
Statistics & Gene Expression Data Analysis Note 7: Bayesian Regression

♠ Conjugate Priors on Regression Parameters

• Model in matrix form:
y = X′β + ε

• Use notation H = X′ for comparability with traditional statistics notation: H is n× p design matrix

y = Hβ + ε, ε ∼ N(0, σ2I) = N(0, φ−1I)

♠ LSE formulæ:

•
β̂ = VH′y and V−1 = H′H

♠ (Simple) Standard Shrinkage Priors

• Conjugate normal prior centred at zero: shrinkage towards zero
• Genes centred: zero is canonical “null” hypothesis of no (partial) association
• Scale: scale of gene expression, standardised scales

β|φ ∼ N(0, τφ−1I)

• Intercept: include in β - different status: different scale?

β|φ ∼ N(0, φ−1C−1)

• Prior precison matrix C (up to constant φ) is diagonal – common value τ−1 for genes, possibly different
(larger) for intercept

• Prior on residual variance/precision: φ ∼ Ga(a/2, b/2) with prior variance estimate b/a and degree of
fredom a. Vague reference prior is special case a, b → 0

♠ Features of Posterior Under Shrinkage Prior

• β|φ,y ∼ N(b, φ−1B−1)
• B = C + H′H and b = B−1H′y
• Special limiting cases: vague prior (zero precision) - B = H′H and b = β̂

• Otherwise, shrinkage towards zero induced by prior: ||b|| < ||β̂||
• Decision Theory: Bayes’s estimates improve expected performance in estimating β

- quadratic (or other convex) loss functions
- Bayesian and frequentist measures of risk in estimation

• In practical terms, shrinkage generally stabilises/regularises estimation and improves robustness in
predictions

• Large p questions: LSE/likelihood methods inapplicable – need for regularisation
• Log posterior (conditional on φ) = log likelihood + log prior: a constant plus a term proportional to

(y−Hβ)′(y−Hβ) + β′Cβ

• Posterior mean/mode b represents shrunken/regularised MLE (=LSE)
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♠ Marginal Posteriors for b and φ

• φ|y ∼ Ga(a′/2, b′/2) with a′ = a + n and b′ = b + q where q > 0 can be written in one of several useful
forms:

- simplest for computation: q = y′e where e = y−Hb is the estimated residual vector
- quadratic form representation: q = y′P′y where P = I−HB−1H′

- interesting limiting case of vague reference prior: we know b → β̂ and now also q → usual residual
sum of squares in LSE regression with P → H(H′H)−1H′

• Common point estimate of σ2 = φ−1 is reciprocal of posterior mean of φ, namely s = b′/a′

• β|y ∼ Ta′(b, sB−1)
- credible intervals for elements of β are derived from Student T distribution on a′ degrees of freedom

• (see matlab code: mregbayes)
• Role of C, Key example:

- C1,1 =large (intercept term, vague prior)
- Ci,i = τ−1 otherwise – common precision for (common scale) genes
- Marginal likelihood function for τ (see matlab code, examples) to assess τ. Can be shown that

marginal likelihood p(y|τ) implies

log(p(y|τ)) = constant + 0.5 log(|C|/|B|)− 0.5n log(y′e)

♠ Shrinkage Priors More Generally: Considerations

• Different degrees of shrinkage across variables (genes) via different diagonal elements in C
• General question of learning from data about shrinkage parameters: inference on C generally
• Orthogonal designs: e.g., Factor regressions and other models: design is orthogonal (by design!)

- H′H is diagonal
- so that B is diagonal when C is
- elements of β are uncorrelated under the posterior as well as the prior (dependent only through

scale φ)
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