X = E [k/(c + k) If]. Generally, knowledge of f 
would be uninformative about the precision k of the agent's information, so that X = 
E [k/(c + k)], the expectation being with respect to my prior for k. If I knew k, then X 
simply reflects the precision of the agent's information relative to my own. If I believe 
the agent to have a large amount of experience (in terms of independent trials) relative 
to my own prior information, then X will be near 1. If, however, I have rather precise 
prior information about 0 with c large relative to my prior expectation of k, then X is 
small and the agent's opinion only marginally affects my view of E. The agent's 
opinion is naturally more highly relevant in cases when I am vague about 0. 

3. GENERAL COMMENTS 

Before proceeding to develop and extend these basic results, some discussion of 
general issues is given in this simple framework. 

Opinion models should allow the expression of a range of (my) beliefs about the 
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relevance of the agent's information and experience, and how such experience relates 
to the current problem of interest. This will be judged on the basis of information 
about past experience with similar and related forecasting problems, consideration of 
just how closely the agent's past relates to the present context and judgments about 
the extent and nature of relevant information that we share. Generally, I should more 
highly value the opinions of an agent whose past accords closely with the environment 
and context of the current problem than otherwise. In medical diagnosis, for example, 
I will judge such accord on the basis of past experience of the agent in diagnosis with 
similar patients having similar symptoms. If the current case is similar in these terms 
to cases in the past experience of the agent, and the agent is experienced in such 
diagnoses, then I will tend to weight the agent's forecast positively. However, it may 
be that the current problem differs, in my opinion, from such past experiences of the 
agent. For example, I may have additional relevant data, such as other test results and 
background clinical information, that I believe the agent does not share. Under such 
circumstances, the agent's opinion should have less influence on my posterior views. 
The construction through probabilities c( and 3 allows flexibility here, as illustrated in 
examples 1 and 2 earlier. 

Decision makers must consider potential overstatement or understatement of 
probabilities by agents, whether due to actual biases, attempts to mislead or persuade, 
perceptual problems or inexperience in probability assessment. These issues are really 
separate from those concerning subject matter relevance, involving notions of 
calibration. Schervish (1984) remarks on this point, stating that 

'One problem . .. is that of separating the judgement of calibration for an expert from a 
determination of the dependence between the expert and the decision maker, or more 
appropriately, the information held in common by the decision maker and expert'. 

Of the various notions of calibration, the empirical concept of frequency calibration 
(e.g. DeGroot and Fienberg (1983) and French (1986)) is perhaps the most widely 
discussed. Consider the diagnosis example. Suppose that the agent has past experience 
in assessing similar events-diagnosing this particular disease-under similar 
conditions over a (long) period of time. Suppose also that, for all probabilitiesf (or, at 
least, all those ever stated by the agent), the relative frequency of cases on which the 
events occurred is some number 7r(f). Then the agent is said to be frequency 
calibrated with respect to such events if 7r(f) =f. Otherwise, the agent is mis- 
calibrated. Of what relevance is this in the agent opinion problem or, more generally, 
to a Bayesian decision maker? Well, 

(a) if I accept that the event is suitably similar to events in the past experience of 
the agent and that his probability assessment is similarly obtained (with no 
attempt to misquote f to mislead, for example) and 

(b) if I know 7r(f) for allf, 

then, on learningf, I should transform directly to the recalibrated probability 7r(f). 
This has been mentioned in Section 2. In practice, I may be prepared to assume that (a) 
applies, at least approximately, to a past sequence of events, and then 7r(f) can be 
approximately assessed or estimated on the basis of the observed forecasts and 
outcomes over such a past sequence. Viewed as a function off, 7r(f) provides a (non- 
linear and possibly non-monotonic) map from the stated forecast to a calibrated scale; 
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7r(f) is a (frequency) recalibration function (e.g. West and Mortera (1987)). Although 
the requirements in (a) may be difficult to satisfy in any given problem, it is reasonable 
to attempt to recalibrate forecasts based on any relevant historical information about 
performance and also to account for any anticipated biases, such as over extreme 
assessments of probabilities due to inexperience in elicitation, and so forth. This ties 
in directly with the usual notion of frequency calibration, quite separately from issues 
of subject matter expertise. The recalibrated probability 7r(f) is now to be used in 
place off in updating my view about E, and the more general result of Genest and 
Schervish applies. 

The model allows for extreme agent opinion, permitting and appropriately accom- 
modating zero probabilities. The agent may state eitherf= 0 orf= 1 (perhaps follow- 
ing recalibration). Such statements are made in practice, and my reactions to them 
depend on what I believe to lie behind such extreme judgments. Some possibilities (not 
exhaustive), each requiring a different response, are that 

(a) the agent may know the outcome, or believe (perhaps mistakenly) the same, 
(b) the agent may be constrained to provide 0-1 forecasts, as with witnesses in 

certain courts, or be reluctant or unable to consider more refined judgments 
on a probability scale, or 

(c) 0 or 1 may result from probability assessment on a crude numerical scale, 
probabilities being quoted to the first decimal place. 

The resulting extreme posterior probabilities are c( and 1 - 3. Dawid (1987) discusses 
related ideas. There the agent is a witness in court and E corresponds to guilt of a 
defendant, E denoting innocence. f= 1 is the stated belief of the agent that the 
defendant is guilty,f= 0 that the defendant is innocent. Dawid is concerned with cases 
in which the witness holds a degenerate opinion, stating either f= 0 or f= 1. 

On the subject of expertise, suppose that I believe the agent to be an expert in the 
area under study, the current problem relating closely to those in his experience. 
Suppose also that he has all the relevant information available to me and has appro- 
priately utilized it in forming inferential statements. It is then appropriate to set 
x= : = 1, defining the notion of personal judgment as to what makes the agent a 

subject matter expert. As a consequence, my posterior probability is pf = 7r(f), the 
recalibrated version off. If, in addition, he is expert in probability assessment (and 
honest etc.) then 7r(f) =f and I simply accept the stated opinion. This agrees with the 
definition of probability calibration in Lindley (1982), discussed by Schervish (1984). 
Notice how the two concepts, expertise and calibration, are neatly separated in the 
updating; the former is measured by c( and f, and corresponds to the linear form of pf 
as a function of 7r(f); the latter is responsible for any non-linearity as a function off. 
Of course, I cannot simultaneously view two or more agents to be probability 
(re)calibrated, in this sense, unless I believe that their probabilities will coincide; any 
model for more than one agent should recognize this. 

Finally, there is an obvious opportunity for formal learning about the probabilities 
(x and f, and the calibration function 7r(f), if relevant past data are available. 7r(f) 
should model any non-linearity of pf as a function of f. Otherwise, pf will be a linear 
function off. West and Mortera (1987) consider issues related to model-based assess- 
ment of 7r(f) in forecasting binary time series. There E represents the outcome of a 
single observation in a time series, and the approach is taken in the context of a subject 
matter expert agent, corresponding to c( = f = 1. Thus, given a sequence of outcomes 
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and forecasts, 7r(f) may be estimated. Given information about the probability 
calibration characteristics of an agent, an estimated calibration function may then be 
assumed in the general problem with ca and f3 not 1, representing limits on the agent's 
subject matter expertise. With suitable data in any specific problem, a and f may be 
estimated too, although this is not explicitly considered further here. Related issues 
are developed in West (1992). 

4. DISCRETE AGENT PROBABILITIES 

Suppose now that the agent's opinion comes in the form of n) 1 probabilities for 
exclusive events possibly related to E, denoted by El, . . ., En. The sample spaces of E 
and the Ei may be quite different. Define E, 1 = (U n= 1Ei) so that the events El, . 
E, + form a partition. The agents states probabilitiesfi for Ei (i = 1, . ., n), withf, + 
- 1- i=lJi 

Example 3. As a specific example that provides context and is of major interest 
later, let Y be a real-valued random quantity and E be the event { Y < y } for some 
known number y. For a given partition of the real line defined by intervals [qi- 1, qi) 
(i= 1, . . ., n + 1), for some known numbers qo= - oo < q <... <q < qn+l = 00, 

define with E, = {qi? l < Y < qi} . Thenfiis the agent's probability that Ye [qi- 1, qi). 
If the agent is assumed to have a continuous distribution for Y, then the qi provide a 
collection of quantiles under that distribution, a partial specification. 

Generally, f = (fi, . . ., fn) is viewed by me, the decision maker, as the realized 
values of random quantities in the simplex Sn = {f: 0 < f S 1, P= lfi < 1 }. Following 
Genest and Schervish (1985), suppose that I specify a model for E and f jointly only 
partially, providing only the values p = P [E] and the prior expectations y = E [f], an n- 
vector in Sn. As with Genest and Schervish (1985), these prior expectations are 
assumed consistent with my full joint distribution, and though only a partial 
specification of this joint distribution turn out to be sufficient to determine the form 
of my posterior probability pf = P[E I f] as a function of f. The derivation of this key 
result is based on results in Genest and Schervish (1985), involving only a very minor 
change to their theorem 3.2. The key mathematical ingredients are provided in lemma 
1 below, and the import of the result in theorem 2. Although the mathematics of the 
results is essentially just that of Genest and Schervish, the statistical meaning of the 
results is rather different. Genest and Schervish are concerned with n agents each 
providing a single probability for the common event A; we are concerned with a single 
agent providing n probabilities for exclusive events related to E. 

Lemma 1. Let Sn be the simplex Sn = {f: 0 < fi < 1, 1,n lfi < 1}. Let 1, be a fixed 
vector in Sn, and let Ayi denote all n-dimensional distribution functions G with support 
Sn and having mean vector ,u. If k is a real-valued Lebesgue measurable function on Sn 
such that 

k(f) dG(f) = p for all f e Art, 
Sn 

then k(f) = p + EIP= I Xi(fi - ,ui) for some real numbers Xi, i= 1,..., n. 
Proof. The result is essentially as in lemma 3.1 in Genest and Schervish, except 

that the support here is Sn and not [0, iqn. Clearly, Sn C [0, in, so the proof from 
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Genest and Schervish (1985) should apply to this restricted space. In their conclusion, 
Genest and Schervish also point out that their lemmas and theorems apply equally 
well to restricted spaces. All that is needed therefore is to check that the proof of 
lemma 3.1 in Genest and Schervish (1985) applies with the restriction. This is easily 
seen to be the case. Their result applies for f defined on the n-dimensional unit cube, 
and we are simply restricting attention to those having zero mass outside the n- 
dimensional simplex Sn. Since Genest and Schervish (1985) do not rely on the 
functions having non-zero support over the entire n-dimensional cube, it only remains 
to show that the restricted space is non-empty. Dirichlet distributions are obvious 
examples that satisfy the requirements of their theorem proof, and the result holds. 

Using this lemma, the following result is immediate and is analogous to theorem 3.2 
of Genest and Schervish (1985). 

Theorem 2 (application of Genest and Schervish (1985)). With initial specifica- 
tionsp = P [E] and it = E [f ] consistent with a complete joint distribution for f and E, 
and assuming that the distribution of f has support S,, my posterior probabilitypf = 
P [E I f] has the form 

n 
Pf = P+ XAi(fi - ii) 

i=1 

for some Xi (i = 1, . ., n), depending onp and i but not on f. 

The posterior probability is thus a linear combination of p and the agent's 
probabilities, with a weight Xi on the agent's probabilityfi. These weights determine 
the extent and nature of the effect of the agent's views on mine. Their values remain 
unknown until further features of my distribution over f and E are specified. The 
following result provides reinterpretation and a route to such a specification. 

Theorem 3. In the framework of theorem 2, the posterior pf may be written as 

n+I 

Pf ZE .fi 
i=l1 

where HI, ..., In+I are the conditional probabilities Hi = P [Elfi = 1] (i= 1, . 
n + 1). 

Proof. Writing 8 = En= I Xi i, we havepf = p - 6 + En 1I Xfi. Now, for i= 1,.. 
n, let ei be the vector ei = (0, . ., 0, 1, 0, . . ., 0) where the unit element is in the ith 
position. Then f = ei if the agent is of the opinion that Ei holds, so thatfi = 1 andfj = 0 
for i * j. Defining probabilities Hi = P[EI f = ei] = P[Elif= 1], it follows that, for 
each i= 1, . ., n,1 i = p*(ei) = p - a + Xi orXA = Hi - (p - 3). Also, f = O implies 
that the agent believes En + 1 to hold so that HIn + 1 = p *(O) = p - 6. Then, for i = 1, . . .. 
n, Xi = HI - I,n + I. Substituting these expressions for the Xi in the formula for pf and 
replacing p - a with lIn + 1 leads to 

pf= IIfi + HIn+I (1 Z fi) 

and the result follows. 
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The result shows how the weights Xi, determining my posterior probability, may be 
related to the extreme probabilities Hi that I would adopt were I to learn that the agent 
believed one of the events Ei to hold with probability 1. Discussion of this repre- 
sentation is given below, in application and extension to problems where E is just one 
of many events defining the decision maker's distribution function for an uncertain 
quantity, and the Ei similarly relate to a distribution function of the agent for a related 
random quantity. 

5. AGENT DISTRIBUTION FUNCTIONS 

5.1. General Framework 
Suppose the event E to be a cumulative probability under my distribution for some 

random quantity Y. Y is real valued, discrete or continuous (or mixed), and my 
distribution function is denoted by P(y) ( - oo < y < oo). The event E is defined by E 
= { Y < y} for some specified valuey. The Ei remain a set of exclusive and exhaustive 
related events in some sample space. Of particular, though not exclusive, interest are 
cases when the Ei partition the sample space of Y, so that f (partially) summarizes the 
agent's own distribution for Y (West, 1988). 

Example 4. Y may be the value of a financial indicator, such as a particular 
exchange rate, at some specified future time, say one month hence. With n = 1, El may 
represent the occurrence of a particular economic event, such as a change in interest 
rates, or a political announcement that I expect to influence financial markets. I 
consult the agent about the likelihood of this event and use the stated opinion to revise 
my views indirectly about whether or not Y will exceed the specified threshold y. 

Example 5. Generalizing example 4, suppose that I consult the agent for his 
opinion about the future level X of a related indicator that I believe to be of use in 
forecasting Y (i.e. an independent or predictor variable). I request agent probabilities 
for the eventEi = {qi- I < X < qi} (i = 1, . . ., n + 1), for some chosen points qo = - 0 
< q1 < ... < qn < qn + I = 00. The data received from the agent are the probabilities 
fi = F(qi) - F(qi- l) (i = 1, * . ., n + 1) under his forecast distribution F( ) for X. 

Example 6. In the framework of example 5, suppose that X= Y, so that I consult 
the agent for his opinion about the future level Y directly. This is a more typical 
opinion analysis problem, similar to those considered in Lindley (1988) and West 
(1988). In the general framework of Section 4, we have E = { Y < y } and Ei = {qi -l 

Y < qi} (i= 1 , . . *, n + 1). 
In each example, theorems 2 and 3 apply directly. To calculate pf, I must specify 

prior expectations of thefi, in addition top. In example 4, ,u = ,uI is my prior expecta- 
tion of the agent's probability of the related economic event or political announce- 
ment. In examples 5 and 6, the 1ui are the expected values of the probabilities that the 
agent will assign to the intervals [qi- 1, qi). By varying the specified quantity y that 
determines the event E, I can completely determine my posterior distribution function 
for the random quantity Y based on prior information plus the agent's probabilities 
f. We have the following result, deduced directly from theorems 2 and 3. 

Theorem 4. My posterior distribution function for Y given f, namely P(y I f) = 
Pr[Y<yIf] (-oo < y < oo),isgivenby 
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n 

P(Y If) = P(Y) + Z Xi(y)(fi - ui) 
i=l1 

for some quantities Xi(y) depending on y. An equivalent representation is 
n+1 

p (y I f) =EIIi (Y)f 
i=l1 

where, for each i = 1, . .,n+ 1, Hi(y) = Pr[Y < Y Ifi= 1]. 
Calculation of the posterior distribution requires preliminary specification of the 

quantities Xi(y) or, equivalently, the IIi(y). In terms of the latter, Hi(y) is my 
posterior probability that Y < y were I to learn that the agent believed Ei to hold. In 
example 6, for example, this is the probability that Y < y were the agent to believe that 
qi-l I Y < qi; compare Dawid (1987). These quantities may be more easily appre- 
ciated and assessed in cases when the underlying random quantity Yis continuous, the 
results then being essentially special cases of those in the following section. 

5.2. Agent Distribution Function and Limiting Results 
Suppose that Y is a continuous random quantity and that my prior distribution 

function P(y) is continuous with respect to the Lesbesgue measure, having density 
function p(y) ( - 0 < y < oo). Consider agent information provided in terms of a 
collection of percentage points from the agent's distribution F(x) for a related 
random quantity X; suppose that F(x) is continuous with density functionf(x) (- X 
< x < oo). This is just as in example 5 with additional assumptions of continuity. The 
agent's information set is denoted by Hn, given by 

Hn = {f1, . . .,fn +:f, = F(qi) - F(qi1),i1, . . .,n+1} (5) 

for some specified quantities q0 = - oo < q1 < . . . < qn < qn +I = oo. As in West 
(1988), we assume the qi to be given and the model is based on my view of thefi as 
random quantities given the qi; further discussion of this issue appears in West (1992). 

We can now apply theorem 4. I must specify my prior expectation ui = E [fi] for 
each i. Given the assumed additional structure, that thefi are derived from the under- 
lying, unknown distribution function F( ) of the agent, it is necessary for consistency 
that the ,ui be similarly defined. Suppose, therefore, that the ,ui are determined as 

i= M(qi) - M(qi-1) (i=1,.. .,n+1), (6) 
where M(x) is a known distribution function specified by me, the decision maker. This 
is simply my prior expectation of the agent's distribution function F(x); for all x, 
E [F(x)] = M(x), where the expectation is taken with respect to my prior distribution 
over the uncertain distribution function F( ). This expectation is all that I am required 
to specify at this stage; in particular, a completely specified prior over distribution 
function space is not necessary. Only a collection of probabilities under M( ), 
sufficient to determine thetui in equation (6), is really required. However, we intend to 
examine the consequences of this specification for any n and any set of points qi and 
consistency is maintained by imposing equation (6) for a prespecified M( ). Since 
F( ) is continuous, then M( ) is too, having a density function m ( ). Specifying m ( ) 
directly leads to the ,ui via 
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qi 

m(x) dx. 
qi-l 

Now, theorem 4 applies for any n and any collection of quantiles qi for the given 
value of n. Once the fi have been stated by the agent, the information set Hn is 
observed and my resulting posterior distribution is obtained. We shall work now with 
the more interpretable expression in terms of the probabilities IIi(y). If these are 
specified directly, then the updating problem is solved without further inputs from me 
as the decision maker. This raises the question of assessment, in particular, of how the 
IIi(y) are related, which is addressed in the next theorem. 

For any given n, the information set Hn can be viewed as providing a discrete 
approximation to the true agent distribution function F( ). If n is large and the qi 
distinct, then the IIi(y) may provide a rather good discrete representation of F( ). If n 
were to increase without bound while the qi remain distinct and become everywhere 
dense, then Hn would approach the limiting information set 

H= lim(Hn)={F(x),- oo<x<xo}. (7) 

Thus, using a limiting argument, we can address the problem of how I update on 
learning F( ), or equivalently, the density f( ). The following theorem provides the 
result. 

Theorem 5. Under the continuity assumptions of this section, suppose that I learn 
the full agent distribution function F(x), obtaining information H in equation (7). 
Then my posterior distribution for (YI H) is given by 

P(yIH) H I(yIx) f(x) dx (-oo < y < ), 
_,00 

where, for each x, II(y I x) is my posterior distribution were I to learn that the agent 
believed the random quantity X to take the value x with probability 1. 

Proof. Choose any sequence of information sets Hn (n = 1, 2,. . .,) such that - Xo 
- qo < q, < ... < qn < qn+1 = oo for all n. Then H = limn0O(Hn) with these 
specified quantiles determining Hn in equation (5). By the mean value theorem, and 
for each i, we have fi = f(xi)bi, where bi = qi - qi -1 and xi is some number between 
qi -1 and qi. As n -X oo under the assumptions of the theorem, the intervals [qi- 1, qi) 
collapse about a point since I qi- qi-I 0, and so the probabilities IHI(y) have 
limiting values II(y I qi), namely my posterior probability for Y < y were the agent to 
state that X= qi with probability 1. Hence, applying theorem 4, 

n + 1 0o 

P(y If) Ili | I(y) f(xi)6i HYlx) dx, 
i = 1 -00 

as n -m 00. 
The result here can be alternatively expressed as 

P(yIH) = P(y) + H(ylx){f(x)-m(x)} dx; 
-00 
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the posterior is the prior plus a correction term that, for each y, is an average distance 
measure between the observed agent density f( ) and the expected version m ( ). In 
terms of densities, theorem 5 may be written as 

00 

p(ylH) 7 r(yIx)f(x)dx (-oo<y<oo), 

where, for each x, ir(y I x) is the density of the distribution Q(y I x). This is my 
posterior distribution were I to learn that the agent believed the random quantity Xto 
take the value x with probability 1. This applies whatever X may be. In particular, if 
Y= X, II(y Ix) is my posterior for Y at the point y were I to learn that the agent's 
distribution for Y was degenerate at the point x. Though such states of information, 
involving agent distributions that are degenerate, are usually hypothetical, 
consideration of just how I would adjust my views about Yin the light of such extreme 
agent information is not typically a difficult exercise and, if performed, provides the 
posterior based on any agent distribution by applying theorem 5. An example 
illustrates how this may be done simply by using familiar parametric families of 
distributions. 

Example 5. Consider the case in which X= Y, the agent providing a forecast 
distribution F( ) for the quantity Y. Suppose that my prior for Y is normal with 
known mean a and variance A, denoted by Y - -Vla; A]. Suppose that I expect the 
agent to hold similar views, sharing similar information and background experiences, 
and processing such information in similar ways, and also that the stated distribu- 
tional information accurately and honestly represents the agent's true opinions. As a 
result, I take M( ) as 4VY[a; A] too. One possible distribution H(y I x) consistent with 
these priors is the normal (Y I x) - <[a + r(x - a); (1 - r2)A] for some correlation r. If 
r > 0, the agent is viewed as in positive accord with the decision maker, so that were 
the agent to believe in Y= x with probability 1 the above posterior represents a shift in 
location to higher values than the the prior mean a if x exceeds a, otherwise to lower 
values. The magnitude of r is a measure of my belief in the expertise of the agent, the 
posterior variance (1 - r2)A decreasing towards 0 as r increases. At r = 1, the posterior 
degenerates at Y= x reflecting a belief that the agent is expert; in such a case, if the 
agent were to believe Y= x, then so would I on learning x in this case. 

Suppose now that the agent provides the information set H in equation (7), the 
density functionf( ). The following points are immediate from theorem 5. Firstly, if 
f( ) has mean c, whatever the global form may be, then my posterior mean is just 
E[YIH] = a + r(c-a), a linear function of the two point estimates a and c of Y. 
Secondly, if f( ) has mean c and variance C, whatever the global form may be, then 
my posterior variance is just V[ YI H] = (1 - r2)A + r2C, a linear function of the two 
variances A and C. Obviously, a normal agent distribution having these moments c 
and C implies that p (Y I H) is normal with the above mean and variance. This is a 
special case of examples in West (1992), where further development and variants on 
this and other examples are given. 
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