Prado & West, 2010: Errata & Comments/Clarifications

Some Comments/Clarifications

- p21: (middle of the page) The proportional expressions for $p(y_{1:n}|\mathbf{F})$ and $p(\mathbf{y}|\mathbf{F})$ are both correct as stated. The former involves *all* terms involving the model dimension *p*, while the latter must be multiplied by $(\mathbf{y}'\mathbf{y})^{(p-n)/2}$ to include all terms in *p*.
- p50: In Figure 2.6, AIC and BIC measures are (very slightly) incorrect. Their definitions in para 3, p49 require using n p as the divisor of residual sum of squares to compute s_p^2 . This Figure incorrectly used n, leading to very small differences in values (but no change to the conclusions).

Page	Line, or Eqn	Original	Corrected
8	(1.9)	$\gamma_{y,y}(s,s)\gamma_{z,z}(t,t)$	$\gamma_{y,y}(t,t)\gamma_{z,z}(s,s)$
	(1.10)	z_{t-k}	z_{t-h}
38	(2.8),(2.9)	$h \ge p$	h > 0
38	-1, -9	$h \ge 2$	h > 0
39	7	$h \ge 2$	h > 0
50	Fig 2.6	negated AIC and BIC	-AIC/2 and $-BIC/2$
87	-7	$p(\omega)\exp(\hat{oldsymbol{eta}}'\mathbf{F}\mathbf{F}'\hat{oldsymbol{eta}}/2v)$	$p(\omega) \mathbf{FF'} ^{-1/2}\exp(\hat{\boldsymbol{eta}}'\mathbf{FF'}\hat{\boldsymbol{eta}}/2v)$
114	12	if $dU(\omega)$ is a real-valued stochastic process	if, for each $\omega, U(\omega)$ is a real-valued random quantity
115	-1	with ϵ^x_t uncorrelated with	with ϵ_t^y uncorrelated with
119	Ex 4.3	Autoregressiove	Autoregressive
120	17	(p-1)-th order	(p-1)-th degree
126	-11	$d_t = d_{t-1} + e_t^2/q_t$	$d_t = d_{t-1} + s_{t-1}e_t^2/q_t$
148	3	show that $x_{t,j}^{(2)}$	show that $x_{t,j}^{(1)}$
152	-11	sixth	fifth
159	-10	$-r_j$	$-r_j^2$
200	-1, -3	$p_t^*(k_t)$	$p_t^*(k_t, k_{t-1})$
201	3	$p_t^*(k_t)$	$p_t^*(k_t, k_{t-1})$
228	4	$x_{t-1} \sim N(x_t 0,s)$	$x_{t-1} \sim N(x_{t-1} 0,s)$
270	-1	n_t, \mathbf{D}_t	n_T, \mathbf{D}_T
275	-1, -3	$\mathbf{\Sigma}_{t+1}$	$\mathbf{\Sigma}_t$
277	18	$n_t = \beta n_{t-1} + 1$	$h_t = \beta h_{t-1} + 1 \text{ and } n_t = h_t - q + 1$
283	Fig 10.4	Cov (4 occurrences)	Cor

Detailed Errata

We acknowledge the input of students at Duke University, the University of California at Santa Cruz and Virginia Tech, as well as Marco Ferreira and a few other readers, in identifying some of these typos.