
Statistics & Gene Expression Data Analysis Note 9: Gibbs Sampling in Linear Regression

A specific example of Gibbs sampling - canonical Markov chain Monte Carlo method for calculations in
Bayesian statistical models, as well as a key applied model class.

♠ Simulation of Posteriors

• For any statistical model, simulated values of posterior distributions are nowadays the standard in
statistical computation: summarise large samples of parameter values from a posterior distribution to
easily understand the information contained in that posterior about the parameters

• MCMC methods, such as Gibbs sampling, generate simulations sequentially using Markov chains
• Gibbs sampling represents an approach in which sets of coupled conditional posteriors derived from the

model are used for these simulations
• Here’s a key example

♠ Prior and Posterior in the Linear Regression Model: Multiple Shrinkage Example

• Example: Now take β ∼ N(0,C−1) and we’ll take the precision as diagonal, with diagonal elements
(multiple shrinkage factors) now to be estimated along with the regression parameter and precision φ.
Note that this is a bit different to the conditionally conjugate prior of the standard regression earlier –
the error precision is no longer included in the prior for β. This is a modification of the analysis that
relaxes that strict adoption of a traditional conjugate prior – we are freed from the need to impose
strict conjugacy now that we’re using MCMC methods.

• Write C−1 = diag(τ1, τ1, . . . , τp) with prior variances τi defining element-wise shrinkage parameters for
the individual predictor variables.

• Now allow for learning on the shrinkage factors using priors that are independent gamma priors, τ−1
i ∼

Ga(k/2, h/2) for each j, say, then the relevant conditional posteriors are all available in conjugate forms.

♠ Conditional Posteriors

• p(β|y, φ,C)
We have a linear regression so that the standard results follow: The posterior (see earlier notes) is
multivariate normal

β|y, φ,C ∼ N(b,B−1)

with B = C + H′Hφ and b = B−1φH′y where H = X′ is the n× p design matrix.
For multivariate normals, use programmed functions (multivariate normal simulation is very standard
- e.g.. rMNorm.m or similar) or use direct Cholesky decomposition: e.g., by hand in matlab

b + chol(inv(B)) ∗ randn(p, 1)

for a single draw
• If we know y, β and C, then the conditional posterior for the error precision φ depends only on the

data and β through the residual ε = y−Hβ, and the relevant conditional posterior for sampling values
from is just the updated gamma distribution φ|y, β,C ∼ Ga((a + n)/2, (b + ε′ε)/2).

• The relevant conditional posteriors are also independent gammas, namely

τ−1
j ∼ Ga((k + 1)/2, (h + β2

j )/2).

This allows for learning on differential shrinkage parameters across variables.
• Exercise: Develop the MCMC with these priors.
• Think about choices of prior parameters: One general way to think about ranges of relevant parameter

values in binary regression models is to consider how variation in µj translates through to the probability
scale πj . Absolute values of µj bigger than 2 or so lead to probabilities that are already very extreme.
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