
Statistics & Gene Expression Data Analysis Note 10: Gibbs Sampling in Binary Regression

A second specific example of Gibbs sampling - canonical Markov chain Monte Carlo method for calculations
in Bayesian binary regressions, and a trivial extension of Gibbs in linear regressions with multiple shrinkage.

♠ Probit Model

• Expression level vector xj on array (tumor sample, etc) j = 1, . . . , n
• Binary outcome: zj = 0 or 1
• Probit probability model: πj = Pr(zj = 1) (conditional on chosen predictor variables and model

parameters: in full, πj = Pr(zj = 1|xj ,β))
• Linear regression model based on regression function µj = x′jβ (perhaps xj is extended with a leading

1 to include an intercept term β0)
• Probit regression:

πj = Φ(µj)

where Φ is standard normal cumulative distribution function

♠ Prior and Posterior

• Example: β ∼ N(0,C−1) and we’ll take the precision as diagonal
• Posterior for regression parameters

p(β|z) ∝ exp(−β′Cβ)
n∏

j=1

Φ(µj)zj (1− Φ(µj))1−zj

which can be evaluated, numerically optimized (it is unimodal) using standard NR routines,
• Exercise: Write code (in C/C++ or other) to implement a Newton-Raphson search for the mode of the

posterior density. As ALWAYS in such problems, work with the log-posterior, i.e., maximise the log of
the target function for numerical stability

• Under vague reference prior (C → 0) the posterior is the normalised likelihood function. The MLE and
related information can be computer using R/Splus glm functions, Matlab glmfit function, or (quite
easily) by user-written code as a special case

♠ Latent Variables and Data Augmentation

• For each sample, recognise an underlying latent variable yj

• πj = Pr(yj > 0) when yj ∼ N(µj , 1) = N(x′jβ, 1)
• zj = 1 if and only if yj > 0

- e.g., latent variable is positive for ER+ cases, negative for ER− cases
- could precisely classify cases if we could observe the latent yj , but we do not; result is the binary

probability model
- MCMC calculations impute these “missing” values along with values of the parameters β

♠ Conditional Posteriors

• p(β|y, z)
If y were known, we have a linear regression of the yj with regression variables xj , parameter β and
error variance 1. Notice that this simplifies (it is a special case) of the linear regression with unknown
error variance: we simply set the precision parameter φ to be 1, and then the analysis is all the same
otherwise. In the MCMC, we just skip the simulation of φ values at each iteration, since we know φ = 1
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here.
The actual value of z is at this point irrelevant – the information they contain is already there in

the (current, imputed or candidate) values of y : Formally, β is conditionally independent of z given y.
The posterior (see earlier notes) is multivariate normal

β|y, z ∼ N(b,B−1)

with B = C + H′H and b = B−1H′y where H = X′ is the n× p design matrix.
For multivariate normals, use programmed functions (multivariate normal simulation is very standard
- e.g.. rMNorm.m or similar) or use direct Cholesky decomposition: e.g., by hand in matlab

b + chol(inv(B)) ∗ randn(p, 1)

for a single draw

• p(y|β, z)
If β were known, then the yj are independent normals but subject to the information provided by the
zj - in each case, we just condition the initial normal on the information that yj must be positive (if
zj = 1) or negative (if zj = 0). The result may be written simply in terms of the posterior cumulative
distribution function, as

P (yj |zj = 1) = [Φ(yj − µj)− (1− πj)]/πj , for yj > 0,

and
P (yj |zj = 0) = Φ(yj − µj)/(1− πj), for yj < 0

(check that you can derive this). Or, for any value of zj = 0, 1,

P (yj |zj) = [Φ(yj − µj)− zj(1− πj)]/[zjπj + (1− zj)(1− πj)].

Simulated values of the yj are then drawn, independently, via the inverse CDF approach: generate
uj ∼ U(0, 1) and solve for yj in P (yj |zj) = uj . It can be written trivially as

yj = µj + Φ−1{zj(1− πj) + uj(zj + (1− πj)(1− 2zj))}

with Φ−1 being the normal quantile function (inverse CDF - qnorm function).

♠ Including Additional Parameters

MCMC neatly extends to include other parameters. A key example is the multiple shrinkage prior model
that is of general interest, but of particular relevance in factor regression models (see earlier notes on this).
• Suppose C = diag(γ0, γ1, . . . , γp) with prior variances τi = γ−1

i defining element-wise shrinkage param-
eters for the individual predictor variables. The above discussion all applied now explicitly conditional
on values of C, so that the simulation iterations can run with simulations of C coupled in too. That
requires priors on elements of C; if these are independent gamma priors, γj ∼ Ga(k/2, h/2) for each j,
say, then the relevant conditional posteriors are also independent gammas, namely

γj ∼ Ga((k + 1)/2, (h + β2
j )/2).

This allows for learning on differential shrinkage parameters across variables.
• Exercise: Develop the MCMC with these priors.
• Think about choices of prior parameters: One general way to think about ranges of relevant parameter

values in binary regression models is to consider how variation in µj translates through to the probability
scale πj . Absolute values of µj bigger than 2 or so lead to probabilities that are already very extreme.
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