## Collinearity

Peter Hoff

#### **STAT 423**

#### Applied Regression and Analysis of Variance

University of Washington

summary( lm( tttrips ~ Mean\_Temperature\_F , data=weather ) )\$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -268.46222 33.5743459 -7.996052 1.747181e-14
## Mean\_Temperature\_F 11.39753 0.5708012 19.967592 2.441323e-60



summary( lm( tttrips ~ Max\_Temperature\_F , data=weather ) )\$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -268.78746 30.4292681 -8.833189 4.460137e-17
## Max\_Temperature\_F 10.08121 0.4566869 22.074671 5.117409e-69



| ## |                    | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|--------------------|-------------|------------|-----------|--------------|
| ## | (Intercept)        | -251.829061 | 31.773619  | -7.925728 | 2.851907e-14 |
| ## | Mean_Temperature_F | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |
| ## | Max_Temperature_F  | 13.601363   | 2.013388   | 6.755459  | 5.717266e-11 |

| ## |                    | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|--------------------|-------------|------------|-----------|--------------|
| ## | (Intercept)        | -251.829061 | 31.773619  | -7.925728 | 2.851907e-14 |
| ## | Mean_Temperature_F | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |
| ## | Max_Temperature_F  | 13.601363   | 2.013388   | 6.755459  | 5.717266e-11 |

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- ► y = total trips tomorrow
- ▶ x<sub>1</sub> = today's mean temperature
- ▶ x<sub>2</sub> = today's max temperature

Why did the effect "change"?

| ## |                    | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|--------------------|-------------|------------|-----------|--------------|
| ## | (Intercept)        | -251.829061 | 31.773619  | -7.925728 | 2.851907e-14 |
| ## | Mean_Temperature_F | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |
| ## | Max_Temperature_F  | 13.601363   | 2.013388   | 6.755459  | 5.717266e-11 |

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- ► y = total trips tomorrow
- ▶ x<sub>1</sub> = today's mean temperature
- ▶ x<sub>2</sub> = today's max temperature

Why did the effect "change"? How do we interpret  $\hat{\beta}_2$ ?

# Collinearity



# Collinearity

x1<-weather\$Mean\_Temperature\_F
x2<-weather\$Max\_Temperature\_F
r12<-lm( x1 ~ x2)\$res</pre>



 $x_1$  is mean temperature

 $r_{1|2}$  is mean temperature "adjusting for max temperature"



x1

fit\_x1x2<-lm(weather\$tttrips~x1+x2) ; summary(fit\_x1x2)\$coef</pre>

| ## |             | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|-------------|-------------|------------|-----------|--------------|
| ## | (Intercept) | -251.829061 | 31.773619  | -7.925728 | 2.851907e-14 |
| ## | x1          | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |
| ## | x2          | 13.601363   | 2.013388   | 6.755459  | 5.717266e-11 |

fit\_x1x2<-lm(weather\$tttrips~x1+x2) ; summary(fit\_x1x2)\$coef</pre>

 ##
 Estimate
 Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -251.829061
 31.773619
 -7.925728
 2.851907e-14

 ## x1
 -4.274695
 2.381626
 -1.794864
 7.351178e-02

 ## x2
 13.601363
 2.013388
 6.755459
 5.717266e-11

fit\_x2r12<-lm(weather\$tttrips~x2+r12) ; summary(fit\_x2r12)\$coef</pre>

| ## |             | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|-------------|-------------|------------|-----------|--------------|
| ## | (Intercept) | -268.787462 | 30.336326  | -8.860251 | 3.688357e-17 |
| ## | x2          | 10.081213   | 0.455292   | 22.142302 | 3.116442e-69 |
| ## | r12         | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |

fit\_x1x2<-lm(weather\$tttrips~x1+x2) ; summary(fit\_x1x2)\$coef</pre>

 ##
 Estimate
 Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -251.829061
 31.773619
 -7.925728
 2.851907e-14

 ## x1
 -4.274695
 2.381626
 -1.794864
 7.351178e-02

 ## x2
 13.601363
 2.013388
 6.755459
 5.717266e-11

fit\_x2r12<-lm(weather\$tttrips~x2+r12) ; summary(fit\_x2r12)\$coef</pre>

| ## |             | Estimate    | Std. Error | t value   | Pr(> t )     |
|----|-------------|-------------|------------|-----------|--------------|
| ## | (Intercept) | -268.787462 | 30.336326  | -8.860251 | 3.688357e-17 |
| ## | x2          | 10.081213   | 0.455292   | 22.142302 | 3.116442e-69 |
| ## | r12         | -4.274695   | 2.381626   | -1.794864 | 7.351178e-02 |

sum(fit\_x1x2\$res^2)

## [1] 4147101

sum(fit\_x2r12\$res<sup>2</sup>)

## [1] 4147101

### Things to be aware of

We saw that adding a variable  $x_2$  to the model can substantially

- change the estimate (even the sign) of  $\beta_j$ .
- change the standard error of  $\hat{\beta}_j$  (and the *p*-value, etc.)

### Things to be aware of

We saw that adding a variable  $x_2$  to the model can substantially

- change the estimate (even the sign) of  $\beta_j$ .
- change the standard error of  $\hat{\beta}_i$  (and the *p*-value, etc.)

The first phenomenon occurs when  $x_1$  and  $x_2$  are correlated in the sample.

We saw that adding a variable  $x_2$  to the model can substantially

- change the estimate (even the sign) of  $\beta_j$ .
- change the standard error of  $\hat{\beta}_j$  (and the *p*-value, etc.)

The first phenomenon occurs when  $x_1$  and  $x_2$  are correlated in the sample. The second can occurr even when  $x_1$  and  $x_2$  are uncorrelated.