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Abstract

We discuss the implementation, development and performance of
methods of stochastic computation in Gaussian graphical models, with
a particular interest on the scalability of MCMC and other stochas-
tic search methods with dimension. Our perspective is that of high-
dimensional model search – we are interested in exploring the complex,
high-dimensional spaces of undirected graphical models that arise due
to uncertainty about model form. We review the structure and context
of undirected graphical models, Gaussian models and model uncer-
tainty (the so-called covariance selection problem). We discuss prior
specifications, including new priors over models and hyper-Markov pri-
ors on covariance patterns within models, and then explore a number
of examples using various methods of stochastic computation. This
discussion represents both a review of the theoretical structure of these
graphical models and of a number of key aspects and details of existing
computational ideas, as well as the point of departure for experimen-
tation with MCMC methods. We then discuss alternative stochastic
search ideas, and in examples compare and contrast MCMC meth-
ods with a novel stochastic model search approach. We summarize
our experiences in trying to use these methods in problems in low
(12-20) to moderate (150) dimensions. The examples combine simple
synthetic examples with data analysis from gene expression studies.
We conclude with comments about scalability of the approaches stud-
ied and the need and potential for new computational methods in far
higher dimensions, the need for new theoretical insights, and alter-
native constructive approaches to Gaussian graphical modeling and
computation.

Keywords: Decomposable Models, Non-decomposable models, Markov
chain Monte Carlo, Shotgun Stochastic Search, Parallel implementation

1 Introduction

The last decade or so has witnessed an essential revolution in the statistical
sciences, based on developments in stochastic simulation methods for scien-
tific computation. The impact on applied Bayesian statistics has, of course,
been particularly notable, with the development of MCMC methods enabling
application of increasingly rich and more relevant mathematical models. In
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tandem with model complexity is the radically increasing capacity to gener-
ate data sets involving many, many variables. From high-frequency finance
and enormous marketing databases to gene expression studies in functional
genomics, we are now faced with applied problems typified by very high-
dimensional variables and/or parameter spaces. The canonical use of meth-
ods of stochastic computation in searching over spaces of candidate models
raises challenges of both statistical and computational efficiency as well as
basic feasibility. As dimension escalates, the increasing need to address these
challenges promotes a research focus on the scalability of existing computa-
tional methods, and an increasing interest in novel computational strategies.

We are interested in precisely these questions – statistical and compu-
tational efficacy, and scalability with dimension – of stochastic computa-
tional methods used to explore spaces of Gaussian graphical models. In a
graphical model of a multivariate distribution, nodes represent variables and
edges represent pairwise dependencies, with the edge set defining the global
conditional independence structure of the distribution. The methodological
issues faced, as dimension grows, include questions of the nature and con-
sistency of prior specification (priors over graphical structure, and priors for
parameters on any single, specified graph) and then the very challenging
problem of searching over the space of graphs to identify subsets of inter-
est under the theoretically implied posterior distributions. This represents
a complex variable/model selection problem for which a number of compu-
tational methods have been suggested. But, in problems of many variables,
little is known about the performance and scalability of stochastic computa-
tional approaches.

Understanding the conditional independence structure is a critical, indeed
central element of exploratory and confirmatory data analysis, and especially
so in trying to “make sense” of problems in which the number of variables
far exceeds the number of observations. This is the case in examples from
genomics involving gene expression data analysis – a key example and moti-
vating context for us.

We focus on undirected graphical models – a central context that has
received a good deal of interest in the computational statistics literature in
recent years. An undirected Gaussian graphical model is an average (with
respect to the posterior of the covariance matrix) over multivariate normal
distributions with a common conditional independence structure. The graph
G consists of a vertex for every variable, and a set of edges E. Two variables
a and b are conditionally independent given the remaining variables if, and
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only if, {a, b} /∈ E. The analysis challenge is inherently one of model uncer-
tainty and model selection: we are interested in exploring “graph space” and
identifying graphs (conditional independence structures) that are most ap-
propriate for a given data set as measured by the posterior distribution over
graphs; inference on variable dependencies, and prediction, is then based on
parametric inferences within a set of selected graphs.

A number of recent papers have addressed the questions of improving
computational methods for estimating undirected Gaussian graphical mod-
els. A key focus in this literature has been on decomposable graphical
models; for example, Giudici and Green (1999) give new, easily and effi-
ciently computable conditions for determining if adding an edge to a graph
maintains the decomposable property (see Appendix B for details). Wong
and Carter (2002) detail how the decomposition changes between two such
graphs differing by a single edge. Understanding the “local” nature of these
changes leads to an efficient formula for computing marginal likelihood ra-
tios for comparing two neighboring graphs. This general line of development
has recently been extended beyond decomposable graphs, with Monte Carlo
methods for computing marginal likelihoods for non decomposable models,
Roverato (2002), Atay-Kayis and Massam (2005), and Dellaportas, Giudici
and Roberts (2003) that are of immediate utility. Alternative, determinis-
tic methods using a combination of approximations and prior specifications
that substantially simplify the computation of these marginal likelihoods are
developed by Wong, Carter and Kohn (2003).

Despite these advances, and the pressing need to develop methodology
for increasingly large high-dimensional problems, the recent literature main-
tains a general focus on small problems (Wong Carter and Kohn, 2003, is a
notable exception) treating undirected Gaussian graphical models and high
dimensional data as an unlikely pairing. This motivates our focus on model
search and selection approaches in higher-dimensional contexts. After re-
viewing some of the structure and recent advances for undirected graphical
models (Sections 2, 3 5, 6), we summarize some of our experiences in trying
to utilize some of these methods in problems with a moderate (12-20) to
large (150) number of variables (Section 9). We also introduce new method-
ology motivated by these experiences, including priors over graph space that
encourage sparsity (Section 4) and a parallelizable stochastic search method
for rapid traversal of spaces of graph (Section 8). The examples combine
simple synthetic examples with data analysis from gene expression studies.
We conclude the paper, covering review of prior specification and compu-
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tational approaches in Gaussian graphical models, with discussion of novel,
alternative constructive approaches that are able to move to far higher di-
mensions, comments about the potential for theoretical advances to lead to
improvements in stochastic computation in these models, and also for hybrid
approaches that combine “aggressive” moves in complex model spaces with
the tried-and-tested “local move” approaches that underlie current MCMC
methods. We also comment on the need for increased development of dis-
tributed computational tools.

2 Graphical Models and Graph Structure

Graphical models provide representations of the conditional independence
structure of a multivariate distribution as well as access to efficient algo-
rithms for computation of conditional and marginal densities (Whittaker
1990, Lauritzen 1996, Andersson, Madigan, Perlman, and Richardson 1998,
Cowell, Dawid, Lauritzen, and Spiegelhalter 1999) . The computational ef-
ficiencies arise through decompositions of the sample space into subsets of
variables (graph vertices) based on their graphical relationships. The joint
distribution of the variables is Markov over its graph, so likelihoods, and
prior and posterior densities, can be computed separately on the subsets of
vertices and then reassembled into a likelihood or density incorporating all
variables (Hammersley and Clifford 1971, Dawid and Lauritzen 1993). Sub-
sets of variables that are complete (have all possible edges between them filled
in, or equivalently have no conditional independencies between them) play a
special role.

The basic terminology and ideas for graphical models (Cowell, Dawid,
Lauritzen, and Spiegelhalter 1999), and the notation used here, begin with a
graph G = {V, E} where G is defined over a the set of vertices (the variables)
V by the edge-set E; two variables a and b are neighbors in G if, and only
if, the edge (a, b) ∈ E. A complete graph on p vertices has all

(
p
2

)
edges;

otherwise, the graph is incomplete. The incomplete graph G decomposes
into disjoint subgraphs A, B and C (with A ∪ B ∪ C = G) if C is complete
and separates A and B (any path from a vertex in A to a vertex in B goes
through C). The subgraph C is a separator. The decomposition is proper if
neither A nor B is empty. If the separator C is always chosen to be minimal
(so that it does not contain a proper subgraph that separates A and B)
then iterative, proper decomposition of the subgraphs A ∪ C and B ∪ C
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ultimately results in the prime components of a graph: a sequentially defined
collection of subgraphs that cannot be further decomposed. See Figure 1 for
an example.

Any connected graph can be represented as a tree of its prime compo-
nents – a junction tree. In the junction tree, each prime component, denoted
by Pi, is a node; if two nodes share a set of vertices, every prime compo-
nent on the path between them in the junction tree also contains that set
of vertices. A set of vertices shared between two prime components forms a
complete subgraph (from the definition of decomposition). The sets of ver-
tices shared by adjacent nodes in the junction tree are called the separators
of the junction tree, denoted by Si. An example is shown in Figure 2. For
graphs with more than one connected component, a junction tree exists for
each connected component; the collection of junction trees is called a junction
forest. Efficient algorithms for producing the junction tree representation of
any specified graph are discussed in Appendix A.1. A full development of
the basic graph theory useful in computation of probabilities and densities on
decomposable can be found in Cowell, Dawid, Lauritzen, and Spiegelhalter
(1999); Dobra and Fienberg (2000) reviews this material and extends it to
non-decomposable graphs.

As a junction forest contains no cycles (loops) among its nodes, we can
define a perfect ordering of the prime components and separators. That is, an
ordering of prime components (Pi) and separators (Si) as P1; S2, P2; S3, P3; . . .
where Si is the intersection of Pi and all lower numbered components. We
call the prime component sequence Gi and the separator sequence Si More
than one perfect ordering may exist for any given graph.

If all the prime components of a graph are complete, the graph is said
to be decomposable. Maximal complete subgraphs are called cliques, so the
prime components of a decomposable graph are all cliques. When we are
referring exclusively to prime components that are cliques we will use C to
denote the component rather than P . In Gaussian graphical models, the dis-
tributional properties of sets of variables represented by complete graphs are
well understood: they have unrestricted multivariate normal distributions.
Thus decomposable graphs have distributional properties that make them
particularly tractable, as we shall see below.

6



1

2

5

4

6
7

8
9

3

Decompose with
Separator  2,5 

(a)

2

5

4

6
7

8
9

3

1

2

5

Decompose with
Separator 4,6 

(b)

2

5

4

6

3

1

2

5

4

6
7

8
9

(c)

2

5

4

6

1

2

5

4

6
7

2
4

3

6
7

8
9

Complete 
decomposition

(d)

Figure 1: An example of how iterative decomposition of a graph produces
its prime components.

7



S=2,4

S=2,5

S=6,7

S=4,6

2

5

4

6

2

5

4

6 7

2
4

3

6 7

8 9

1

Figure 2: Representing a graph as a junction tree, a tree of its prime com-
ponents
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3 Gaussian Graphical Models

3.1 Density Factorization and Likelihood

The factorization of joint distributions that satisfy the conditional indepen-
dencies implied by the edge structure of a given graph is key to the develop-
ment of graphical model analyses. In general, a p−vector random variable y
has a multivariate distribution p(y) that, on the specified graph G, factorizes
into terms corresponding to the prime components and separators of any
junction tree representation of G, i.e.,

p(y) =

∏
P∈Gi p(yP )∏
S∈Si p(yS)

(1)

where yP and yS represent the variable subsets on the components and sep-
arators. In the special case of a multivariate Gaussian distribution, the for-
mulation in terms of a structured covariance matrix – or, more directly, for
the inverse covariance matrix, or precision matrix – clearly isolates the key
structure. With a non-singular covariance matrix Σ, hence precision matrix
Ω = Σ−1, each term in the decomposition is a multivariate Gaussian with
covariance matrices ΣPP ,ΣSS on prime components and separators. Hence,
for a random sample of size n, Y = {y1, . . . , yn}, the joint density function
on the graph G has the representation

p(Y |ΣG) =

∏
P∈Gi p(YP |ΣPP )∏
S∈Si p(YS|ΣSS)

.(2)

This provides the full likelihood function for Σ in problems of inference on
covariance structure for a given graph G. Dempster (1972) referred to the
problem of identifying relevant graphical structures via patterns of zeros in
the precision matrix as covariance selection, hence the use of that terminology
by subsequent authors including Wong, Carter, and Kohn (2003). Key to
this approach are the characterizing constraints on Ω implied by G via its
edge set E; that is, for any pair of variables (nodes) i, j, Ωij %= 0 if, any only
if, the edge (i, j) ∈ E. Hence, as we move across potential candidate graphs,
the implied structural zeros in the precision matrix induce constraints on
covariance patterns and hence parameters in Σ. (At the expense of notational
complication, we should properly index Σ by G; we avoid that for clarity of
notation, as it is understood throughout). Formal inference is inherently
structured by composition; from a Bayesian perspective, we are interested
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in posterior distributions p(G,Σ|Y ) = p(Σ|G, Y )p(G|Y ) for specified priors
p(G,Σ) = p(Σ|G)p(G).

3.2 Priors and Posteriors for Covariance Matrices

Giudici (1996) discusses the major approaches to prior specification for Σ,
comparing the “local priors” described in Dawid and Lauritzen (1993), and
the “global priors” based on the conditional approach in Dickey (1971).
These priors, based on inverse Wishart or constrained inverse Wishart forms,
have the desirable property that p(Σ|G) is consistent over graphs in the sense
of maintaining a common prior distribution for the (i, j) element of Ω when-
ever the graph does not constrain the (i, j) element to be zero. Giudici (and
other authors) previously stated the local priors were only suitable for de-
composable models, but Roverato (2002) has extended this class of priors to
general, non-decomposable models. Giudici (1996) suggests that the local
priors encourage sparser graphs; for that reason, we will use the local priors.
The computational issues are similar whichever class is chosen.

The prior p(Σ|G) is hyper-inverse Wishart, HIW (G, δ,Φ). Here Φ is a
positive definite matrix and δ > 0 are defining parameters, to be discussed
further below. The prior density factors in a form related to the likelihood
(2); in decomposable models,

p(Σ|G) =

∏
C∈Gi p(ΣCC |G)∏
S∈Si p(ΣSS|G)

(3)

For each complete prime component C of G (and each separator), the corre-
sponding sub-matrix of the covariance, ΣCC , has an inverse Wishart(δ,ΦCC)
prior:

p(ΣCC |G) =
|ΦCC

2 |( δ+|C|−1
2 )

Γ|C|
(

δ+|C|−1
2

) |ΣCC |−
δ+2|C|

2 exp{−1

2
tr(ΦCCΣ

−1
CC)}(4)

where Γk(a) is the multivariate gamma function:

Γk(a) = π
k(k−1)

4

k−1∏
i=0

Γ(a − i

2
).

Decomposable graphs consist entirely of complete prime components, so
equations (3) and (4) are sufficient to express the density of Σ when we
restrict consideration to decomposable graphs.
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The tractability of decomposable graphs is explained by the fact that
while the graphical structure determines which entries of the covariance ma-
trix appear in the density, the entries that do appear are in some sense
unconstrained. Grone (1984) showed that when considering an incomplete
covariance matrix (where only the entries corresponding to edges or on the
diagonal are filled in), if the matrix can be completed to be a positive definite
matrix consistent with the graph, this completion is unique. In this sense the
entries of the graph on the diagonal and corresponding to edges are “free”
and the other entries are functions of the these free entries. Grone also shows
that if the submatrices corresponding to the cliques in a decomposable graph
are positive definite, then a positive definite completion consistent with the
graph always exists. This is reflected in the density for decomposable graphs:
none of the “non-free” elements appear in either (3) or (4), so they do not
affect the density at all. The free elements are constrained only to define full
rank multivariate normal distributions on the cliques of the graph.

To deal with non-decomposable graphs we need an expression analogous
to (4) for a non-complete prime component P . Roverato (2002) provides a
generalization of the inverse Wishart as a prior density for ΣPP (thus we
will call the prior over Σ a hyper-inverse Wishart distribution just as in the
decomposable case). The prior is derived as the Diaconis-Ylvisaker conjugate
(Diaconis and Ylvisaker 1979) of the likelihood for Ω. In this density, some
of the non-free elements of ΣPP will appear; however, the true dimension of
the density corresponds to the number of free elements. The free elements
are determined by the edge set E, so we give the density argument as ΣE

PP .
The expression for the prior density is then:

p(ΣE
PP |G) ∝ |ΣPP |− δ−2

2 J(ΣE
PP ) exp{−1

2
Σ−1

PPΦPP}(5)

where ΣPP is the positive definite completion of ΣE and J(ΣE
PP ) is the Ja-

cobian of the transformation from ΩE
PP (which has zeroes for off-diagonal

entries not corresponding to edges in E) to ΣE
PP . This density is obtained

from a Wishart prior on ΩPP , conditioned on ΩPP consistent with G, by a
change of variables. While also based on conditioning, this prior differs from
the global prior of Giudici (1996) in that the conditioning is only used within
the prime components. When using the hyper-inverse Wishart prior with an
unrestricted graph space (non-decomposable models allowed) we constrain δ
to be strictly greater than 2.0; it has not been shown that (5) has a finite
integral for smaller δ.
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The hyper-inverse Wishart prior is conjugate in either the decompos-
able or unrestricted case; the posterior is hyper-inverse Wishart(G, δ∗ =
δ + n,Φ∗ = Φ + Sy), where Sy is the sum of products matrix,

∑n
i=1 yiy′

i.
In examples below, we use Φ = τI for specified constants τ (other choices
for Φ, such as an intra-class correlation structure, are considered in Giudici
and Green 1999). This choice is consistent with problems in which variables
represent measures of similarly defined quantities on a common scale. The
form of the posterior makes it clear that it is important to choose τ to be on
the appropriate scale, or it may dominate the effect of the data. In fact, in-
creasing τ promotes increased prior probability on more complicated graphs
(more edges); see Figure 3. The marginal prior mode for each variance term
(σii) is τ/(δ + 1); we use this quantity to set an appropriate value for τ . For
example, if the data has been standardized so all the variances are 1.0, τ
might be set to δ + 1.

3.3 Marginal Likelihood Functions over Graphs

The marginal likelihood function evaluated at any graph G is

p(Y |G) =
∫
Σ|G

p(Y |Σ)p(Σ|G)dΣ.

By noting that the prior normalizing constant and a factor of (2π)−np/2 from
the likelihood can be pulled outside the integral, this expression becomes a
simple function of the prior and posterior normalizing constants, h(G, δ,Φ)
and h(G, δ∗,Φ∗):

p(Y |G) = (2π)−np/2 h(G, δ,Φ)

h(G, δ∗,Φ∗)
(6)

For a decomposable graph, the hyper-inverse Wishart normalizing constants
are a function of the normalizing constants for the inverse Wishart clique
and separator densities given in (4):

h(G, δ,Φ) =

∏
C∈Gi |ΦCC

2 |( δ+|C|−1
2 )Γ|C|

(
δ+|C|−1

2

)−1

∏
S∈Si |ΦSS

2 |( δ+|S|−1
2 )Γ|S|

(
δ+|S|−1

2

)−1 .(7)

For non-decomposable graphs, the normalizing constant factors over the
prime components of the graph as implied by (3), but the normalizing con-
stants for non-complete prime components do not have closed form. Monte
Carlo methods for estimating these normalizing constants are discussed in
Section 5.
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Figure 3: Boxplot of posterior samples of the number of edges, for different
values of τ . The model and data are taken from the 12 node data in Section 9,
with the posterior restricted to decomposable models.

13



4 Priors over Graphs

A uniform prior over all graphs, or all decomposable graphs, assigns most
of its mass on graphs with a “medium” number of edges. The number of
possible edges in a graph with p nodes is T = p(p − 1)/2, so for large p
a medium number of edges is quite large. The mass function peaks around
p(p−1)/4 for general graphs; an estimate of the distribution when we restrict
to decomposable graphs is seen in Figure 4. In both cases the average number
of edges explodes very quickly as the number of nodes increases.

We would like to encourage parsimonious representations of the condi-
tional independence structure, and discourage the inclusion of spurious edges;
that is, to encourage sparse graphs, especially as dimension increases. To do
this we use a Bernoulli prior on each edge inclusion probability with pa-
rameter β = 2/(p − 1). Thus a particular graph with |E| edges has prior
probability β |E|(1− β)T−|E|. This distribution has its peak at p edges for an
unrestricted p node graph; the mode is somewhat lower when we restrict to
decomposable graphs, as seen in Figure 5. (Both Figure 4 and Figure 5 are
produced by sampling from the prior over graphs; the sampler used is the
Metropolis Hastings algorithm described in Section 7, but with the marginal
likelihood for each graph set to 1.)

Our approach to prior specification penalizes the number of edges, with
the view that if choosing between two edges we want the edge resulting in
the greatest increase of the graph’s marginal likelihood, regardless of the rest
of the graph’s structure. One could, of course, penalize other measures of
complexity such as the maximum or average prime component size. Wong,
Carter and Kohn (2003) developed an approach that equalizes the prior prob-
ability of graphs with different numbers of edges; for decomposable graphs,
this requires estimating the fraction of the total number of decomposable
graphs with each number of edges.

5 Likelihood Computations for Non-Decompos-
able Models

For non-decomposable models, the normalizing constants corresponding to
factors in equation (3) that represent non-complete prime components do
not have closed form. They can be expressed as integrals over the space of
ΣPP compatible with the edge set E of the prime component P . To simplify
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notation throughout this section, we will assume that P constitutes the whole
graph, so that Σ = ΣPP . We then have

h(P, δ,Φ) =
∫
ΣE |P

|Σ|− δ−2
2 exp(−1

2
Σ−1Φ)J(ΣE),(8)

or more simply, in terms of an integral over (Σ)−1 = Ω:

h(P, δ,Φ) =
∫
ΩE |P

|Ω| δ−2
2 exp(−1

2
ΩΦ)dΩE ,(9)

To estimate these integrals, we use the method presented in Atay-Kayis
and Massam (2003), here after AM05. They exploit two changes of variables:
from ΩE to φE , the free elements of the upper triangular matrix produced
by the Cholesky decomposition of Ω; and from φE to ψE , where ψ = φT−1,
and T ′T is the Cholesky decomposition of Φ. The point of this change is
that the free elements of ψ are independent normals and square roots of χ2

random variables, and thus are easily generated; the non-free elements can
be straightforwardly computed from the free elements. Equation (9), written
in terms of ψ, becomes:

h(P, δ,Φ) =

 |P |∏
i=1

2
δ+νi

2 (2π)
νi
2 Γ(

δ + νi)

2
)T

δ+bi−1
2

ii

 EψE (fT (ψE)),(10)

where νi is the number of neighbors of node i subsequent to it in the ordering
of vertices, bi is the total number of neighbors of node i plus 1, and

fT (ψE) = exp(−1

2

∑
(i,j)/∈E,i<j

ψ2
ij).(11)

Because the distribution of ψE can be sampled from, it is straightforward
to estimate the expectation of (11) by Monte Carlo. Note that when P
is a clique, (11) evaluates to 1 and (10) simplifies to the inverse Wishart
normalizing constant that appears in (4).

The method of AM05 builds on some of the ideas in Roverato (2002),
where an importance sampling method to compute (9) is developed. Rover-
ato uses an approximating decomposable model, with edge set E∗ containing
E. For this model, the change of variables from ΩE∗

to φE∗
is performed;

the distribution of the elements in φE∗
is easily sampled from because of the
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decomposability. If P is not decomposable, φE has more constrained ele-
ments than φE∗

; however, values for the constrained entries compatible with
E can be straightforwardly computed from the elements of φE∗

correspond-
ing to the free elements of φE. The resulting matrix is not precisely from the
distribution of φE, and thus is re-weighted in order to compute the relevant
expectation.

Dellaportas, Giudici and Roberts (2003) explore computing these normal-
izing constants in the context of global priors. However, at the component
level the global priors differ from the local priors only in the degrees of free-
dom for the conditional Wishart distributions; thus their method could be
used with local priors as well. Their method, like Roverato’s, uses a change
of variables, writes the normalizing constant as an expectation over those
variables, and uses importance sampling to estimate that expectation. The
sampling is based on multivariate normal random variables Zi. For a com-
plete graph with edge set E∗, ΩE∗

has a Wishart density. If the parameters
are δ,Φ, a value for ΩE∗

can be generated as
∑δ

i=1 ZiZ
′
i where the Zi have

covariance Φ. Note that this restricts them to sampling from Wisharts with
integral degrees of freedom. As for ψ and φ in the previous approaches, the
constraints on ΩE translate into non-free elements in the collection of Zi’s
that can be computed as functions of the free elements. After modifying the
non-free elements, the resulting variables (with an accompanying importance
weight) can be used to estimate the desired expectation.

An additional contrast between the methods is in the maximum prime
component size for a given number of data points. In Dellaportas’s method
and the method of AM05, the prime component size cannot exceed n − 1
where n is the sample size. Otherwise, the relevant submatrix of Φ∗ is not
necessarily invertible. In Roverato’s method, it is the number of variables in
the prime components of the triangulated graph that cannot exceed n − 1.

Throughout our examples we use the method of AM05 to compute marginal
likelihoods for non-decomposable graphs. We prefer this method to the im-
portance sampling approaches because it avoids the worries about the effi-
ciency of the importance sampler, i.e. how far the distribution of the gener-
ated φ’s or Z’s may be from the desired distribution, as it is based on direct
sampling via composition.
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6 Local Updates in MCMC Methods for De-
composable Models

In addition to having analytical expressions for their normalizing constants,
decomposable graphs have attractive properties in connection with “local
updates” in model search based on MCMC or other related methods. In
particular, for any two decomposable graphs G, G′ that differ by one edge
only, computing the marginal likelihood ratio p(Y |G)/p(Y |G′) is easy, requir-
ing far less computation than computation from scratch of two likelihoods.
This property is exploited in Giudici and Green (1999), and more fully ex-
plained in Wong and Carter (2002). Decomposable graphs differing by one
edge have very similar cliques and separators. Suppose the graphs differ by
an edge {a, b}. As both graphs are decomposable, we know that in the graph
including {a, b} this edge lies in a single clique (see Appendix B for more
details). Call this clique Cq. At most one of a and b lies in the separa-
tor Sq. Suppose the larger graph has k cliques. Theorem 3 of Wong and
Carter (2002) states that if a /∈ Sq the smaller graph replaces Cq with 2
cliques, Cq1 = Cq/a and Cq2 = Cq/b, and a perfect ordering of the cliques in
the smaller graph is C1, . . . , Cq−1, Cq1, Cq2, Cq+1, . . . , Ck, with corresponding
separators S2, . . . Sq−1, Sq, Sq2 = Cq/{a, b}, Sq+1 . . . , Sk. This fact, combined
with the factorization of the graph marginal likelihood implied by (7) means
taking the likelihood ratio between the two graphs results in cancellation
of all terms except those involving Cq, Cq1, Cq2 and Sq2 . In fact, Wong and
Carter (2002) also show that the determinants needed for (4) can be com-
puted using just two Cholesky decompositions, of ΦCq ,Cq and Φ∗

Cq ,Cq
(See

Appendix C for details).
In contrast, when we do not restrict ourselves to decomposable graphs

there is no such guarantee of significant cancellations in the likelihood ratio
between graphs that differ by one edge. While the likelihoods still factor
over prime components, a single edge change may radically alter the junction
tree of components. Imagine starting with a graph where all the nodes are
connected in a chain, and then adding the edge that completes the full cycle.
The single edge change moves us from a situation with p−1 prime components
to a single prime component; there is no cancellation in the likelihood ratio.
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7 Markov Chain Monte Carlo Algorithms

MCMC is a much used tool for exploring the space of graphical structures,
(e. g. Madigan and York 1995, Dellaportas and Forster 1999, Giudici and
Castelo 2003). In the context of Gaussian graphical models, Wong and Carter
(2002) use their results to construct a fixed scan Gibbs sampler for decom-
posable graphs, where each edge was updated according to its full conditional
distribution. Their results are also easily exploited in a Metropolis-Hastings
sampler. We constructed three samplers to traverse the space of decompos-
able graphs: fixed scan Gibbs, Metropolis-Hastings where the edge to be
updated was picked at random, and Metropolis-Hastings where the choice to
add or delete an edge was made, and then an edge was selected at random
from those appropriate for that type of move. There was no noticeable dif-
ference in performance between these closely related MCMC algorithms; the
results presented are from the add/delete Metropolis-Hastings sampler.

We also implemented the add/delete Metropolis-Hastings sampler for an
unrestricted search of graph space. When evaluating a proposal involving
a non-decomposable graph, the algorithm described in Section 5 is used to
evaluate the likelihood. This adds considerable computational burden; see
Tables 1 and 2. In addition, because the local computation properties de-
scribed in Section 6 no longer hold, we recompute the junction tree and entire
likelihood for each proposed graph.

For problems with even a moderate number of variables (either in the
decomposable or unrestricted space), the space to be explored is so large
that a graph’s frequency in the sample of graphs produced cannot be viewed
as reflecting its posterior probability. Indeed, many graphs are not revisited
after the chain leaves them. Posterior graph probability estimates must be
based on normalizing the posterior mass function using the visited graphs,
and these quantities will reflect the true posterior mass only to the extent
that the majority of the mass has been visited. However, the frequencies of
other quantities, such as the marginal probabilities of edge inclusion, can be
viewed as posterior probabilities.

8 Shotgun Stochastic Search Algorithms

If Markov chain Monte Carlo is viewed merely as a tool for visiting high
probability regions of graph space, there are certainly competing algorithms.
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The following algorithm is attractive because step two (which contains most
of the computational burden) can be easily parallelized.

1. Start with a graph G.

2. Select at random X1 neighbors (graphs differing by 1 edge), compute
their unnormalized posterior mass, and retain the top X2 ≤ X1.

3. From among the X2 top neighbors, propose the ith graph Gi as a
new starting graph with probability proportional to pα

i , where pi is the
unnormalized posterior probability of graph i and α is an annealing
parameter.

4. Return to step 2 and iterate. Maintain a list of the overall best X3

graphs visited.

In experimenting with this approach, we have typically used X1 = X2 =
T , so all the neighbors are examined at each stage. We refer to this as a
Shotgun Stochastic Search (SSS) method; at each step, we generate a large
number of candidate models, “shooting out” candidates in all directions, and
then following one (or, in a variant of the above, more than one) plausible
candidate. Algorithms of this type can accommodate either unrestricted
search of graph space, or restriction to decomposable graphs. When restrict-
ing to decomposable graphs, step 2 contains a check for decomposability;
non-decomposable graphs are considered to have zero posterior probability.

Normalizing the (unnormalized) posterior probabilities within the list of
the top X3 graphs reflects their posterior probability to the extent that they
contain most of the posterior mass. Unlike the Markov chain Monte Carlo
algorithms, edge frequencies, weighted by the estimated posterior graph prob-
abilities, also can be viewed as posterior probabilities only to the extent that
the whole posterior mass is captured in the top X3 graphs.

9 Simulated Examples

We first consider two simulated examples where the true underlying graph is
known. The first graph, pictured in Figure 6, has 15 nodes and is decompos-
able. The second graph, pictured in Figure 7 consists of 12 nodes in a single
non-complete prime component. Each data set consists of 250 observations.
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Figure 6: The true underlying decomposable graph on p = 15 nodes - the
first simulated example

22



1

2

8

3

9

4

5

6
12

7

10

11

Figure 7: The true underlying non-decomposable graph on p = 12 nodes -
the second simulated example
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The first simulated data set was inspired by patterns of daily currency
exchange fluctuations against the US dollar. Consequently, the data ranges
approximately between ±2%. We assume this range is about two standard
deviations, so σ2

ii ≈ 0.0001. We choose δ = 3 so τ = .0004. For the second
data set, Σ is actually a random draw from the inverse Wishart(I,3) con-
strained to obey the graph; thus we use τ = 1 and δ = 3. In both cases the
prior over graphs is the sparsity encouraging prior suggested in Section 4.
For the shotgun stochastic search, the annealing parameter was set at 1.0 for
simplicity. Performance of the algorithm in larger examples is very sensitive
to the annealing parameter; see Section 10 for details.

9.1 Difficulties in Estimating Normalizing Constants
in Non-Decomposable Models

To search the unrestricted model space, we must specify the number of ran-
dom draws that will be used to estimate the normalizing constants for non-
decomposable prime components. Initial runs with an insufficient number of
draws (1000, regardless of prime component size) revealed an important and,
we believe, both generic and limiting problem: high variance in the Monte
Carlo draws of values of the marginal likelihood (standard deviation on the
order of 2 units of log likelihood) created artificial local modes that it was
difficult to escape from, so greatly inhibiting the movement of the MCMC
chain.

To explore the behavior of the normalizing constant estimates, we exam-
ined non-complete prime components with different numbers of nodes. Two
examples for each size were selected from those which occurred during the
model search for the 15 variable data set. Because our search strategies de-
pend on likelihood ratios, it is the variance of the log normalizing constants
that are relevant for our purposes. Figures 8A and 8B show the variances
of the estimated log of the prior and posterior normalizing constants (where
the estimate is based on 100 random draws). The plotted variances are of
course estimates themselves, each based on 1000 separate normalizing con-
stant estimations.

The estimate of the log prior normalizing constant for a prime component
P has a systematically smaller variance than the corresponding estimate
for the posterior. This is not surprising since ψ, the sampled matrix from
which the estimate are computed, has on its diagonal χ2 random variables,
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whose degrees of freedom range from δ to δ + |P | in the prior, but δ + n
to δ + n + |P | for the posterior. In addition, the diagonal structure of Φ
reduces the variance for the prior normalizing constant. The effect of the
differing degrees of freedom along the diagonal of ψ is also reflected in how
the variance of the prior normalizing constant can increase with the size of
the prime component. However, in the posterior this effect can be dwarfed
by the inherent difficulty in estimating the normalizing constant for very low
probability components (see Figure 8B).

We also note that the ordering of the variables used when setting up ψ
effects the variance of the log normalizing constant. Figure 8C shows variance
differences in the estimated log of the prior normalizing constant that are the
result of different orderings. Each prime component considered is a cycle; in
the “optimal” configuration, each variable, except the first and the last, has
exactly one neighbor preceding it in the rows of ψ and one following it. The
“worst” configuration has the first |P |/2 variables each with two neighbors
occurring further down in the matrix.

The cause of this phenomenon can be seen by factoring equation (10) into
a constant C, and the part estimated by Monte Carlo, M :

C =

 |P |∏
i=1

2
δ+νi

2 (2π)
νi
2 Γ(

δ + νi

2
)T

δ+bi−1
2

ii

(12)

M = EψE(fT (ψE))(13)

Recall that νi is the number of neighbors of node i subsequent to it in the
ordering of vertices, so the relative sizes of C and M clearly depend on the
order in which the variables are listed in the matrix (although their product
is constant). In our experiments the variances of the estimates of M have
roughly the same order of magnitude, regardless of the ordering; however,
it is the variance of log(M) that is reflected in our plot. The first order
approximation to the variance of log(M) is 1/M2V ar(M). Thus, when an
ordering is chosen that increases C and decreases M , the variance of log(M)
increases. The “optimal” ordering for the prior normalizing constant of cycles
discussed above minimizes C, the “worst” ordering maximizes it.

Similar multiplicative differences due to different orderings were observed
in estimates of the log posterior normalizing constant; however, because of
the appearance of the data (through the Tii) in the expression for C, the
ordering of the vertices that minimizes C depends on the data as well as the
graph structure.
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Attempts to reduce variances of all log marginal likelihoods considered
and increase the number of Monte Carlo samples until the variance fell below
a fixed level resulted in unacceptable computation times. However, the plot
in Figure 8B is an arbitrary sample of graphs considered, and contains some
very low likelihood graphs. These low likelihood graphs have both M and
C small; the small M results in high variance for log(M). Figure 8D, a plot
of variances of log posterior normalizing constants for prime components in
accepted graphs, shows a trend more consistent with that in the plots of the
variance of the log prior normalizing constants. The variance of the “worst
case” for each component size seems to be a function of the size of the
component considered, |P |. Based on this, a scheme using |P | to determine
the Monte Carlo iterations used was developed. We used 1.5|P |3 for the
posterior normalizing constant and 0.5|P |3 for the prior normalizing constant.
This scheme does not monitor the variance of our estimated log posteriors,
but solved the problem with chain mobility discussed at the beginning of
this section. At the end of our run, all graphs with a log posterior within 2.0
of the top log posterior were reexamined with enough Monte Carlo runs to
ensure graph listed as “best” did indeed have the highest log posterior.

9.2 Results

For each example, the add-delete Metropolis was run for 10,000×T steps,
both restricting to decomposable graphs and in unrestricted graph space.
The search was started at the empty graph. The shotgun stochastic search
algorithm was run so that it had the same number of graph likelihood eval-
uations as the Metropolis-Hastings. (For the decomposable case, a count
of the “likelihood evaluations” includes examinations of graphs that are not
decomposable and thus have zero likelihood.) Each iteration of the shotgun
search algorithm includes evaluation of the T graphs that differ by one edge
from the current graph, so 10,000 stochastic search iterations were run.

The algorithms clearly use a similar amount of computing resources; they
are performing essentially the same calculations. However, the stochastic
search algorithm is parallelizable. The run times for both types of algorithm,
over the decomposable and unrestricted spaces, are given in Tables 1 and 2 to
demonstrate the advantage of being able to exploit multiple processors. The
Metropolis-Hastings was run on a Dell PC with a 1.8 MHz Xeon processor in
a Linux environment, and the shotgun stochastic search on a Beowulf cluster
with 26 dual processor, 1.4Mhz nodes.
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Figure 8: Relationship between the variance of the estimated normalizing
constants, based on 100 samples, and the size of the prime component. Four
cases are considered: A, the prior normalizing constant for components pro-
posed during the unrestricted model search for the 15 node data set, B, the
posterior normalizing constants for these components, C, prior normalizing
constants for cycles, using different variable orderings, and D, posterior nor-
malizing constants for components considered during the unrestricted model
search and subsequently accepted by the Metropolis-Hastings algorithm.
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Method Runtime Max log Graphs to first Time to first
(secs) posterior top graph visit top graph visit

MH-d 36 −2591.18 912 1
SSS-d 183 −2591.18 792 2
MH-u 15,220 −2590.94 415 2
SSS-u 2773 −2590.94 13,266 5

Table 1: Comparison between Algorithms of runtime, and quality of best
graph found, for the 12 node example. MH-d(u) refers to the Metropolis-
Hastings algorithm on decomposable (unrestricted) models, while SSS-d(u)
refers to the shotgun stochastic search method on decomposable (unre-
stricted) models.

Method Runtime Max log Graphs to first Time to first
(secs) posterior top graph visit top graph visit

MH-d 93 15633.76 349,484 36
SSS-d 234 15633.76 33,495 9
MH-u 513,077 15633.83 666,425 309,222
SSS-u 5930 15636.38 82,845 112

Table 2: Comparison between Algorithms of runtime, and quality of best
graph found, for the 15 node example. MH-d(u) refers to the Metropolis-
Hastings algorithm on decomposable (unrestricted) models, while SSS-d(u)
refers to the shotgun stochastic search method on decomposable (unre-
stricted) models.
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The “top” decomposable graphs – those identified with highest posterior
probability – are pictured in Figures 9 and 10; the top graphs from the
unrestricted search appear in Figures 11 and 9.2. Likelihood comparison with
true graphs show that each of these graphs have greater likelihood support
(as well as greater posterior support) than the true graph. For maximum a
posteriori graphs, it is also seen that in general the edges included have higher
estimated posterior probability than those not included. For all but the 15
node decomposable graph, the included edges all have higher probability than
the excluded ones. (The 15 node decomposable graph includes one exception
to this: the lowest probability included edge has probability 0.58, while the
highest probability excluded edge has probability 0.60.) Thus aggregating
high probability edges into a graph does not result in dramatically different
graphs than taking the best graph found.

The most probable graph found in the 12 node case and the decomposable
cases was insensitive to the starting point: the same graph was found starting
at the complete graph. The unrestricted search for the 15 node case starting
at the complete graph did not attain the likelihood for the top graph shown
in the table.

10 150 Node Example: Gene Expression Data

A more challenging problem is the analysis of expression data from p = 150
genes associated with the estrogen receptor pathway, taken from n = 49
individuals; the data come from the study of West et al (2001). The data
was standardized and the prior specified with δ = 3, τ = 4. In this context
our sparsity-encouraging prior can be interpreted as a belief that on average,
each gene has major interactions with a relatively small number of other
genes. In this large example, we add to the decomposable model prior the
restriction that the clique size not exceed the n− 1, in order to maintain the
identifiability of the model. For the unrestricted model, we constrain each
prime component to have fewer than n − 1 vertices.

The results from three algorithms are shown in Table 3. Times are now
given in hours. Because the unrestricted search Metropolis-Hastings showed
such poor performance, it was not used. In addition the best results for
the shotgun search algorithm were obtained when an annealing parameter
of 50 was used. This amounts essentially to deterministic hill climbing. In
this large example we see that even in the decomposable case the shotgun
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Figure 9: Highest log posterior graph for the 12 node example when the
search is restricted to decomposable models.
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Figure 10: Highest log posterior graph for the 15 node example when the
search is restricted to decomposable models.
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Figure 11: Highest log posterior graph for the 12 node example when the
search is unrestricted.
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Figure 12: Highest log posterior graph for the 15 node example when the
search is unrestricted.
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Method Runtime Max log Graph to first Time to first
(hrs) posterior top graph visit top graph visit

MH-d 18.02 −9417.97 100,466,818 6.51
SSS-d 0.03 −9260.84 1,698,600 0.03
SSS-u 6.29* −9227.68 44,700 3.39

Table 3: Comparison between Algorithms of runtime, and quality of best
graph found, for the gene expression example. *Starting from the best de-
composable graph found. MH-d refers to the Metropolis-Hastings algorithm
on decomposable models, while SSS-d(u) refers to the shotgun stochastic
search method on decomposable (unrestricted) models.

stochastic search algorithm finds much better graphs.
A large annealing parameter was also used for the shotgun stochastic

search in the unrestricted case. However, in this case the large annealing
parameter does not eliminate the stochasticity of the search, as the marginal
likelihoods are estimated with substantial error. Increasing the number of
iterations enough to get a sharp evaluation of the likelihood resulted in an
unacceptable computation time. Settling for a standard deviation of the log
likelihood of 1.0 resulted in evaluating the neighbors of 1 graph (a single step
in our stochastic search procedure) taking up to 40 computer days (1 day
on a 40 node cluster). Using this procedure, starting from the empty graph
and running until the estimated log posterior stopped improving, the best
graph found had log posterior -9364.67, worse than the best decomposable
graph. This graph may in fact represent a local mode not present in the
decomposable framework, or be the result of sub-optimal moves resulting
from the imprecise likelihood evaluation. The table shows the best graph
found starting at the best decomposable graph (the final estimate of the log
posterior for this graph was run with enough iterations to put the standard
deviation below .1 units of log likelihood.) A total of 10 cycles of evaluating
all neighbors were done. As these graphs were “close” to decomposable
graphs, the time required to evaluate them was also reduced versus graphs
with similar numbers of edges produced by the search starting at the empty
graph.
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11 Discussion and Other Approaches

Fitting of decomposable Gaussian graphical models using local move methods
is feasible for large numbers of variables, certainly up to 100 or so. Explo-
ration of model space to find high posterior probability graphs can be success-
fully carried out using direct search such as with our shotgun stochastic search
method; traditional MCMC is competitive for relatively small graphs. How-
ever, unrestricted (non-decomposable and/or decomposable) model search
is very much more problematic; it is easily accomplished for up to around
15 variables, but becomes very challenging quickly thereafter. Large prime
components induce a major computational burden via the Monte Carlo es-
timation of the needed normalization constants; this estimation can be very
unstable as dimension increases. Other methods are needed to deal with this
computational problem. Local search of unrestricted graphs around “good”
decomposable graphs or other candidate graphs is possible for 150 variables
and represents a promising strategy. In both these cases, the method of choice
is not a Markov chain Monte Carlo algorithm that attempts to sample from
the posterior, but rather the shotgun stochastic search that is designed to
generate many candidate graphs around a “current” graph, and then very
rapidly traverse graph model space around sequences of “promising” models.
The specific stochastic search algorithm we have introduced and exemplified
here is easily parallelizable and, indeed, designed for distributed implemen-
tation. More experimentation with the annealing schedules is needed to find
optimal strategies for different situations. For the 150 node decomposable
model search presented as an example here, deterministic hill climbing pro-
duced the best results in terms of rapid identification of high probability
graphs.

In the case of unrestricted search, new theoretical insights and methods
are needed to improve the capacity to estimate the normalizing constants
associated with non-complete prime components in a junction tree represen-
tation. One potential direction for research that would have immediate payoff
involves a characterization of the changes in prime component structure when
one edge moves are made from a current graph. Flores, Gomes and Olesen
(2003) address this problem in the context of directed graphs; their results
could be applied to provide characterization of prime component changes
analogous to the results for clique changes in decomposable graphs used in
Giudici and Green (1999). Correlating the marginal likelihood estimates of
graphs that are to be compared by using the same random number draws to
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estimate the normalizing constants involved may also improve computational
efficiency.

A rather different view – a constructive approach – is to approach the
development of graphical models through construction of specific classes of
directed models. Dobra, Hans, Jones, Nevins, Yao, and West (2004) have re-
cently introduced such an approach to high-dimensional Gaussian graphical
model construction, building the full joint distribution up via composition
using a triangular set of regressions representing the relationships between
variables. This is related both to the dependency network framework of Heck-
erman, Chickering, Meek, Rounthwaite, and Kadie (2000) and approaches
that model structure in the Cholesky decomposition of variance matrices; it
is innovative in the creation of a constructive approach that scales with di-
mension and also utilizes priors consistent across graphs. While the probabil-
ity models in that paper do not directly correspond to those considered here,
our model can be easily evaluated for the conditional independence structure
implied by the set of regressions. The regression based approaches are an
appealing complement to those discussed here because the sets of “promis-
ing” models generated can be widely separated in term of one edge moves.
Their method also can handle large sets of variables by using a prescreening
procedure that limits which variables will considered possible predictors of
others.

The method of Dobra et al (2004) also includes a complexity penaliz-
ing parameter; however, it does not directly correspond to our parameter
β. We found that setting their complexity penalty to 0.5/(N-1) resulted in
graphs with similar numbers of edges to ours. For the 150 node data set,
we generated a candidate conditional independence structures and evaluated
its posterior probability. The process took 24 hours. While longer than the
total time used to produce the best unrestricted graph in Table 3, it should
be noted this search procedure never restricts itself to decomposable graphs,
and consequently may visit much different regions of graph space than our
procedure for large variable sets, which starts from the best decomposable
graph.

Follow-on research to understand the theoretical differences, in terms of
prior specifications and the resulting impact on model search algorithms, be-
tween such constructive approaches and the MCMC/stochastic search frame-
work described above is of some interest. Constructive approaches based on
regressions inherently require an ordering of variables, and this can evidently
have a major impact on computational efficiency but, more critically, on the
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regions of graphical model space visited. However, our experiments with
MCMC methods and greedy stochastic search related to MCMC methods
lead us to conclude that a constructive approach of some form is needed
to scale beyond moderate dimensions. The example in Dobra et at (2004)
concerns gene expression data on over 12,000 genes, indicating that the ap-
proach is at least implementable with very large sets of variables; also, that
example apparently identifies graphs that are, in the biological context, in-
terpretable and consonant with known biology. Questions of adequacy of
search over graph model space are challenging, however, as they are for our
MCMC and search method. One general concept that seems very promis-
ing is to develop methods that are able to routinely generate “larger” jumps
in graphical model space – such as the referenced constructive method –
and then to integrate that with MCMC or search-based local-move methods
applied around regions of model space so identified.

Finally, it is apparent that radical progress in this area, as in other areas
of model and variable selection/search in the face of increasing dimension, is
unlikely, in the near term, if computations are restricted to serial, single pro-
cessors. Our experiments have heavily utilized a Beowulf cluster, and the de-
velopment of search and constructive methods beyond moderate dimensions
is, currently, simply not an option without embracing distributed computa-
tion. With increasing access to larger clusters for distributed computing, the
computational statistics research community stands at an opportune time to
substantially advance our ability to explore complex, high-dimensional model
spaces based on more aggressively embracing technology and integrating it
into day-to-day research.
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A Building the Junction Forest

A.1 Maximum Cardinality Search and Decomposable
Graphs

In this section we will consider how to obtain a junction tree representation
of a connected decomposable graph. To obtain a junction forest of a dis-
connected graph, the algorithm can be used on each connected component.
Obtaining this representation for non-decomposable graphs builds on this
algorithm and is considered in Section A.2. The junction forest is created
by first establishing a perfect ordering of the nodes of the graph, using the
following maximum cardinality search algorithm:

1. Pick a vertex v, and label it 1. While some unlabeled vertices remain,
iterate the following procedure:

2. Suppose k unlabeled vertices remain. From among the vertices with
the most labeled neighbors, pick a vertex and label it p − k + 1.

One can use this algorithm to check for decomposability of a graph by check-
ing at each iteration of step (2) that all the labeled neighbors of the vertex
to be added form a complete subgraph.

For decomposable graphs, the ordering of vertices established defines an
ordering of cliques, where the cliques are ordered by the highest numbered
node contained in each. This sequence has the running intersection property:
for all j > 1, let Sj be the set of nodes shared with lower numbered cliques.
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There is an i < j such that Sj ⊂ Ci, and the Sj’s are all complete. Thus
Sk is a separator between C1, . . . , Ck−1 and Ck. This property shows us that
the cliques can be arranged in a junction tree, where cliques are nodes, and
if two nodes share a set of vertices, every prime component on the path
between them in the junction tree also contains that set of vertices. Clique
Cj may contain the separators of and therefore be connected to many higher
numbered cliques in the junction tree, but it is connected to at most one
lowered number clique in the tree. This prevents loops in the connections
among cliques, telling us the structure is a tree. The highest numbered clique
is a leaf, connected to only one other clique. While there may be many perfect
orderings (for examples, leaves of the tree may be listed in any order among
themselves) the junction tree is a unique representation.

A.2 Non-decomposable Graphs

Non decomposable graphs also have a junction forest representation, but
in terms of the prime components P1 . . . Pk rather than cliques. To get at
this representation, we first triangulate the graph (add edges so that it is
decomposable). A perfect ordering is then built as in Section A.1. The
set of edges added during triangulation are called the fill-in edges. Now we
will remove the fill-in edges and consolidate the prime components that were
decomposed after the addition of these edges, while maintaining the running
intersection property in our ordering of prime components. Any of the fill
in edges not in S2, . . . , Sk can simply be removed. To deal with the other
edges, we start with the highest numbered separator Sj containing fill-in
edges. We consolidate Cj and the lower numbered component adjacent in
the junction tree that contains Sj, Ci. The sequence of cliques then reads
C1, . . . Cj−1, Cj+1, . . . Ck. This maintains the running intersection property–
any separators contained in Cj are now contained in the lower numbered
clique Ci. We repeat this process in sequence for each separator containing
fill-in edges.

B One edge changes that maintain decom-
posability

It has long been known that an edge deletion maintains decomposability if
that edge is contained in exactly one clique (see, for example, Frydenberg
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and Lauritzen 1989). Giudici and Green (1999) give an efficient condition
for checking whether an edge addition maintains decomposability. Decom-
posability is maintained if the vertices to be joined (a and b) are in different
connected components or if there exist R, T ⊂ V such that a∪R and b∪T are
cliques, and S = R∩T is a separator on the path between a∪R and b∪T in
the junction forest representation of the graph G. In our program, the junc-
tion forest representation of the graph is maintained, listing the cliques and
separators of each component. When considering adding an edge between a
and b in the same component, each possible combination of values of R and
T are considered (these are defined by the clique memberships of a and b).
For each of these combinations, it is determined whether R ∩ T is a separa-
tor. As demonstrated in Giudici and Green (1999), checking these conditions
results in substantial time savings over checking the decomposability of the
new graph with maximum cardinality search each time. Other conditions
for checking whether edge addition maintains decomposability are given in
Deshpande, Garofalakis, and Jordan (2001), however we found them more
difficult to implement in practice.

C Computing likelihood ratios for decompos-
able graphs differing by one edge

This algorithm computes the likelihood ratio between two decomposable
graphs, where the first differs from the second by the deletion of the edge
a, b. As established in Section 6, this ratio involves the subsets of Φ and Φ∗

corresponding to Cq, Cq1 = Cq/a, Cq2 = Cq/b, and Sq2 = Cq/{a, b}. Wong
and Carter (2002) give a technique whereby the ratio can be computed using
just two Cholesky decompositions, of ΦCqCq and Φ∗

CqCq
. They partition ΦCqCq

as

ΦCqCq =

(
ΦSq2Sq2

ΦSq2D

ΦDSq2
ΦDD

)
(14)

where D = {a, b}. The likelihood ratio can be written in terms of

ΦDD|Sq = ΦDD − ΦDSq2(ΦSq2Sq2)
−1ΦDSq2

Φaa|Sq = Φaa − ΦaSq2(ΦSq2Sq2)
−1ΦiSq2

Φbb|Sq = Φbb − ΦbSq2(ΦSq2Sq2)
−1ΦbSq2
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and the corresponding quantities for Φ∗ because∣∣∣ΦCqCq

∣∣∣ =
∣∣∣ΦDD|Sq2

∣∣∣ ∣∣∣ΦSq2

∣∣∣∣∣∣ΦCq1Cq1

∣∣∣ =
∣∣∣Φaa|Sq2

∣∣∣ ∣∣∣ΦSq2

∣∣∣∣∣∣ΦCq2Cq2

∣∣∣ =
∣∣∣Φbb|Sq2

∣∣∣ ∣∣∣ΦSq2

∣∣∣
(and similarly for Φ∗). The Cholesky decomposition LL’ of ΦCqCq as parti-
tioned in (14) is

L =

(
LSq2Sq2

0
LDSq2

LDD

)
where

LDD =

(
laa 0
lba lbb

)
.

Then

ΦDD|Sq = LDDL′
DD

Φaa|Sq = (laa)
2

Φbb|Sq = (lba)
2 + (lbb)

2

giving all the necessary quantities to compute the likelihood ratio.

D Computer Code

C++ code related to the work reported here is available at the web site
www.isds.duke.edu under the Software link. The algorithms for computing
the prime component decomposition are based on those in Dobra and Fien-
berg (2000). Each of the four main approaches developed and explored here
– Metropolis Hastings for decomposable graphs, Metropolis Hastings for un-
restricted graphs, stochastic search for decomposable graphs and stochastic
search for unrestricted graphs – is represented via a corresponding C++ pro-
gram that was used to perform the analyses presented. The two stochastic
search algorithms are designed to be implemented on a Beowulf cluster of
computers using MPI. The programs are designed for use with variables that
are centered at zero and on a common scale. In current form they accom-
modate priors over graphs of the form β |E|(1 − β)T−|E|, where the user sets
β, and inverse-Wishart priors over the graph parameters where the matrix
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parameter is of the form τI. Users can freely edit the code to modify aspects
of prior specification or search.

The two Metropolis-Hastings programs produce lists of all the graphs
visited and their unnormalized posterior probabilities. The two stochastic
search algorithms generate lists of the top X graphs in posterior probability,
(and the associated unnormalized posterior probabilities) where X is spec-
ified by the user. As the stochastic search programs run they also list the
incremental changes to the graph and its posterior for purposes of monitoring
the extent of movement around graph space. For the algorithms that are not
restricted to searches over decomposable graphs, the posterior probabilities
of non-decomposable graphs are evaluated via Monte Carlo.

Additional details can be found at the web site referenced.
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