
Statistics & Gene Expression Data Analysis Note 2: Linear Regression

♠ Linear regression model: Relating two genes

• Straight line regression model:
(dependent variable) response gene y (e.g., ER)
(independent variable, explanatory variable) predictor gene x (e.g., ps2)

• Measurement error model: repeat values i = 1, . . . , n,
- independent expression levels on n tumors

yi = α + βxi + εi

• εi : independent errors (sampling, measurement, lack of fit)
• Model “explains” variability in response y “due to” x
• Bivariate data (yi, xi) BUT focus is asymmetric: explaining y through x
• Non-causal, purely empirical
• Predictive validity: fit model and test in new cases
• Typical assumption: Gaussian (normally) distributed errors ε ∼ N(0, σ2)
• Analysis and inference:

- Estimate parameters (α, β, σ2)
- Assess model fit — adequate? good? if inadequate, how?
- Explore implications: β, βx
- Predict new (“future”) responses at new xn+1, . . .

♠ Linear regression model: Least squares fitting

• For any chosen α, β,

Q(α, β) =
n∑

i=1

ε2i =
n∑

i=1

(yi − α− βxi)2

measures “fit” of chosen line α + βx to response data
• Choose α̂, β̂ to minimise Q(α, β)
• Least squares estimates (LSE)
• Fitted least squares line: ŷ = α̂ + β̂x

♠ LSE formulæ and interpretation:

• Sample variances and covariances sx, sy, sx,y

•
β̂ =

sx,y

sx
, α̂ = ȳ − β̂x̄

• Or

β̂ = rx,y

√
sy

sx

• β̂ is correlation coefficient corrected for relative scales of y : x
- (so units of the “fitted line” α̂ + β̂x are on scale of y)

• Same variability: sy = sx implies β̂ = rx,y

♠ Significance of fit, residuals, prediction

• See the more general framework of multiple regression models, in Note 3. The model here is a special
case.
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