
Statistics & Gene Expression Data Analysis Note 5: SVD & PCA

♠ Principal Components and Singular Factors

• p× n data matrix X (tall, skinny): rows are genes, columns are samples/microarrays
• Correlations, relationships, patterns among genes:

- clustering, similar expression patterns
- co-regulated genes, (up/down), genetic pathways

• Correlations, relationships, patterns among samples:
- different tumor types, clinical outcomes, cell cycle positions, tumor or normal, ...

• Correlation is a global measure: decomposes into constituent sources using
- principal components analysis (PCA), or (equivalently)
- singular value decomposition (SVD) for singular factor analysis

♠ Motivating PCA and Factors: Two genes

• Two genes: gene 1, 2, sample j, expression levels x1,j , x2,j for j = 1, ..., n
• Imagine that there are numbers b1, b2 and f1, . . . , fn such that

x1,j ≈ b1fj and x2,j ≈ b2fj

or, better,
x1,j = b1fj + ε1,j and x2,j = b2fj + ε2,j

for “small” εs and the εs are uncorrelated.
• fj is the value of a factor on sample j, and the factor determines all of the correlation (relationship)

between levels of expression on genes 1 and 2
• e.g., b1 = b2, so x1,j ≈ x2,j or at least highly correlated
• e.g., b1 = 1, b2 = −1, so x1,j ≈ −x2,j , highly negatively correlated
• e.g., b1 = 0, so x1,j and x1,j are uncorrelated
• Linear regression format: the factor variable is a predictor of each x in the two linear regression models.

• Now suppose the εs are not so small, and are themselves related between gene 1 and 2
• Apply the same idea to the εs – introduces a second factor
• Then

x1,j = b1,1f1,j + b1,2f2,j + ε∗1,j and x2,j ≈ b2,1f1,j + b2,2f2,j + ε∗2,j

(relabelling b1 → b1,1, b2 → b2,1 and fj → f1,j)
• If the f1,j are uncorrelated with the f2,j , this describes patterns of dependence between xs ‘driven’ by

the two separate, unrelated factors
• Linear regression format: the 2 factor variables are predictors of each x in the two linear regression

models.

♠ PCA and Factor Decompositions

• p× n data matrix X – p genes, n samples
• Take row (gene) i and sample (microarray) j
• Singular value decomposition (SVD) of X can be expressed exactly as

xi,j = bi,1f1,j + bi,2f2,j + · · ·+ bi,n−1fn−1,j + bi,nfn,j
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for some numbers b··· and f·.
(this is just linear algebra; no statistics, and no magic).

• Generally, higher order bi,n terms are small, so

xi,j = bi,1f1,j + bi,2f2,j + · · ·+ bi,kfk,j + εi,j

for some k < n and some ‘small’ terms εi,j that are uncorrelated across genes i and arrays j (i.e., they
are small, residual ‘noise’ terms)

• Linear regression format: the k factor variables are predictors of each of the p x response variables in
p separate, parallel linear regression models.

• The k factor variables explain variability in the expression patterns of the many genes and represent k
different aspects of the correlations, structure, patterns exhibited among the genes and across samples

• The regression parameters bi,r for gene i represent different weightings, or loadings, on factor r for this
gene – the factors influence/explain the variation in genes differently due to differing values of these
loadings.

• The factors have various alternative names: principal components, principal factors, singular factors,
among others

♠ PCA and Factor Decompositions: Matrix/vector form

• Sample j = 1, . . . , n, with xj = column j of X

xj = b1f1,j + b2f2,j + · · ·+ bnfn,j

or

xj =
n∑

r=1

brfr,j

where each br is a p× 1 column vector of the loadings for all genes on factor r as r = 1, . . . , n
• Or,

xj = Bfj

with B = [b1, . . . ,bn] and

fj =




f1,j

f2,j

...
fn,j




• Or,
X = BF

where now F = [f1, f2, . . . , fn]

♠ Important Mathematical features

• The factor variables are uncorrelated, so represent different underlying sources of covariability in the X
data

• Sample correlations between any two factor variables is zero
• Sample variance of each factor variable is 1
• Formally, F is an orthogonal matrix: F′F = I and FF′ = I, where I is the n× n identity matrix
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•
X = BF = ADF

with
- n× n diagonal D = diag(d1, . . . , dn) of non-negative values in decreasing order
- the singular values of X
- A is p× n matrix such that B = AD
- A has orthonormal columns: A′A = I the p× p identity matrix

• In terms of A,D,
xj = ADfj

or

xj =
n∑

r=1

ardrfr,j

or
xi,j = ai,1d1f1,j + ai,2d2f2,j + · · ·+ ai,ndnfn,j

• Singular values describe relative importance of factors in describing relationships and variability in data
matrix

• Percent “total variation explained” by factor j is 100d2
j/

∑n
i=1 d2

i

• Elements in ar – column r of A – describe relationships among genes due to factor r. A is called the
factor loadings matrix

• Elements in rows r of F describe relationships among samples/microarrays due to factor r

♠ Properties and More Interpretation

• The factors (principal components) are themselves linear combinations of the data variables, namely
fj = D−1A′xj for each sample j, or

fi,j = a1,id
−1
1 x1,j + a2,id

−1
2 x2,j + · · ·+ ap,id

−1
n xp,j

• In fact, among all possible (unit length) linear combinations of the data variables, the factors are those
that explain the most “variability” in the x data, in the sense that

– The first factor is the linear combination of the data that has the largest sample variance. (For any
vector c, such that c′c = 1, compute the n values c′xj , (j = 1, . . . , n), and then find the sample
variance of these n values; choose another vector c, do it again; the largest variance arises when c
is the first column of AD−1 so that the linear combination is the first factor.)

– The second factor is the linear combination of the data that has the the largest sample variance
once corrected for the first factor (and subject to being orthogonal)

– Many other properties (e.g., see Ripley section 9.1)
• Relationship to eigen-decomposition of sample variance matrix S. Take (with no loss of generality)

centred data (sample mean subtracted by rows) so that (n− 1)S = XX′. SVD implies

(n− 1)S = AD2A′

• A is matrix whose columns are eigenvectors of S
• Squared singular values are eigenvalues of S (up to a constant)
• “Variation explained” is sum of squares of eigenvalues
• p ≥ n : - at most n non-zero eigenvalues: S is rank deficient, singular (our case with p >> n – many

more genes than samples, typically)
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• (n− 1)S =
∑

j d2
jaja′j

• Variance decomposition: for gene i, si =
∑

j a2
i,jd

2
j showing the role of the factor loadings ai,j of gene i

on factor j in explaining variance
• Covariance decomposition: for genes i, k, si,k =

∑
j ai,jak,jd

2
j showing the similar role of the factor

loadings, and their signs

♠ Plotting Data and Factors

• Often informative displays are achieved by plotting factors against sample number and scatter plotting
data on pairs of factors

• Useful for discrimination of samples: finding patterns and structure in the n samples that may be
related to a biological state or features (e.g., tumor versus normals)

• First factor often represents average levels of genes in each sample (unless data are first centred)
• Clustering methods can be applied, often most usefully, to factors rather than the full data set –

computational efficiencies
• Higher order factors can represent small, idiosyncratic features in data
• Factors can be most useful in regression models as predictors of outcomes
• Exploration of columns of A to identify factor loadings patterns: genes “related” in terms of sign and

magnitude on a given factor
• Use of image (heat map) displays
• Some matlab functions (ShowGene, pairs and bcpairs, scatter3 and sc3, imagesc, imagecf, ...)

♠ Practical consideration

• PCA/SVD depends on scale of measurement of variables
• Gene expression on a standard scale – same for all genes

– best on some kind of log scale
– require normalisation off all arrays to a standard scale

• Exploratory uses on selected subsets of genes (variables)
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