
Statistics & Gene Expression Data Analysis Note 8: Binary Regression

♠ Outcomes and classification probabilities

• Expression level vector xj on array (tumor sample, etc) j
• Binary outcome: zj = 0 or 1

– codes a clinical or physiological endpoint, state or outcome
– e.g., primary breast cancer ER+ (zj = 1) versus ER− (zj = 0)

• Probability model estimates πj = Pr(zj = 1) based on available information and data
– Fit a model to estimate the πj in training sample j = 1, . . . , n

classification, discrimination of cases in training sample
– Evaluate/estimate πj for validation cases j = n + 1, n + 2, . . .

predictive classification, validation, prognosis

♠ Binary regression models

• Linear regression model based on regression functions µj = x′jβ
– linear combinations, linear scoring, of expression levels of genes
– p−vector of regression parameters β, one for each gene

(plus intercept term β0)
• Idea: model πj as a function of xj in a similar fashion

– But 0 < πj < 1 for probability, and µj is real-valued
– Need truncation or transformation
– Standard statistical models transform from real-value to (0, 1) using a specified non-linear function:

mapping µj to πj

• Logistic regression:
πj = 1/(1 + exp(−µj))

• Probit regression:
πj = Φ(µj)

where Φ is standard normal cumulative distribution function
• Others ... all similar in form (any continuous distribution function does the trick)

♠ Probit models

• One nice, and important, interpretation: Latent threshold for 0/1
• Multiple regression outcome yj = x′jβ + εj on array j

i.e., yj = µj + εj

• with a standard Gaussian (or normal) error term εj ∼ N(0, 1)
• yj is latent – i.e., not observed, unknown, hidden
• The probability that yj is positive is πj = Φ(µj)
• A “hidden” underlying threshold mechanism in which a (weighted, super-gene measure of) expression

levels determine the probability of outcome
• Also, zj = 1 if and only if yj > 0

– latent variable is positive for ER+ cases, negative for ER− cases
– could precisely classify cases if we could observe the latent yj , but we do not; result is the binary

probability model
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♠ SVD regression and Bayesian analysis

• Dimension problem: p = 000’s of genes, n =few microarrays. Ill-posed estimation problem – many
more variables than data points. May use SVD regression ideas, to map to factor regression x′jβ = f′jθ
(see Note 6) using the SVD analysis of expression data matrix X

• As in Note 6, θ = B′β or θ = DA′β
• Multiple regression on the factor variables themselves as predictors
• n predictor variables, not p
• Regression parameter vector θ to estimate
• Dimension reduction of inference/estimation problem when p > n, as is the case in gene expression

analyses
• Formal inference and prediction can be based on Bayesian analysis and its implicit stochastic regulari-

sation of the estimation problem
– remove some of the “least variable” factors
– apply Bayesian analysis to the rest

• Corresponding estimation of β via β = AD−1θ

♠ Software, Computation and Summary

• Point estimate analysis: iterative computation of estimates of θ that are Bayesian posterior modes (EM
algorithms, MAP estimation)

– Choose a subset of genes to use in X
– e.g., screen genes to choose the “top 100” in terms of raw sample correlation with ER or other

binary outcome
– Fit model on this reduced subset, using SVD regression
– Point estimates of θ and corresponding β

• Full Bayesian analysis using stochastic simulation methods (Markov chain Monte Carlo simulation,
Gibbs sampling)

– iterative computation of simulation samples of values of θ whose distribution can be summarised
to represent the information in the data about θ in terms of point estimates (the average sample
value, for example), and probability intervals (taking fractiles/percentiles of the sample values).
Map these values to corresponding values of β to summarise too – effects of individual genes on
analysis

• Estimated or fitted classification probabilities in sample: πj = Φ(µj) with µj = x′jβ
– point estimate β̂ implies estimate µ̂j and hence estimates of probabilities π̂j = Φ(µ̂j)
– simulation samples of values of β imply corresponding simulation samples of values of µj and hence

of the probabilities πj . Summarise by averages, percentiles for interval estimates, etc

♠ Cross-validation and Prediction

• Include “validation samples” to be predicted to assess the realistic utility of the model in “forecasting”
the probabilities of 0/1 outcomes for new cases: inference on πj for j = n + 1, n + 2, ... etc

• Also useful to explore One-at-a-time cross-validation studies, also known as Hold-one-out studies
– Hold out sample i = 1, and fit model to cases 2, . . . , n
– Estimate/infer π1 to to assess how well case 1 is predicted based on the others
– Repeat for case i = 2, then i = 3, and so forth

• Formal and “honest” assessment of model fit and adequacy
• Identifies “interesting” cases, those that fit least well
• Reflects real-life context of application of models
• n.b., if screening genes to select a subset, must do so separately in each CV analysis
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