A subsample of a large data set (from the early 1980s) from a study investigating potential sex effects (biases?) in determination of professional salary differentials. The individuals come from several large corporations. Data columns are: 1) Number of individual 2) Management Level: 1=Lower, 2=Upper, 3) Sex: 1=Male, 2=Female 4) Education level: 1=High School, 2=1st Degree, 3=Graduate Degree 5) Years in job 6) Annual Salary 1 1 1 1 6 12336 2 1 1 1 8 13670 3 1 1 1 10 14468 4 1 1 1 13 15990 5 1 1 1 16 18000 6 1 1 1 20 20900 7 1 1 2 1 11283 8 1 1 2 3 12313 9 1 1 2 4 12884 10 1 1 2 5 13245 11 1 1 2 6 13829 12 1 1 2 10 15542 13 1 1 2 12 16882 14 1 1 2 14 18100 15 1 1 2 16 19800 16 1 1 2 17 20904 17 1 1 3 1 11608 18 1 1 3 2 12195 19 1 1 3 4 13231 20 1 1 3 5 13677 21 1 2 1 2 10535 22 1 2 1 4 11417 23 1 2 1 11 14861 24 1 2 2 2 11772 25 1 2 2 8 15305 26 1 2 3 1 11767 27 2 1 1 1 13876 28 2 1 1 3 14975 29 2 1 1 7 16498 30 2 1 1 8 17900 31 2 1 2 2 22456 32 2 1 2 6 22885 33 2 1 2 13 29300 34 2 1 2 16 29500 35 2 1 3 3 18998 36 2 1 3 6 23521 37 2 1 3 8 21900 38 2 1 3 10 25242 39 2 1 3 12 23981 40 2 1 3 15 27450 41 2 2 1 5 16465 42 2 2 2 3 22371 43 2 2 3 1 19801 44 2 2 3 4 22269