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SUMMARY 

The multiprocess Kalman filter offers a powerful general framework for the modelling and analysis of 
noisy time series which are subject to abrupt changes in pattern. It has considerable potential application 
to many forms of biological series used in clinical monitoring. In particular, the approach can be used 
to provide on-line probabilities of whether changes have occurred, as well as to identify the type of 
change that is involved. In this paper, we extend and illustrate the methodology within the context of 
a particular case study. The general features of the problem, and the approach adopted, will be seen to 
have wide application. 

1. Introduction 

In many situations where clinical monitoring is based upon series of quantitative measure- 
ments, the detection and interpretation of abrupt changes in the pattern of the time series is 
of paramount importance. Often, however, such series of data are difficult to interpret, even 
when facilities for visual inspection of graphical plots are available together with simple 
statistical summaries. In particular, many series are extremely noisy as a result of considerable 
biological variation and errors arising in the collection, measurement and processing of the 
data. In addition, the series may be subject to several different types of abrupt change. Some 
of these changes will correspond to biological events of direct interest and importance, 
possibly calling for immediate clinical intervention, whereas others will be of less direct 
clinical interest. It is therefore important not only to be able to detect changes in pattern, but 
also to distinguish between different forms of change; the need to do this often precludes the 
use of simple monitoring techniques such as the CUSUM procedure. 

The multiprocess Kalman filter, introduced to statisticians by Harrison and Stevens (1976), 
provides a flexible general framework within which to model and analyse noisy time series 
subject to abrupt changes of pattern. In this paper, we illustrate both the modelling and 
analysis aspects of the approach by presenting a detailed case study carried out in collabo- 
ration with the Renal Unit at the City Hospital, Nottingham. Although the reported study is 
a particular one, it will be seen that it exhibits features that are present in many other 
contexts. The detailed methodology thus carries over, with minor modifications, to a number 
of other applications. 

The particular problem studied was that of developing an on-line statistical procedure for 
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monitoring the progress of kidney function in individual patients who had recently received 
transplants. The basis of the procedure was to be a series of regular observations of the 
chemical indicator serum creatinine. 

In ?2, we discuss the relationship of serum creatinine to overall kidney function, and 
develop a model for the observed series of clinical readings. This model incorporates a variety 
of noise inputs resulting from data collection and measurement procedures, together with 
specific forms of abrupt changes that result from biological or clinical events. The model is 
seen to fit into the framework of the linear growth model introduced by Harrison and Stevens 
(1976, ?5.2). 

The latter model is itself a special case of the multiprocess Kalman filter (Harrison and 
Stevens, 1976, ?5). In ?3, we develop the necessary mathematical framework for calculating 
on-line probabilities of the occurrence of changes. In particular, we introduce an extension to 
the standard Kalman-filter recursive estimation procedure, which enables us to learn effi- 
ciently about unknown aspects of the noise characteristics of the series. This leads to increased 
sensitivity in detecting changes. Results of the case study are summarized in ?4 and some 
concluding remarks follow in ?5. 

2. A Time-Series Model for Serum Creatinine 

2.1 Features of the Serum Creatinine Series 

Clinicians monitoring the progress of renal transplant patients are concerned to detect changes 
in the level of functioning of the transplanted kidney, particularly those changes which 
indicate the possible onset of a rejection. 

The level of renal functioning is indicated by an unobservable factor, the 'glomerular 
filtration rule' (GFR), which measures the rate of clearance of various substances through the 
kidney. An indirect approach to learning about GFR is to measure blood and/or urine 
concentrations of selected chemicals and then to infer GFR by using basic relationships 
suggested by kidney physiology. In fact, most of the available chemical series appear to be 
too noisy for this strategy to be practicable. One of the few to show promise as an indicator 
in this context is the serum creatinine series, which forms the basis of the current study. 

If a kidney is functioning normally, GFR is constant and creatinine is excreted at a constant 
rate. If GFR is increasing-perhaps as the result of improving function in a recently 
transplanted kidney-the blood concentration of creatinine will decrease. Conversely, if GFR 
decreases there will be an increase in observed concentration of creatinine. Sudden changes 
in the form of evolution of serum creatinine levels thus draw attention to the occurrence 
of significant biological events relating to changes in the functioning of the transplanted 
organ. 

To obtain a more precise mathematical description of the evolution of the creatinine series, 
we note that: (i) in theory, GFR is proportional to the reciprocal of creatinine; (ii) since 
creatinine is being measured in terms of concentration, an adjustment should be made to 
compensate for measurement distortion induced by changes in body fluid. Using an adjust- 
ment formula based on body weight, Knapp et al. (1977) demonstrated that a plot of 
reciprocal body-weight-adjusted serum creatinine against time has the form of a succession 
of approximately linear trends, the directions of which switch as the patient moves from a 
period of improving kidney function to one of deteriorating function, or vice versa. 

This switching straight-line representation of reciprocal body-weight-adjusted serum 
creatinine was successfully used by Smith and Cook (1980) as the basis for retrospective 
identification of points of change from improving to deteriorating kidney function 
(i.e. identification of the onset of rejection of the transplanted organ). In the present study, 
however, we are interested in developing an on-line procedure. Also, there are a number of 
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complicating features of the creatinine series which were not taken into account in the simpler 
retrospective analysis: 

(i) Serum creatinine measurements were made at intervals of eight hours over a period of 
several weeks following transplant, and must therefore be modelled as a time series. The 
typical pattern of evolution of the series exhibits an initial period of poor renal function, 
followed by a gradual improvement and then by a rather erratic period. Rejection episodes 
alternate with periods of improvement, until-in cases that are eventually successful-the 
accepted organ approaches a level of stable functioning. It is clearly much easier to pick out 
such general features and trends retrospectively than it is to judge the state of renal function 
day by day using each new creatinine value as it becomes available. 

(ii) Dialysis treatment is often provided in the early stages of postoperative care to support 
the transplanted kidney. The effect of dialysis treatment is to produce a sudden sharp drop 
in level of creatinine. This change in level contrasts with the changes in slope that correspond 
to the onsets, or reversals, of rejection episodes. From the point of view of an on-line statistical 
monitoring procedure, it would be useful to be able to distinguish these forms of change 
without recourse to complete patient histories. 

(iii) Blood samples are not always collected precisely on schedule (in this case, at intervals 
of eight hours), and this introduces timing errors into any form of analysis that assumes 
equally spaced observations. 

(iv) There are multiplicative measurement errors entering into the observed creatinine 
levels. 

(v) Measurements of creatinine concentration are in units of ttmol/l, but are only quoted 
to the nearest 10. There is, therefore, additional noise in the series due to reporting errors. 

(vi) There are definite possibilities of gross errors, or outliers, in series values, either as a re- 
sult of equipment malfunction, blood-sample contamination, or mistakes in data transcription. 

Clearly, some of these features are more important than others and some might ultimately 
be disregarded as having negligible effect. However, in this paper we wish to illustrate the 
fact that all such features can be modelled and their influence can be incorporated into the 
analysis within the Kalman-filter framework. 

2.2 A Modelfor Steady Evolution of the Series 

If we denote by 5o, the actual serum creatinine level at Time t (measured in integer multiples 
of eight hours) and denote by 4t the body-fluid-adjusted value, then 

At = stout, (2.1) 

where wt, the adjustment factor, is a known function of observed body weight (see Knapp et 
al., 1977). Assuming approximate linear trends during periods of steady evolution of renal 
function (where improvement or deterioration proceeds uninterruptedly), we may write 

= At + }t, (2.2) 

denoting the reciprocal body-weight-adjusted actual serum creatinine at Time t by jt. 
If we take into account measurement errors and reporting errors (see ?2. 1), but temporarily 

ignore timing errors, then xo,, the measured value of q0,, satisfies 

Xo= etoo, + Ut, (2.3) 

where Ut denotes the reporting error and et denotes the measurement error. If we assume that 
et = 1 + Et, where Et is symmetrically distributed with mean 0 and constant variance, then, 
writing at = -tqo,, we can rewrite (2.3) in the form 

Xot = 4ot + at + Ett. (2.4) 
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In what follows, we shall assume that the distribution of at is approximately N(O, c2+q0), for 
some constant c > 0, and that the distribution of ut is uniform over [-5, +5]. 

Letting xt denote the body-weight-corrected version of xot, we have 

Xt = wtxot t (2.5) 
= At + wt(at + ut). 

Writing yt = xT<, from (2.2) and (2.5) we obtain 

Yt = lt(l + St)-', (2.6) 

where 

st = pitwt(at + ut). (2.7) 

In Appendix 1, we show that I st << 1, so that (2.6) may be approximated by 

Yt = [tt(l - St). (2.8) 

To complete our model for the reciprocal body-weight-adjusted observed serum creatinine 
series, we now introduce a further factor to take account of the timing error (see ?2.1). If we 
assume that there is a symmetrically distributed perturbation, rt, say, around t, the scheduled 
time of data collection, then the right-hand side of (2.2) should really be changed to 
[t + /3(t + rt) and (2.8) should be redefined. If, instead, we retain the notation jut = [t + /St, 
then (2.8) must be rewritten in the form 

Y= lt + Vt, (2.9) 
where 

Vt = -Stlt + (1 - st)/Art. (2.10) 
In our application, it is reasonable to assume that I rt < 1/ 16; in other words, that blood 

samples are collected within 30 minutes of the scheduled times. With this assumption, it is 
shown in Appendix 2 that the distribution of Vt in (2.9) is approximately N(O, c2Pti). 

2.3 A Modelfor Sudden Changes in the Series 

Combining (2.2) and (2.9), we can express our model for steadily evolving parts of the series 
in the form 

Y= lt + Vt, (2.11) 

lt = lt-i + /t + yt, (2.12) 

At = 8t-i + at, (2.13) 

where Vt - N(0, c2l2), and yt and St each have N(O, 0) distributions. By permitting the 
variances of yt and St to be small but nonzero, we could allow for approximate nondetermin- 
istic linear trends in lt. In any case, Equations (2.1 1) to (2.13)-the linear growth model of 
Harrison and Stevens (1976, ?5.2)-provide a convenient starting point for the extension of 
the steadily evolving model to incorporate possible sudden changes in the series. 

Returning to the discussion of ?2.1, we see that there are three types of abrupt change in 
the steadily evolving pattern that need to be considered. 

Outliers. A gross error corresponds to a sudden perturbation to (2.11). Instead of yt being 
an unbiased measurement of lit, with variance C2[t2, we obtain a measurement whose accuracy 
is in considerable doubt. A convenient way of modelling this is to regard (2.11) as still 
applying, but with a variance considerably larger than c2 Pt. 

Changes in level. Dialysis just prior to Time t produces a sudden perturbation to (2.12). 
Again, a convenient way to model this is to utilize the form of (2.12), but this time take at as 
normally distributed about 0 with a large variance. 
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Changes in slope. Actual changes in trend, from improvement to deterioration, or vice versa, 
produce sudden perturbations in (2.13). These will be modelled by retaining the form of 
(2.13), but taking 6t as normally distributed about 0 with a large variance. 

Throughout, we shall assume that Vt, yt and St are independent random quantities. If we 
express their distributions in the form N(O, c2g2K,), N(O, c2K,) and N(O, c2K8), respectively, 
then by choosing various combinations of Ku, K, and K8 to be zero or to be large positive 
numbers as appropriate, we can model, via (2.11) to (2.13), the four possible states of the 
series at any instant: steady state; change of level; change of slope; outlier. 

In the next section, we recall the representation of this model within the multiprocess- 
Kalman-filter framework (Harrison and Stevens, 1976, ?5), and present a recursive procedure 
for calculating on-line probabilities of which of the four states pertains at any given time. 

3. The Multiprocess Kalman Filter 

3.1 Representation of the Linear Growth Model 

The system described by (2.11) to (2.13) can be rewritten in the form 

yt= FOt + Vt, l (3.1) 
Ot = G0~t1 + wt, J 

where 
F= [ 0 ], 

G=[ 

ot = rIt, At], 

Wt = [Yt + St 6t], 

and Vt and wt are normally distributed with zero means. 
To define VtK, the variance of Vt, and Wt, the variance-covariance matrix of wt, we first 

introduce some further notation. We write M 1) to denote the assumption that the observation 
at Time t belongs to Statej, where the four possible states are numbered as follows: 

j = 1, steady state; 

j = 2, change in level; 

j = 3, change in slope; 

j = 4, outlier. 

We then write Vt/' and Wt'I to denote the values of Vt and Wt, respectively, when MtPj) is 
assumed. Similarly, we write KM), KVJ) and K(i) to denote the corresponding values of K,, K. 
and K6, as discussed at the end of ?2.3. 

It then follows that 

var(VtI Iut, Mti))= = i) 

= c2pt K (j), (3.2) 

var(wt I MA4})) = 

where 

( _ j) + K[(i) Ks()] AL K) ecis g 
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3.2 Calculation of Probabilities: c' Known. 

In this section, we shall outline the recursive formulae required for calculating on-line 
probabilities for the states of the system (3. 1) assuming a known value of c2. We shall adopt 
the notation D, = (yl, . . ., yt)T and assume that, for any event E defined in terms of the 
history of the system prior to Time t, 

p(M(') I E) -p(Mt') 
= pod) (3.3) 

the a priori probability of being in State j. Further discussion of the choice of these values is 
given in ?4.1. 

We now make the assumption (to which we shall return shortly) that the conditional 
distribution of 0.- i, given Mt 1 and Dt- 1, is given by 

(Ot-I | M 1, Dt-1) - N(m 'W1, c2C21), (3.4) 
and we recall from (3.1) that 

(yt I MAj), Ot) - N(FGt, V(J)), l 

(Ot IM (j), Ot- 1) - N(G Ot-1, W V). 
To proceed with the normal analysis, we require the variances VUW to be known. However, 
from (3.2), they depend on the unknown pt. At this stage, therefore, we make an approxi- 
mation and replace pt by E(pt I D,_1 ), which we denote by jt [a more refined approximation 
could be based on E _t 2 D,1), if required]. 

It follows from standard results (see, for example, Lindley and Smith, 1972), that 

(ytM t) Mfr2, D,_1) - N[FGm i1, c 2{KjI + F(GC?21G + Kti))F'}], (3.6) 
(Ot I A , A1IM( , DO) N(m~"'~, c2Ch '), (3.7) 

where 

= FT(K(,iii)-yF + (GC'-1GT K (/))-1 (3.8) 

and 

-i C(i) F T(K~))-l ( - FGm (l) + Gm (') (3.9) 

These forms provide the basis for a recursive updating procedure, starting from an initial 
assumption Oo - N(mo, c 2CO). We shall discuss the choice of mo, Co in ?4.1. 

To complete the development of the recursive procedure, we note that by straightforward 
application of Bayes' theorem, together with (3.3), we obtain, for 1 i, j < 4, 

p = p(Mt, M(')1 I Dt) 

Ccx p(yt M M(j), MI I, D,_ I)p(M(i)1 I| Dt- I)p~ 

cx pt, Mi, 1i Dt-I)ptl-lpoi (3.10) 

where, in generalpj) denotes the probability, given D,, that tis an observation from the jth 
state of the system. Since 

4 

pti) = E ptJ, (3.11) 
i=1 

(3.10), together with (3.6), enables us to calculate the pi) values recursively. Given our initial 
assumption about the distribution of Oo, p(y, I MP'j) is obtained immediately from (3.6) by 
replacing mti1 and Cr2)1 by m0 and Co, respectively, and approximating pt = 81~ by jii, the first 
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component of mio. The recursion for p (j) then has the starting value 

p i OCp(y I ml ( (3.12) 

We return now to the distributional assumption summarized by (3.4). Whilst this form is 
essential if we are to retain the simple recursive forms of (3.6) to (3.12), we note that it must 
be regarded as an approximation. To see this, we note from (3.7) that 

4 

(Ot I MN'), Dt) - E (p hj)l/p (j))N(m t('j), c 2C t()), (3.13) 
i.=l 

which only has the general form of (3.4) if we replace the right-hand side by an 
N(m (j), c2C't)) approximation, where 

4 

M =) (P(tiJ)/p(I))mt J) (3.14) 
i=l 

and 
4 

C = E (pVtJ)/P 0)){C t() + (mP') - WmUi)(mP"i -mUi) T}* (3.15) 
i=1 

Using this form of 'mixture-collapsing' procedure (introduced by Harrison and Stevens, 
1976), and replacing At in (3.2) by It, the first component of 

4 

mt-1= E pi)1m W, (3.16) 
j=1 

we obtain a closed-form, easily calculated, recursive procedure which, in particular, returns 
on-line probabilities, p i), j = 1, . . . , 4, of the current state of the system. 

In addition to assessing the current state of the system, it will be useful to have available 
quantities such as p(M'i) I Dt+1) and p(M'i) I Dt+2), which provide one-step-back and two- 
step-back assessments of the previous states of the system in the light of current information. 

To calculate these quantities, we observe that 

p(Mti) I Dt+j) = p(MIi) Dt, yt+i) 

ocp(yt+l Mtj), Dt)p(MAi) I Dt) 
4 

0c E p(ytl| Mt+)l Mt, Dt)pO(k t p t) (3.17) 

and that (3.6), (3.10) and (3.11) provide explicit forms for the right-hand side of (3.17). 
Similarly, 

p(Mti) Dt+2) = p(M'i) Dt+1, yt+2) 

oCp(yt+2 M ti), Dt+1)p(MtI) I Dt+1). (3.18) 

The right-hand side of (3.18) can be rewritten in the form 
4 4 

i p(yt+2 I Mti+2, Mt+l, Mt, Dt+I)p(Mti+2, Mt+, Mt') I Dt+1), (3.19) 
i=i k=i 

which, given (3.3) and the structure of (3.5), reduces to 
4 4 

X p(yt+2 I Mti+2, Mt+, Dt+i)po .t+ (3.20) 
i=i k=i 

This can be calculated straightforwardly by use of (3.6) and (3.10). In ?4.2 there is a discussion 
of the uses of (3.11), (3.17) and (3.20) in the renal transplant study. 
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3.3 Calculation of Probabilities: C2 Unknown 

In the previous section, we assumed c2 to be known. We now extend the analysis to cover the 
case of X = C-2 unknown, using ideas from West (1981). 

We retain the assumption (3.3) and rewrite (3.4) in the form 

( It-1 IM(i)1, Dt-1, X) - N(m~21 ?C-1C~). (3.21) 

To deal with the unknown scale parameter X, we shall assume that, given M()l, Dt-1, the 
distribution of X can be approximated by 

(XI M(')1, Dt-1) - G(Int-1, lb(')1), (3.22) 

where U - G(a, /8) signifies that U has a gamma distribution with density 

p(Au) = FNa) U"-- exp(-,8u), u > 0. (3.23) 

We assume that, initially, X has a G(Ino, 1bo) distribution. Together, (3.21) and (3.22) 
constitute the assumption of the normal-gamma joint-conjugate form for (Ot-1, X); see, for 
example, DeGroot (1970). Standard Bayesian analysis (De Groot, 1970, ?9.6) shows imme- 
diately that 

(OA IA , Af 21, Dt, X) - N(m~tJ), XiC~tJ)) (3.24) 

and 

( I AMO, MMI1, Dt) - G(Int, 1b(ii)), (3.25) 

where m(iJ) and C are given by (3.8) and (3.9), 

nt= nt-i + 1 (3.26) 
and 

bt,) = b( )1 + {K (j)t- + F(GC (') GT + K (i))FT) -(yt FGm (i) )2. (3.27) 

To calculate ptiJ), given by (3.10), we note that 

co 

p(y |IMj), Mt D, 1) - f p(ytl| M1i, Af', Dt-1, X)p(X M(')1, Dt-1) d. (3.28) 

The first term in the integral is given by (3.6), writing c2 = A-1, and the second term is 
defined by (3.22). It follows (see, for example, Aitchison and Dunsmore, 1975) that (3.28) has 
the form of a t-density, proportional to 

{tK2jyii + F(GC (i)GT + K(^i))FT} -i(b )) i (3.29) 

Calculation of p (0J) and p W now follows from (3.10) to (3.12), where the latter has the 
factor p(yi I M(i)) proportional to (3.29) with m~i and C i replaced by mo and C0, 
respectively, nt-i and b(')1, replaced by no and bo, respectively, and At approximated by the 
first component of mo. Collapsing of the mixture distribution arising for Ot follows from (3.13) 
to (3.16), but with (3.13) now representing the distribution of (Ot I Mti), Dt, X). Similarly, we 
need a collapsing procedure for the distribution of X, since, from (3.25), 

4 

(AIM'i), Dt) - (p' i)/p(i))G(?nt, Ib t(i)). (3.30) 
i=l 

Recalling that the mean of a G(ae, ,8) distribution is al,8, if we seek to replace (3.30) by a 
single G(2nt, lb'i)) distribution it is natural to define b(i) by 

2bt)) = E (ptJ)/p2))(bPJijl. (3.31) 
i=l 
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Alternatively, all the collapsing procedures used in this section can be justified as minimizing 
the Kullback-Liebler divergence between the mixture and the simple density. As in ?3.2, we 
approximate At, wherever it occurs, by the first component of mt-i defined by (3.16). 

Current, one-step-back and two-step-back probability assessments of the state of the system 
again follow from (3.10), (3.11) and (3.17) to (3.20), where the factor previously defined by 
(3.6) is now given by (3.29). 

4. Application to Renal Monitoring 

4.1 Inputs 

In the case of known coefficient of variation c, we need to supply initial values forpo , K(i), 
K(J' and K(j), I 1, . . ., 4, as well as for mo and Co. 

On the basis of careful retrospective study of past creatinine series, the following parameters 
were used: 

(pol), p2) (3) 4 ) (.85, .06,.07, .02). (P 'PO 'PO , 07P.2) 
These parameters reflect the following assumed rates: outliers, about 2%; steady state 
observations, 85%; observations affected by dialysis, about 6%, with the remaining 7% 
corresponding to changes in slope. 

The variance multiples that were found to be most suitable (following empirical trials with 
the system) were as follows: 

jKV,) K(i) K(i) 

1 1 0 0 
2 1 90 0 
3 1 0 60 
4 100 0 0. 

As far as the parameters mo and C0 are concerned, clinicians are usually fairly confident 
that initial creatinine levels are about 1000 Amol/l, so that A-o 0.001, and that, initially, 
changes are fairly slow so that /8% 0. We have therefore taken 

(0.001) MO 
O ) 

C ( 0.01 0 
0 o.oiJ 

the various values in Co reflecting relatively great uncertainty about Ao and /8o (given the 
typical value of [o). 

In the case of unknown c2, we need, in addition, to specify no and bo. In general, the 
hospital quality-control laboratory can provide rather good estimates of the coefficient of 
variation c. However, we have found that the learning procedure described in ?3.3 is extremely 
good, even when we set no = 0 and bo = 0 to reflect very vague prior knowledge of X = c 
The adequacy of the approximation in other applications would, of course, require separate 
validation in each case. 

4.2 Outputs 

Figure 1 shows the output from an on-line computer system, based on ?3.1 and ?3.2, in use 
at the Renal Unit of the City Hospital, Nottingham. It should be borne in mind that, in 
practice, output is displayed gradually, evolving from left to right as successive observations 
become available. 
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Figure 1. On-line monitoring of serum creatinine. 

The upper graph displays the weight-corrected creatinine values plotted on an inverted 
reciprocal scale. A change of slope from negative to positive thus indicates a deterioration of 
renal function. (In fact, only every third value is plotted; the analysis uses all the creatinine 
values.) 

The second graph displays values of 1 - p (1), the posterior probability that at Time t there 
is some form of instability in the evolution of the series. 
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The third graph displays values of p(M 3) I D,?1) in cases where E(,8t I D,), the second 
component of m, = E>pJ-Pm2t, is negative. High values occurring on this plot indicate points 
at which, looking one-step-back, there is high probability of a shift from decreasing to 
increasing creatinine. 

The fourth graph displays values ofp(M3] D,+2) corresponding to the time points selected 
for the third graph. This acts as a 'final' confirmatory check that 'interesting' values of the 
third graph represent genuine changes in slope (rather than a wobble in a change of level, or 
two successive outliers, or whatever). 

In general, these probabilities can be combined with specific utility assessments in order to 
arrive at optimal decisions concerning clinical intervention or, alternatively, rule-of-thumb 
'cut-off' values can be chosen such that action is taken if, say, probabilities on the fourth 
graph exceed the cut-off value. This latter kind of strategy has been adopted at Nottingham, 
and has resulted in a system which, essentially, flags precisely those changes that experienced 
clinicians subsequently agree to be onsets of rejection episodes and, moreover, identifies them, 
on average, at least a day before the clinicians. Details of how the cut-off values were chosen 
and of the validation of the system were reported by Trimble et al. (1983). 

5. Discussion 

We have presented a methodology for modelling and monitoring biological time series, which 
has the flexibility to deal with a wide range of problems that involve a variety of noise inputs 
and possible abrupt changes in pattern. The features present in the renal monitoring study 
will be seen to occur widely in many applications, and we conjecture that the approach 
illustrated here will also prove successful in a large number of other situations. 

The detailed development presented in ?3 is related to the work of Harrison and Stevens 
(1976), but departs from their analysis in two respects. First, our emphasis is much more on 
using the system-state probabilities as ends in themselves rather than as aids to forecasting 
the future evolution of the system. Secondly, the procedure for learning about the unknown 
coefficient of variation given in ?3.3 has been shown in detailed numerical studies to be a 
considerable improvement over the method proposed by Harrison and Stevens, and over- 
comes the criticisms of the multiprocess-Kalman-filter approach made by Stoodley and 
Mirnia (1979). 

On-line monitoring systems developed with this approach have two possible functions. 
First, after suitable validation they may come to be accepted by a group of clinicians as 
providing genuine objective guidance in the context of noisy unstable series where unaided 
eyeball approaches lead to much controversy and uncertainty. Secondly, in the case of less 
noisy series, where eyeball approaches would not be too unreasonable, computer implemen- 
tation of such procedures can free clinicians from what would be a routine but time- 
consuming task. We have experienced both kinds of reaction in the renal context, where we 
are developing extensions of these procedures to deal with series of indicators involving 
cyclical features and to model several indicators simultaneously by using a multivariate form 
of (3.1). More detailed discussions of the clinical aspects of the collaboration and the 
validation of the procedure were provided by I. M. G. Trimble (in a M.Phil. thesis at the 
University of Nottingham, 1980) and Trimble et al. (1983). A non-technical summary of the 
approach was given by Smith et al. (1983). 
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RtSUMt 

La methode du filtre de Kalman constitue un outil general et puissant pour modeliser et analyser les 
series temporelles avec bruit qui presentent des variations brusques de comportement. Un important 
domaine d'application est celui des nombreuses series temporelles biologiques recueillies au cours du 
monitorage clinique. En particulier, la methode peut etre utilisee pour fournir -on line des proba- 
bilites de survenue de variations et identifier le type de variation. Cet article developpe la methodologie 
existante et l'illustre par un exemple particulier. On verra qu'elle peut servir a de nombreuses 
applications. 
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APPENDIX 1 

From (2.1), (2.2) and (2.7), St = 4O,1(at + ut), where at has an approximate N(O, c240,) distribution with 
c 0.1, and I Ut I < 5. Actual serum creatinine values are such that almost all values lie in the range 
100 < (Po < 1000, so that f < k, where k is certainly less than 0.1 and, typically, is closer to 0.01. It 
follows that I St I < -'at I + 5k, where tp6-at - N(O, c2), so that, with high probability, I St I < 5(c + k). 
For nearly all values of t, we therefore have I St << 1. 

APPENDIX 2 

Given the form vt = -Stlit + (1 - st)/rt, it follows that vt is symmetrically distributed about 0, with 
variance, for a given value of [t, equal to 

,4w2E(U2) + 1,2c2 + 832E(r2){I + W2c 2 E(u2) + c2). 

We have assumed that I rt I < 1/16 and, if we further assume that rt is approximately normally 
distributed, it follows that E(rt2) 4 x l0-. We almost always have .001 < [t < .01, so that pt < l0-, 
and, typically, /2 is similarly bounded. It can therefore be seen, since E(ut) 10, that the first two 
terms in the variance dominate and that, if p12 < 10-4, the variance is well approximated by 22. 
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