STA103: Quiz II Solutions

1. This is a Binomial(10, 1/6) so probability is
 \[
 \binom{10}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7 = 0.155
 \]

2. Probability it happens in a single throw is Binomial(3, 1/2) which gives 1/8. So have a Geometric (1/8) distribution i.e. probability is 7/8 \times 1/8 = 0.109.

3. The integral of the density must be 1 so
 \[
 \int_{-1}^{1} cx^2 dx = \left[\frac{1}{3}cx^3 \right]_{-1}^{1} = \frac{2}{3} c = 1
 \]
 so \(c = \frac{3}{2} \). The cdf is
 \[
 \int_{-1}^{x} \frac{3}{2}u^2 du = \frac{1}{2}x^3 + \frac{1}{2}
 \]

4. The cdf for an exponential \(\lambda \) is \(1 - \exp(-\lambda x) \) so solve
 \[
 0.75 = 1 - \exp(-10 \times x) \quad \Rightarrow \quad x = -0.1 \log(0.25) = 0.138
 \]

5. Want the \(P(0 < z < (15 - 14.2)/\sqrt{(1.2)}) = P(0 < z < 0.73) \) This equals \(0.7673 - 0.5 = 0.2673 \)

6. The number of emails in one hour is Poisson(0.5) so
 \[
 P(k = 0) = \exp(-0.5) = 0.6065
 \]

7. First find cdf , let \(X = \log(U) \)
 \[
 P(X < x) = P(\log(U) < x) = P(U < \exp(x)) = \exp(x)
 \]
 So density is also \(\exp(x) \) for \(-\infty < x < 0\)

8. The probability mass function is
 \[
 P(X = k) = P(k \leq T < k + 1) = \int_{k}^{k+1} \lambda \exp(-\lambda t) dt = [-\exp(-\lambda t)]_{k}^{k+1} = \exp(-\lambda(k)) - \exp(-\lambda(k + 1))
 \]