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A Posterior computation and MCMC algorithm

A.1 LT regression model

In the LT regression model defined by eqns. (1)-(3), we describe a MCMC algorithm for simu-

lation of the full joint posterior p(Θ, σ,β1:T ,d|y1:T ). We assume prior forms of the following: µi ∼
N(µi0, w

2
i0), (φi + 1)/2 ∼ π(φi), σ−2iη ∼ G(v0i/2, V0i/2), σ−2 ∼ G(n0/2, S0/2), βi1|Θ ∼ N(µi, v

2
i ),

and di ∼ U(0, |µi|+Kivi).

A.1.1 Sampling Θ and σ

Conditional on (β1:T ,d,y1:T ), sampling of the VAR parameters Θ reduces to generation from

conditionally independent posterior p(θi|βi,1:T , di), for i = 1 : k. First, the conditional posterior

density of µi is

p(µi|φi, σiη, βi,1:T , di) ∝ TNDi(µi|µ̂i, ŵ2
i )(|µi|+Kvi)

−1,

where TNDi denotes the density of a truncated normal for µi on Di = {µi : di < |µi|+Kivi}, and

ŵ2
i =

{
1

w2
i0

+
(1− φ2i ) + (T − 1)(1− φi)2

σ2iη

}−1
,

µ̂i = ŵ2
i

{
µi0
w2
i0

+
(1− φ2i )βi1 + (1− φi)

∑T−1
t=1 (βi,t+1 − φiβit)

σ2iη

}
.

A Metropolis-Hastings step draws a candidate µ∗i from this truncated normal, accepting the draw

with probability

min

{
1,
|µi|+Kvi
|µ∗i |+Kvi

}
.
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Second, the conditional posterior density of φi is

p(φi|µi, σiη, βi,1:T , di) ∝ π(φi)(1− φ2i )1/2TN(−1,1)×Ei
(φ̂i, σ

2
φi

){|µi|+Kiσiη/(1− φ2i )1/2}−1,

where φ̂i =
∑T−1

t=1 β̄i,t+1β̄it/
∑T−1

t=2 β̄
2
it, σ

2
φi

= σ2iη/
∑T−1

t=2 β̄
2
it with β̄it = βit − µi, and Ei is the

truncation region Ei = {φi : di < |µi| + Kiσiη/(1 − φ2i )1/2}. A Metropolis-Hastings step draws a

candidate φ∗i from this truncated normal, accepting the draw with probability

min

{
1,
π(φ∗i )(1− φ∗2i )1/2{|µi|+Kiσiη/(1− φ2i )1/2}
π(φi)(1− φ2i )1/2{|µi|+Kiσiη/(1− φ∗2i )1/2}

}
.

Third, the conditional posterior density of σ−2iη is

p(σ−2iη |µi, φi, βi,1:T , di) ∝ TGFi(σ
−2
iη |v̂i/2, V̂i/2){|µi|+Kiσiη/(1− φ2i )1/2}−1,

where TGFi is the density of the implied gamma distribution truncated to Fi = {σ−2iη : di <

|µi|+Kiσiη/(1− φ2i )1/2}, and

v̂i = v0i + T, V̂i = V0i + (1− φ2i )β̄2i1 +

T−1∑
t=1

(β̄i,t+1 − φiβ̄it)2.

A Metropolis-Hastings step draws a candidate 1/σ∗2iη from this truncated gamma, accepting the

draw with probability

min

{
1,
|µi|+Kσiη/(1− φ2i )1/2

|µi|+Kσ∗iη/(1− φ2i )1/2

}
.

Finally, σ is drawn from σ−2|β1:T ,d,y1:T ∼ G(n̂/2, Ŝ/2), where n̂ = n0 + T , and Ŝ = S0 +∑T
t=1(yt − x′tbt)2.

A.1.2 Sampling β1:T

Conditional on (Θ, σ,d,y1:T ), we sample the conditional posterior at time t, p(βt|β−t), sequen-

tially for t = 1 : T using a Metropolis-Hastings sampler. The MH proposals come from a non-

thresholded version of the model specific to each time t, as follows. Fixing st = 1, take proposal

distribution N(βt|mt,M t) where

M−1
t = σ−2xtx

′
t + Σ−1η (I + Φ′Φ),

mt = M t

[
σ−2xtyt + Σ−1η

{
Φ(βt−1 + βt+1) + (I − 2Φ + Φ′Φ)µ

}]
,
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for t = 2 : T − 1. For t = 1 and t = T , a slight modification is required as follows:

M−1
1 = σ−2x1x

′
1 + Σ−1η0 + Σ−1η Φ′Φ,

m1 = M1

[
σ−2x1y1 + Σ−1η0 µ+ Σ−1η Φ {β2 − (I −Φ)µ}

]
,

M−1
T = σ−2xTx

′
T + Σ−1η ,

mT = MT

[
σ−2xT yT + Σ−1η

{
ΦβT−1 + (I −Φ)µ

}]
,

where Ση0 = diag(v21, . . . , v
2
k). The candidate is accepted with probability

α(βt,β
∗
t ) = min

{
1,
N(yt|x′tb∗t , σ2)N(βt|mt,M t)

N(yt|x′tbt, σ2)N(β∗t |mt,M t)

}
,

where bt = βt ◦ st is the current LTM state at t and b∗t = β∗t ◦ s∗t the candidate.

A.1.3 Sampling d

We adopt a direct MH algorithm to sample the conditional posterior distribution of di, con-

ditional on (Θ, σ,β1:T ,d−i,y1:T ) where d−i = d1:k\di. A candidate is drawn from the current

conditional prior, d∗i ∼ U(0, |µi|+Kivi), and accepted with probability

α(di, d
∗
i ) = min

{
1,

T∏
t=1

N(yt|x′tb∗t , σ2)
N(yt|x′tbt, σ2)

}
,

where bt is the state based on the current thresholds (di,d−i), and b∗t the candidate based on

(d∗i ,d−i).

A.2 LT-VAR model

We detail sampling steps for posterior computations in the LT-VAR model where both the VAR

coefficients and covariance components of Cholesky-decomposed variance matrices follow LT-AR(1)

processes; see eqns. (6)-(7), and (9)-(12). Let Θγ = (µγ ,Φγ ,V γ) where γ ∈ {β,α,h}. Standard

MCMC algorithms for TV-VAR models are well documented; see, for example, Primiceri (2005),

Koop and Korobilis (2010), and Nakajima (2011). These form a basis for the new MCMC sampler

in our latent thresholded model extensions.

1. Sampling β1:T

Conditional on (Θβ,d,α1:T ,h1:T ,y1:T ), βt is generated using the MH sampler implemented

in Section . Note that the response here is multivariate; the ingredients in the proposal
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distribution are generalized to

M−1
t = X ′tΣ

−1
t Xt + V −1

β
(I + Φ′Φ),

mt = M t

[
X ′tΣ

−1
t yt + V −1

β

{
Φ(βt−1 + βt+1) + (I − 2Φ + Φ′Φ)µ

}]
,

and the MH acceptance probability is

α(βt,β
∗
t ) = min

{
1,
N(yt|Xtb

∗
t ,Σt)N(βt|mt,M t)

N(yt|Xtbt,Σt)N(β∗t |mt,M t)

}
.

2. Sampling α1:T

Conditional on (Θα,da,β1:T ,h1:T ,y1:T ) where da = {daij}, sampling α1:T requires the same

MH sampling strategy as β1:T based on the model (10)-(12).

3. Sampling h1:T

Conditional on (Θh,β1:T ,α1:T ,y1:T ), defining y∗t = At(yt −Xtβt) and y∗t = (y∗1t, . . . , y
∗
mt)
′

yields a form of univariate stochastic volatility:

y∗it = exp(hit/2)eit,

hit = µhi + φhi(hi,t−1 − µhi) + ηhit,

(eit, ηhit)
′ ∼ N

(
0,diag(1, v2hi)

)
,

where µhi, φhi and v2hi are the i-th (diagonal) element of µh,Φh and V h, respectively. As

in Primiceri (2005) and Nakajima (2011), we can adopt the standard, efficient algorithm for

stochastic volatility models (e.g., Kim et al. (1998), Omori et al. (2007), Shephard and Pitt

(1997), Watanabe and Omori (2004)) for this step.

4. Sampling (Θβ,Θα,Θh)

Conditional on (β1:T ,d) and (α1:T ,da), sampling Θβ and Θα, respectively, is implemented

as in Section . Conditional on h1:T , sampling Θh also follows the same sampling strategy,

although it does not require the rejection step associated with the thresholds.

5. Sampling (d,da)

Conditional on all other parameters, we generate the latent thresholds d and da using the

sampler described in Section .
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B Empirical evaluation of MCMC sampling
This appendix reports performance of the MCMC sampler for the LTM in the simulation exam-

ple. Figure 10 plots autocorrelations and sample paths of MCMC draw for selected parameters of

the simulation example (Section 3). In spite of non-linearity of the model structure, the autocor-

relations decay quickly and sample paths appear to be stable, indicating the chain mixes well. In

addition, MH acceptance rates are empirically high: about 80% for the generation of βt and αt,

about 40% for d and da, and about 95% for (Θβ,Θα) in the application to macroeconomic data.

Figure 10: Performance of the MCMC: Autocorrelations (top) and sample paths (bottom) of MCMC
draws for selected parameters in simulation example.

To check convergence of MCMC draws, the convergence diagnostic (CD) and relative numerical

efficiency measure (a.k.a., effective sample size) of Geweke (1992) are computed. Table 3 reports

the CDs (p-values for null hypothesis that the Markov chain converges) as well as inefficiency

factors (IFs) for the selected parameters. The CDs indicate the convergence of the MCMC run and

the effective sample size is fairy small relative to standard non-linear dynamic models.
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CD IF

µ1 0.326 5.0
φ1 0.582 22.1
σ1,η 0.378 107.2
σ 0.150 26.6
d1 0.503 52.1

Table 3: MCMC diagnostics: Convergence diagnostic (CD) of Geweke (1992) (p-value) and ineffi-
ciency factor (IF) for selected parameters in simulation example.

C Additional assessment summaries for US macroeconomic study
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(i) 1996/Q1-2001/Q3

(ii) 2006/Q2-2011/Q4

Figure 11: Posteriors of RMSFE from MCMC analysis of US macroeconomic data: (i) 1996/Q1-
2001/Q3 and (ii) 2006/Q2-2011/Q4, using NT-VAR (black) and LT-VAR (light) models. Plots are by
variable averaged across forecast horizons (left) and by horizon averaged across variables (right).
Note the uniform improvements under the LT structure, increased improvements as forecast hori-
zon increases, and increased ability of the LT-VAR models to maintain improved predictive ability
in the more volatile second period (ii). Details of RMSFE by variable and horizon, across the full
period of recursive out-of-sample forecasting from 2001–2011, are in Table 2.

7



D Application to Japanese macroeconomic data

D.1 Data

We analyze the m = 3 time series giving the quarterly inflation rate, national output gap and

short-term interest rate gap in the Japanese economy during 1977/Q1–2007/Q4, following previ-

ous analyses of related time series data (Nakajima et al. 2010; Nakajima 2011); see Figure 12. The

inflation rate gap is the log-difference from the previous year of the Consumer Price Index (CPI),

excluding volatile components of perishable goods and adjusted for nominal impacts of changes in

consumption taxes. The output gap is computed as deviations of real from nominal GDP, defined

and provided by the Bank of Japan (BOJ). The interest rate gap is computed as log-deviation of

the overnight call rate from its HP-filtered trend. One key and evident feature is that the interest

rate gap stays at zero during 1999-2000, fixed by the BOJ zero interest rate policy, and again in

2001–2006 when the BOJ introduced a quantitative easing policy. Iwata and Wu (2006) proposed

a constant parameter VAR model with a Tobit-type censored variable to estimate monetary pol-

icy effects including the zero interest rate periods. In contrast to that customized model, the LTM

structure here offers a global, flexible framework to detecting and adapting to underlying structural

changes induced by economic and policy activity, including such zero-value data periods. We take

the same priors as previous analyses.

Figure 12: Japanese macroeconomic time series (indices ×100 for % basis).

D.2 Forecasting performance and comparisons

We fit and compare predictions from the NT-VAR and LT-VAR models, as in the study of the

US time series. Based on evaluation of RMSFE across the out-of-sample forecasts for the final 4
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quarters, it is clear that the LT-VAR models perform best when p = 2 is assumed, while the non-

threshold TV-VAR models perform best with more elaborate models, taking p = 4. The fact that the

LTM strategy leads to improved short-term predictions based on reduced dimensional, and hence

more parsimonious models is already an indication of the improved fit and statistical efficiency

induced by latent thresholding.

Horizon (quarters)
1 2 3 4

RMSFE NT-VAR 0.253 0.387 0.525 0.633
RMSFE LT-VAR 0.225 0.263 0.311 0.321
Ratio LT-VAR/NT-VAR 0.889 0.680 0.592 0.507

Table 4: Forecasting performance for Japanese macroeconomic data: RMSFE for 1- to 4- quarter
ahead predictions from NT-VAR and LT-VAR models, averaged over the 3 variables at each horizon.

Some summaries of out-of-sample predictive accuracy appear in Table 4. We computed RMSFE

for ten different selections of subsets of data: beginning with the sample period from 1977/Q1–

2004/Q3, we fit the model and then forecast 1- to 4-quarters ahead over 2004/Q4–2005/Q3, and

then repeat the analysis rolling ahead 1 quarter at a time. Again, the LT-VAR model dominates,

improving RMSFE measures quite substantially at all forecast horizons and quite dramatically so at

the longer horizons. Improvement relative to the standard NT-VAR are much more distinctive than

that of the US macroeconomic data, providing almost half of RMSFE at the 4-quarter horizon. The

Japanese data include zero interest rate periods, therefore the benefit from time-varying shrinkage

is perhaps expected to be larger than in the US study.

D.3 Some summaries of posterior inferences

Figure 13 displays the posterior means over time of the time-varying coefficients, as well as

the posterior probabilities of sit = 0 for the LT-VAR model. Some marked patterns of time-varying

sparsity are observed for several coefficients. Figure 8 plots the posterior means, the 95% credible

intervals of aij,t and the posterior probabilities of saij,t = 0. Here a21,t has a relatively distinctive

shrinkage pattern, with a coefficient that varies slightly and is roughly 50% distinct from zero over

most of the time frame, whereas the other two elements – that link directly to the interest rate

series – are shrunk to zero with posterior probability close to one across the entire period.

Figure 9 graphs the posterior means of the stochastic volatility, hit and exp(hit/2), together with

their 95% credible intervals. Several volatile periods are observed for the inflation and interest rates

series around 1980. It is quite understandable and appropriate that the volatility of the interest rate

gap series is estimated close to zero during the zero interest rate periods.

Figure 5 displays posterior means of impulse response for one-, two- and three-year ahead hori-
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Figure 13: Posterior means of βt for Japanese macroeconomic data. Posterior probabilities of
sit = 0 are plotted below each trajectory. The corresponding indices of ct orB`t are in parentheses.
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Figure 14: Posterior trajectories of aij,t for Japanese macroeconomic data: posterior means (solid)
and 95% credible intervals (dotted) in the top panels, with posterior probabilities of saij,t = 0
below.

Figure 15: Posterior trajectories of hit and exp(hit/2) for Japanese macroeconomic data: posterior
means (solid) and 95% credible intervals (dotted).
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(i) NT-VAR model

(ii) LT-VAR model

Figure 16: Impulse response trajectories for one-, two- and three-year ahead horizons from the VAR
model (upper) and LT-VAR model (lower) for Japanese macroeconomic data. The symbols εa↑ → b
refer to the response of the variable b to a shock to the innovation of variable a. The shock size is
set equal to the average of the stochastic volatility across time for each series.
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zons. In this comparison, we fitted both the NT-VAR model and the LT-VAR using p = 2 lags. The

LT-VAR model provides econometrically reasonable responses: the responses of inflation and output

to an interest rate shock shrinks to zero during the zero interest rate periods for all horizons. This

is not obtained from the NT-VAR model; there the associated time-varying coefficients and covari-

ance components are fluctuating in non-zero values. The responses from the LT-VAR model indicate

that the reactions of short-term interest rates to inflation and output decay after the beginning of

the 1990s, and afterwards stay at zero due to the zero interest rates. Since the BOJ terminated

the quantitative easing policy in 2006, small responses of interest rates are estimated after 2006.

The LT-VAR model also suggests that the responses of inflation decay more dramatically to zero in

the 1990’s than the VAR model indicates. The responses of output to interest rates and to output

itself decline more clearly in the LT-VAR model than in the VAR model. These differences obvi-

ously result from the LTM structure, which provides these plausible implications for the Japanese

macroeconomic analysis as well as the improved multi-step-ahead predictions already discussed.

In addition, Figure 17 reports impulse response with credible intervals computed from posterior

draws from NT-VAR and LT-VAR models. Trajectories of posterior median and 75% credible intervals

are plotted for responses of the interest rate and inflation to a GDP shock. In both responses, the

credible intervals from the LT-VAR model are narrower than that from the NT-VAR and theirs spread

is more time-varying; the advantage of LTM structure is obvious particularly in the zero interest rate

periods. In addition to the improvements in forecasting performance, these findings confirm that

the posterior outputs from the LT-VAR provides more plausible evidences for the macroeconomic

dynamics.
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(i) Response of interest rate to GDP shock (εx↑ → i)

(ii) Response of inflation to GDP shock (εx↑ → p)

Figure 17: Impulse response trajectories with credible intervals from the NT-VAR (left) and LT-
VAR (right) models for Japanese macroeconomic data. Posterior median (solid) and 75% credible
intervals (dotted).
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