
Statistics & Gene Expression Data Analysis Note 3: Multiple Regression

♠ Multiple linear regression models

• Extend straight line regression model to use more than one predictor gene
(dependent variable) response gene y (e.g., ER)
(independent variable, explanatory variable) predictor genes x1, x2, ..., xp

• Measurement error model: repeat values i = 1, . . . , n,
- independent expression levels on n tumors

yi = α +
p∑

r=1

βrxr,i + εi

xr,i is expression of gene r on array i
• Model “explains” variability in response y “due to” p genes
• Non-causal, purely empirical
• Predictive validity: fit model and test in new cases

• Interpretation: βr measures change in expected response with a unit change in predictor xr

• Value and interpretation of βr depends, sometimes critically, on which other genes/predictors are in
specified model

• Analysis and inference:
- Estimate parameters (α, β1, ..., βp, σ

2)
- Predict new (“future”) responses ...

♠ Notation: Matrices and vectors

• Intercept term α = β0 = β0x0 with x0 = 1 (“dummy” gene with constant expression)
• Revise earlier notation for xi,X to include dummy/intercept
• (p + 1)× 1 column vector

xi =




1
x1,i

x2,i

...
xp,i




• Regression parameter vector

β =




β0

β1
...

βp




• Model is yi = x′iβ + εi

• Expression data in (p + 1)× n matrix X = [x1,x2, · · · ,xn]
• Response variable and errors in n× 1 vectors

y =




y1

y2
...

yn


 and ε =




ε1
ε2
...

εn



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• Model in matrix form:
y = X′β + ε

♠ Least squares fitting

• For any chosen β,

Q(β) =
n∑

i=1

ε2i =
n∑

i=1

(yi − x′iβ)2

measures “fit” of chosen line xiβ to response data
• Choose β̂ to minimise Q(β)
• Least squares estimates (LSE)
• Fitted least squares line: ŷ = X′β̂
• Residuals: e = y− ŷ with elements ei = yi − ŷi

– what is left ‘unexplained’ in response data
– estimates of εi

♠ LSE formulæ:

•
β̂ = VXy and V = (XX′)−1

(note: standard notation uses X′ in place of X in many statistics books)
• Elements of β̂ measure relationships between the predictors and responses, in the context of all other

predictor variables used in the model
• Values depend on the other predictors in the model, and differ in different models, paralleling changing

interpretation of βi parameters
• Center variables so that they have zero-mean, by subtracting sample mean (for each gene) before

modelling. Good for numerical stability. One implication is that β̂0 = 0

♠ Collinearity of predictors

• Imagine a predictor xr that is highly positively correlated with response y, so has a high positive
regression coefficient estimate in the linear model using only that predictor. Fitting it in a more
elaborate model with other xs changes things, often in unpredictable ways. The estimate β̂r may be
negligible, even negative. This will be experienced when the multiple predictors are correlated, and is
due to other predictors dominating in explaining the response. This is called collinearity of predictors,
and is the norm rather than the exception. At the other extreme predictors are orthogonal if XX′ is
diagonal (so that they are uncorrelated), and in this case coefficient estimates do not depend on which
other predictors are used in the model.

♠ Uncertainty and Significance of Predictors

• Standard inference results give standard errors (SDs) for each coefficient, say vj for β̂j , such that that
symmetric error bars have the form of β̂j±c.vj for appropriate constants c. This is a probability interval
estimate of βj (“confidence interval”). The regression function in matlab provided in this class plots
95% intervals.

• Similarly, standard inference gives ‘probability’ levels (or significance levels) for each coefficient. Pre-
dictors with non-significant parameters might be dropped from the model (see below).
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♠ Simple stepwise fitting

• Choose a set of most highly correlated predictor variable and fit all of them.
• Look at the probability levels for each coefficient; if all are small (i.e., significant), stop, otherwise

remove the predictor that is least significant, and repeat.
• Simple ‘backward selection’ procedure – an old, fairly crude method with some short-comings, but a

standard method and a simple start on the difficult and pressing problem of selecting useful and relevant
predictor variables in multiple regression models.

♠ Issues, concerns

• Many selection procedures: good properties, bad ones
(e.g., backward/forward selection, AIC, BIC, etc)

• Purely data based: genes may be biologically relevant, in terms of networks, but ‘insignificant’ due to
idiosyncacies of the data set

• Small sample issues: p should be ‘small’ relative to sample size n
• Over-fitting concerns: too many predictors, too few samples
• Wide interval estimates, wide prediction intervals in cases of small samples
• Bayesian methods of stochastic regularisation can improve predictions

(see binary regression models later, where Bayesian methods are used)

♠ Networks

• Regression models help identify which genes are useful predictors of others, in terms of expression levels
• Repeat with various genes selected as response variables
• One way of thinking – empirically – about network relationships

(more refined methods would use Bayesian statistical methods - Bayes’ networks)

♠ Prediction

• Future response value yn+1 to be predicted at future predictors xn+1

• New tumor sample, etc
• Predictive validity of regression model: How does the model stand up in out-of-sample prediction?
• Standard inference theory gives predictions in terms of

– fitted/estimated/predicted value: ŷn+1 = x′n+1β̂ and corresponding standard error
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