
Statistics & Gene Expression Data Analysis Note 6: SVD in Multiple Regression

♠ Multiple Linear Regression Model

• Recall the model in matrix form:
y = X′β + ε

• Predictor variables in p × n matrix X = [x1,x2, · · · ,xn] (columns are samples, rows are predictor
variables)

♠ SVD of X

• SVD is
X = BF or X = ADF

where F = [f1, f2, . . . , fn] is n × n matrix of factors (columns represent samples, and rows represent
factor variables)

♠ SVD Regression

• Combine the SVD with the regression model to get

y = F′θ + ε

with
• θ = B′β or θ = DA′β
• Multiple regression on the factor variables themselves as predictors
• n predictor variables, not p
• Regression parameter vector θ to estimate
• Dimension reduction of inference/estimation problem when p > n, as is the case in gene expression

analyses

♠ Bayesian Analysis and Stochastic Regularisation

• If p > n we end up with n parameters to be estimated with n observations
• Least squares and other standard methods inapplicable: exact fit to observed data, no predictive value

(“over-fitting”)
• Generally, remove some factors that do not vary or contribute much to the SVD (small values of the

singular values in the D matrix)
• More useful and formal solutions lie in Bayesian analysis that involves “stochastic regularisation” of the

estimation problem – estimate θ with some partial constraints on values imposed probabilistically
(Insert two semesters of statistics in here please!).

• Typically, reduce to a smaller number of factors and then apply Bayesian analysis to the rest
• Corresponding estimation of β via β = AD−1θ

♠ Software, Computation and Summary

• Point estimate analysis: iterative computation of estimates of θ that are Bayesian posterior modes (EM
algorithms, MAP estimation)

• Full Bayesian analysis using stochastic simulation methods (Markov chain Monte Carlo simulation,
Gibbs sampling): see discussion in the binary regression context
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