
Some of the What?, Why?, How?, Who? and Where? of Graphics
Processing Unit Computing for Bayesian Analysis

(@March 15th 2010 – its a moving target!)

Marc A. Suchard (UCLA), Chris Holmes (University of Oxford)
&

Mike West (Duke University)

Over the last 20 years or so, a number
of Bayesian researchers and groups have in-
vested a good deal of time, effort and money in
parallel computing for Bayesian analysis. The
growth of “small research group” to “institu-
tionally supported” cluster computational facil-
ities has had a substantial impact on a num-
ber of areas of Bayesian analysis, enabling anal-
yses that are otherwise practically infeasible.
Parallel computing has also motivated new ap-
proaches to simulation and optimisation-based
Bayesian computations that aim to maximally
exploit the “master-slave” and “embarrassingly
parallel” computational model [e.g., 3, 4, 6].
In more recent years, increasingly prevalent
multi-core CPUs in standard servers, desktops
and laptops have engendered some interest in
relatively simple and easy multi-threading of
existing Bayesian analysis code, whether im-
plemented in low level languages (C/C++) or
through parallelisation facilities in environments
such as R and Matlab R©. Much progress in re-
search and in advancing the use of Bayesian
methods in increasingly computationally chal-
lenging problems has resulted. As we look
ahead, however, the potential impact of paral-
lel computation on both immediate research and
the development of more broadly useful soft-
ware is clearly – to some of us – dramatically
enhanced by the advent of scientific computa-
tion using desktop and laptop graphical pro-
cessing units (GPUs). Major new opportunities
for orders-of-magnitude speed-up in computa-
tion are emerging through GPU programming,
and the technology is cheap, both to purchase
and run, and easily available.

We have been exploring these opportunities

and developing a base of experience and ex-
amples in Bayesian analysis that bear out this
“opportunistic” view; each of us is now firmly
committed to exploiting GPU computation as a
norm in our research. Current directions for
technological developments include emerging-
technology GPUs that are squarely aimed at
the scientific computing community, clusters of
GPUs, and integration of GPU and CPU process-
ing in increasingly nimble commodity machines
that enable massive parallelisation on the desk-
top. This will be a big part of the compute en-
vironment for us all in a short few years, and
it seems clear (again to us!) that this tech-
nology promises to impact far more profoundly
on statistical computation and software devel-
opment than cluster facilities for parallelisation
ever have or are ever likely to.

Some of these experiences and examples
may be of broader interest to the Bayesian com-
munities and ISBA members, in particular.

What?
GPUs are dedicated numerical processors de-
signed for rendering 3-dimensional computer
graphics. They are the graphics card “engines”
in high-end graphics computers and gaming ma-
chines. In essence, a GPU consists of hundreds of
processor cores on a single chip, and each core
can be programmed to apply the same numeri-
cal operations simultaneously to each element of
large data arrays – the so-called single instruc-
tion, multiple data (SIMD) paradigm. Since the
same operations (called “kernels”) function si-
multaneously, GPUs can achieve extremely high
arithmetic intensity so long as we can enable suf-
ficiently fast and efficient transfer of required in-



put data “onto” the processers and, correspond-
ingly, of the ouput data “off” the processors.

As an extension to common programming
languages, CUDA [7, 9] opens up the GPU
to general purpose computing, and the com-
putational power of these units has increased
to the stage where they can process data
intensive problems many orders of magni-
tude faster than conventional CPUs. The de-
velopment of open-source libraries (OpenCL:
www.khronos.org/opencl) is advancing, and in
the coming year or two can be expected to sim-
ply mushroom as broader ranges of computa-
tional scientists press for, and themselves de-
velop, supporting software tools.

GPUs are graphics processing work-horses
in many standard desktop and laptop comput-
ers, as well as high-end graphical workstations.
Among manufacturers, the NVIDIA corporation
is way ahead in technology and in addressing
the increasing interest for scientific computa-
tion. The current NVIDIA GPUs include GTX
and Tesla varieties; these are inexpensive, com-
modity parallel machines that can be installed –
singly or in small multiples – in many desktops
and laptops, as well as in small cluster arrange-
ments. NVIDIA’s next-generation (2010 release
expected) Fermi GPU promises substantial in-
creases in numbers of cores, in processing speed
per core, in on-card memory shared by the hun-
dreds of cores for fast data access, input and out-
put, as well being more heavily targeted towards
computational uses in addition to graphics.

Why?
For scientific computing, GPU utility emerges
when computations are inherently “massively
parallel,” i.e., the computation can exploit paral-
lelization across many (hundreds or thousands
of) GPU cores simultaneously. This structure
emerges in many statistical models in Bayesian
analysis, while in others we may capitalize on
GPU architecture with appropriately restyled
computational strategies. Among our own in-
terests has been developing effective code for
Bayesian mixture models for data in several tens
of dimensions, with hundreds of mixture compo-

nents and with large data sets – millions to tens
of millions of observations. In such contexts,
MCMC or posterior mode search computations
are intensive, but massively dominated by the
within-iterate (whether MCMC or EM, or other)
calculations. In these “moderate-to-large p, large
k, very large n” problems, massive fragmenta-
tion of calculations induced by conditional inde-
pendencies are ideally suited to GPU paralleliza-
tion. GPU machines have potential to define
major speed-up – on cheaply and easily accessi-
ble hardware – for these computations as a rou-
tine, and the potential is realised; some of our
recent examples show that first-version imple-
mentations of MCMC and Bayesian EM in stan-
dard Bayesian mixture models enables scale-ups
on desktop personal computers that are simply
not achievable using multi-threaded CPU desk-
tops and simply impractical across distributed-
memory computing clusters. Scale-ups of 100-
fold in raw processing time are dramatic in terms
of the ability to run analyses routinely, and – as
this typical benchmark uses just first-generation
GPUs and supporting software tools – this is just
the start. Recent advanced Monte-Carlo meth-
ods such as population-MCMC, SMC samplers
and particle-MCMC [e.g. 1] are naturally aligned
to GPU computation, and effective parallel im-
plementations allow us to realize their advan-
tages in terms of increased mixing and explo-
ration of high-dimensional and complex target
densities for little overheard.

Novel, GPU-oriented approaches to modify-
ing existing algorithms and software design not
only provide the opportunity for vast speed-up,
however; critically, they also enable statistical
analyses that presently will simply not be con-
sidered due to compute time and other limita-
tions in traditional computational environments.
In one of our motivating application areas for
“massive mixtures”, that of routine analyses of
many, very large data sets in experimental bi-
ology studies [2], laboratory culture is hugely
resistant to the notion of accessing institutional
clusters – for reasons of cost and access, and
also due to the norms and established practice
of “computing in the lab.” Software for GPU-
enabled desktops will provide the opportunity



for complex, practically relevant Bayesian anal-
yses to move more aggressively into practice as
a result.

How?
GPU programming is fundamentally an exercise
in parallel programming. As such, key concepts
include those of clearly and explicitly identifying
the major, core compute demands of any specific
model analysis, and the inherent “bottlenecks”
that limit the ability to achieve efficiencies via
parallelization. MCMC algorithms, for exam-
ple, are intrinsically serial algorithms, but can
still benefit (potentially massively in large-scale,
highly structured problems) from GPU paralleli-
sation if the “per iterate” computations can be
parallelised. That GPU cores share memory on
the unit means that data stored “locally” can be
quickly and efficiently accessed, so consideration
must also be given to the basic programming is-
sues of simply moving data around.

For NVIDIA GPUs, CUDA is a parallel
computing technology, and programming lan-
guage, that enables access to GPU comput-
ing via modifications of standard computing
(in C/C++). OpenCL is an emerging library
that provides access to GPUs from several hard-
ware providers. Both require low-level pro-
gramming for which researchers new to GPU
programming should develop basic facility. On
the near horizon stand higher-level, flexible in-
terfaces for GPU programming, such as Thrust
(code.google.com/p/thrust) that provides many
standard parallel algorithms in an easier-to-use
form than CUDA. We currently recommend pro-
totyping using Thrust and then re-implementing
critical code parts in CUDA for raw speed and
performance.

To capitalise on the opportunities for
Bayesian computations that are offered by GPUs
– in the near term – requires some investment
of time and effort (though limited money!) to
adapt standard code to the GPU environment.
This involves relatively modest changes in pro-
gramming perspectives and strategy for algo-
rithm implementation, and can rely on the al-
ready established base of experience in a num-

ber of groups. The required investment in devel-
oping programming skills certainly challenges
researchers for whom low-level programming
has never been a focus, However, for researchers
and statistical programmers aiming to transform
the efficiency, potential impact and broader use
of Bayesian models and methods, the investment
will be extremely worthwhile. As a rough guide
we estimate that a programmer proficient in a
language such as C or C++ should be comfort-
able with programming in CUDA within around
4 weeks.

Our own groups have defined a base of ex-
periences that others may find useful – both as
entry points for perspective, and possibly also
in terms of access to existing code and exam-
ples. For example, we have defined some ini-
tial code and manuscripts with overtly “tutorial”
flavour, focusing on some more-or-less standard
Bayesian model contexts that will be of broad
use and appeal. We have developed these to
show the flow of the analyses so as to engage
researchers that may be interested in develop-
ing in this direction in related or other classes of
statistical models.

Who & Where?
Some links to groups involved in GPU computa-
tion for statistical research and application gen-
erally, as well as specific groups and projects in
Bayesian analysis that provide resources – pa-
pers, examples, software – include those noted
and linked below, among others. The current
authors are committed to working towards the
merging of their own sites to provide a central
resource for the field.

• www.stat.duke.edu/gpustatsci

Massively parallel GPU-based computing
for statistical science, and Bayesian anal-
ysis broadly, at Duke University, headed
by Mike West. This site links to arti-
cles and software with a focus on GPU
in Bayesian analysis broadly. Readers can
find there the tutorial-level “How to?” ma-
terial, as well as code, for efficient GPU
analysis of Bayesian mixture models de-
scribed in [12]. The site is developing

www.stat.duke.edu/gpustatsci


to include additional GPU software for a
range of complex Bayesian models (e.g.,
for the large-scale, spatial (and 3D spatio-
temporal) models of [5]) and to add links
and resources of broader interest to the
Bayesian community.

• www.oxford-man.ox.ac.uk/gpuss/

Bayesian GPUSS, the GPU stochastic simu-
lation group at Oxford University, headed
by Chris Holmes. Readers can find links
to current research papers and online re-
sources as well as a series of tutorial pa-
pers and coded examples, including the
overview paper on advanced Monte Carlo
methods for Bayesian inference [8]. The
site aims to maintain a list of papers pub-
lished in the field relevant to statistical
computation using GPUs.

• www.biomath.ucla.edu/msuchard/

Marc Suchard’s group at UCLA. This site
provides access to some of the first detailed
GPU work in Bayesian analysis in challeng-
ing problems in computational biology and
high-dimensional optiminization [10, 11,
14].

• brainarray.mbni.med.umich.edu/

Brainarray/rgpgpu/:
R+GPU. This R package off-loads several
common data-summary tools from R to the
GPU.

• www.stat.psu.edu/~mharan/

Murali Haran’s group at PSU. This site pro-
vides a GPU example involving slice sam-
pling [13].

• gpgpu.org/

The community site, resource and net-
working arena for researchers interested
in General-Purpose computation on Graph-
ics Processing Units.

• www.nvidia.com/page/home.html

www.nvidia.com/object/cuda_home_

new.html

The NVIDIA and NVIDIA/CUDA site for
CUDA progamming of GPUs; keep up with

the latest technology and software ad-
vances, and access scientific computing
networks.

• www.khronos.org/news/C124/

The Kronos Group web site with informa-
tion and resources related to the OpenCL
library that brings general purpose GPU
programming to a variety of hardware
platforms.

• code.google.com/p/thrust/

Thrust, Code at the Speed of Light. Thrust
is a CUDA library of parallel algorithms
with a high-level interface to enhance de-
veloper productivity.

References

[1] C. Andrieu, A. Doucet, and R. Holenstein.
Particle Markov chain Monte Carlo (with
discussion). J. Royal Statistical Soc. B, to
appear, 2010.

[2] C. Chan, F. Feng, M. West, and T.K. Kepler.
Statistical mixture modelling for cell sub-
type identification in flow cytometry. Cy-
tometry, A, 73:693–701, 2008.

[3] C. Hans, A. Dobra, and M. West. Shotgun
stochastic search in regression with many
predictors. Journal of the American Statis-
tical Association, 102:507–516, 2007.

[4] C. Hans, Q. Wang, A. Dobra, and M. West.
SSS: High-dimensional Bayesian regres-
sion model search. Bulletin of the Interna-
tional Society for Bayesian Analysis, 24:8–9,
2007.

[5] C. Ji, D. Merl, T.B. Kepler, and M. West.
Spatial mixture modelling for unobserved
point processes: Application to im-
munofluorescence histology. Bayesian
Analysis, 4:297–316, 2009.

[6] B. Jones, A. Dobra, C.M. Carvalho,
C. Hans, C. Carter, and M. West. Experi-
ments in stochastic computation for high-

www.oxford-man.ox.ac.uk/gpuss/
www.biomath.ucla.edu/msuchard/
brainarray.mbni.med.umich.edu/Brainarray/rgpgpu/
brainarray.mbni.med.umich.edu/Brainarray/rgpgpu/
www.stat.psu.edu/~mharan/
gpgpu.org/
www.nvidia.com/page/home.html
www.nvidia.com/object/cuda_home_new.html
www.nvidia.com/object/cuda_home_new.html
www.khronos.org/news/C124/
code.google.com/p/thrust/


dimensional graphical models. Statistical
Science, 20:388–400, 2005.

[7] D. Kirk and W. Hwu. Programming Mas-
sively Parallel Processors: A Hands-on Ap-
proach. Morgan-Kaufman, 2009.

[8] A. Lee, C. Yan, M.B. Giles, A. Doucet,
and C.C. Holmes. On the utility
of graphics cards to perform mas-
sively parallel simulation of advanced
Monte Carlo methods. Technical report,
http://arxiv.org/abs/0905.2441, 2009.

[9] NVIDIA-CUDA. Nvidia cuda com-
pute unified device architecture:
Programming guide version 2.0.
http://developer.download.nvidia.

com/compute/cuda/2_0/docs/NVIDIA_

CUDA_Programming_Guide_2.0.pdf,
2008.

[10] M.A. Suchard and A. Rambaut. BEA-
GLE: broad-Platform Evolutionary Analy-

sis General Likelihood Evaluator. http:

//beagle-lib.googlecode.com, 2009.

[11] M.A. Suchard and A. Rambaut. Many-
core algorithms for statistical phylogenet-
ics. Bioinformatics, 25:1370–1376, 2009.

[12] M.A. Suchard, Q. Wang, C. Chan,
J. Frelinger, A. Cron, and M. West.
Understanding GPU programming for sta-
tistical computation: Studies in massively
parallel massive mixtures. Journal of
Computational and Graphical Statistics, to
appear:–, 2010.

[13] M.M. Tibbits, M. Haran, and J.C. Liechty.
Parallel multivariate slice sampling. Tech-
nical report, Department of Statistics, PSU,
2009.

[14] H. Zhou, K.L. Lange, and M.A. Suchard.
Graphical processing units and high-
dimensional optimization. Technical re-
port, Department of Human Genetics,
UCLA, 2009.

http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf
http://beagle-lib.googlecode.com
http://beagle-lib.googlecode.com

