
Expression Data Exploration: 

Association, Patterns, Factors & 
Regression Modelling





Exploring gene expression data

Scale factors, median chip correlation on gene subsets for
crude ‘data quality’ investigation

Selecting genes correlated with an outcome, or a gene

Image displays: Expression intensity images 

Common structure in gene subsets – Underlying Factors

Principal components/Singular value decomposition 

Data sets: exploration in Matlab
Some data, papers linked to MW info@ABS2004 web site

More data in papers on Duke genomics web site



2001 PNAS paper: Duke breast cancer genomics 
(49 tumours) 

2003 Lancet, 2004 PNAS papers: Duke-KFSYS breast cancer -
clinico-genomics (158 tumours, clinical data)

2003 Nature Genetics paper: Mice cell lines and tumours in 
controlled experiments on several key oncogenes

MIT/Whitehead 1999 Leukemia data 

Some data sets linked to MW info@ABS2004 web site



Regression models

Gene expression as response

Designed experiments: e.g. Mice models: age, sex, diet, genotype 

• Finding genes, effects of covariates
• Grouping genes by effects
• Patterns of coordinately expressed genes
• Signature of effect – multiple genes

Predictive interest: Human disease

p genes: Multiple models in parallel



Regression models

Gene expression as covariates (predictors)

Molecular phenotyping: e.g. Predict aggressive vs. benign tumour
Disease susceptible vs. resistance

• Finding genes linked to response
• Grouping genes 
• Patterns of coordinately expressed genes
• Signature of effect – multiple genes

Predictive interest: Human disease

Multiple genes as predictors



Empirical Factors:

Principal Components ~ 
Singular Value Decompositions



Gene-gene associations: 
sample variances/covariances
- centered data (row means 0)

Collinearities
Co-dependencies
Co-regulation

Transcription factors 
Cascading expression
Pathways, interactions

p genes 

n arrays

nppp

n

n

xxx

xxx
xxx

,2,1,

,22,21,2

,11,21,1

...
............

...

...

')1( 1XX−−n

= X

“Tall & Skinny” - p>>n

SVD of Expression Data Matrices



SVD of Data Expression Matrices

SVD

X   =  A    D    F

A pxn orthonormal columns: A’A=In

D nxn diagonal, non-negative

F nxn orthogonal: F’F=FF’=In

Principal Components (PCA): XX’ = AD2A’



SVD of Expression Matrices

SVD

X   =  A    D    F F - factors:
rows are n factors

columns are n samples

A – loadings:
Aij loads gene i on factor j

D – singular values
relative importance of factors

Patterns of covariation observed 
among genes is “driven” by 

underlying factors
- mediated by loadings -



Data sets: exploration in Matlab

Gene subset selection
SVD of smaller subsets “of interest”

Loadings to order genes

Links to clustering – group/cluster by loadings

Scatter plots, Image displays

Signatures: Dominant pattern – Metagene pattern

Exploring Expression Data 



Elements of Regression



Prior

Regression models : ideas & theory (see notes)
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Linear model

Least Squares
(minimal) Bayes: Shrinkage priors

Decision theory
Regularisation - Ridge regression
Key with many predictors
Relevance of zero-mean location

Intercept term: `Large’ C1,1 
-1

other Ci,i
-1 = τ (covariates scaled)

Common shrinkage towards 0 - ‘controlled’ by τ
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Regression models : full theory

Gamma prior/posterior on precision 
Normal posterior for β becomes T

Marginal likelihood (to assess shrinkage)

Prediction of new samples: p(ynew|y) 
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Bayesian/Shrinkage elements: 

LSE as limiting case (no shrinkage) 
Shrinks when it matters – weak/no association
Marginal likelihood to assess shrinkage degree 
Theoretical dominance of shrinkage estimation
Regularisation: acts against over-fitting, improves stability 

and robustness in prediction

Examples (see Matlab code explorations)

Explore genes predictive of others – collinear expression 
patterns, gene co-regulation (e.g., ER in breast data)

Design effects: finding genes related to genetic interventions,
environmental factors (e.g., mice cell lines and tumours, 
time course experiments) 
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Gene pathway studies -

Myc & Ras oncogenes
E2F transcription factors

(Nat Gene 2003, Huang et al)

Genes and gene subsets 
(signatures) related to 

up-regulation of oncogenes.

Compare & characterise
oncogenic states

Why?

Simple Designed Experiment Example



y =  a Wild type mice (baseline)

+m                                      if Myc up-expressed

+r if Ras up-expressed

+mr if Myc & Ras up     

+e1, or +e2, or +e3 if E2F1, 2 or 3 up

+ε

Simple Myc/Ras/E2F Example

Design matrix H 0/1 entries

Same for each gene

Parallel processing to compute posterior, predictive summaries

Examples (see Matlab code explorations)

A more elaborate example: Mice & Heart Disease



Factor Regression



Regression on n<<p factors

Massive dimension reduction
Many-one: No unique inverse

Common “optimal” least-norm 
inverse

Linear Regression on SVD Factors

εHβy += 'XH =
Linear model 
with genes as 
predictors

SVD implies εθFy += '

βDAθ '=

θADβ 1−=

Regression on n<<p factors

Massive dimension reduction
Many-one: No unique inverse

Priors: Normal priors are consistent/coherent
Generalised g-priors (West, Bayesian Statistics 7, 2003)
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Extension of shrinkage prior: 
Multiple shrinkage

Different degrees of shrinkage for different 
factor dimensions

Estimation of multiple shrinkage factors?
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Linear Regression on SVD Factors
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Simulate: Iteratively resample conditional posteriors

Sample means, histograms MC approximation of 
posterior quantities of interest

MCMC – Gibbs Sampling in Factor Regression

Multiple shrinkage prior model
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MCMC – Gibbs Sampling in Factor Regression

Illustrative/exploratory example:
Breast cancer predicting ER gene RNA levels to identify 

Metagene predictor of ER 
-pathway related genes –

PNAS 2004 data and code 

Second, non-genomic example:
Predicting fat content of cookies from infrared mass spectroscopy 

- covariates are spectra/finely sampled curves -
(Bayesian Statistics 7 paper/M West)

39 training samples, 39 to predict
p=300 wavelengths on NIR reflectance spectra: 

Aim to produce model to predict fat of future cookies



Cookie Data 

78 spectra

standardised spectra



Cookie Data 

Data and fitted/predicted values
* training, o predicted/validation

Bayesian qqplot of residuals



Cookie Data 

Posterior summaries: θ

Posterior means: β

1710-1730: charactistic fat absorbance range



e.g., predict new yn+1 at new 
design point …

… which prior to use?

Coherent Theoretical Basis for SVD Regression? 

εHβy +=

ADFXH =='

εθFy += '
βDAθ '=

θADβ 1−=

Conceptual, technical questions: 

• n parameters θ –
sample size dependent?

• prior on θ - design-dependency
• non-unique reverse map to β
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Model & design data

Transform 

Prior ?



Theoretical Foundation: Latent Factor Models

),(~ I0λ Ni
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Sample i - Column i of X 

Vector of k<<p latent 
factors on sample i

Ideosyncratic
variation on sample i

Independent latent factors:

West 2003, Valencia 7

Ψ diagonal
B constrained
Identifiability

Limiting case: Ψ≈0, B orthogonal … 
SVD:  B≈AD, Λ≈F
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Latent Factor Regression Models 
- & SVD Regression Limiting Case -

iii νBλx +=

West 2003, Valencia 7

Limiting case: SVD … 

β≈AD-1 θ
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Latent/common structure in gene 
expression patterns …

… is predictive of outcome, phenotype

Everything is normal, so: E(y|x) = x’β
β = Mθ

Coherent model: 

prior on θ transfers uniquely to β



Latent Factor Models
- many open research questions -

Model fitting:
Parametrisation of B

Identification

MCMC

West 2003, Valencia 7

Sparse Models:
B sparse

One gene – one or a few “pathways”

One “pathway” – few or many genes, 
but not all

Mixture priors on Bij …

),0()1()0(~ ωNpBpIB ijij −+=

Sparse Models:
B sparse

One gene – one or a few “pathways”

One “pathway” – few or many genes, 
but not all



Factors in Breast Cancer Data
SVD ~ Sparse latent factor model

“bad samples” factors

West 2003, Valencia 7

Factor models “clean up” SVD

SVD “noisy” factors

A “cleaned-up” ER factor

SVD Sparse Model



Binary Regressions & Molecular Phenotyping
Next up:


