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Possibilities

If the marginal effect is +,significant, the conditional effect may be

I + and significant

I + and nonsignificant

I - and significant

I - and nonsignificant

If the marginal effect is +,nonsignificant, the conditional effect may be

I + and significant

I + and nonsignificant

I - and significant

I - and nonsignificant

In other words, neither the sign nor significance of the effects need match.



Marginal and conditional effects

Marginal effect of x1:

I Model: y = β01 + β1x1 + ε

I Effect: β̂1 = SX1Y /SX1X1

Marginal effect of x2:

I Model: y = β02 + β2x2 + ε

I Effect: β̂2 = SX2Y /SX2X2

Conditional effects:

I Model: y = α0 + α1x1 + α2x2 + ε

I Effect: α̂1 =
[
(XTX)−1XTy

]
[2]

How are β̂1 and α̂1 related?



Last time, we showed that if x1 and x2 are centered, then

β̂1 = xT1 y/xT1 x1

α̂1 =
(
(xT2 x2)xT1 y − (xT1 x2)xT2 y

)
/w , where

w = xT1 x1xT2 x2 − (xT1 x2)2.

We can rewrite this as

α̂1 =
xT1 y

xT1 x1
× xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− xT2 y

xT2 x2
× xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2

= β̂1 ×
xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− β̂2 × xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2



α̂1 = β̂1 ×
xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− β̂2 × xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2

Q: How does xT1 x2 affect the relationship between α̂1 and β̂1?

Result 1: If xT1 x2 = 0, α̂1 = β̂1.

Q: What if xT1 x2 6= 0 ?

Result 2: Let xT1 x1 = xT2 x2 = 1, and let ρ = xT1 x2 = Cor(x1, x2).

α̂1 = β̂1
1

1− ρ2
− β̂2

ρ

1− ρ2

For ρ close to 1, this is a large linear combination of β̂1, β̂2.

What do you think this does to the variance of α̂1?



Numerical example

True model:
y = .25x1 + .75x2 + ε

Collinearity:
x2 = ρ× x1 +

√
(1− ρ2)× z

Then if Var[x1] = Var[z ], Cor[x1, x2] = ρ.



ρ = 0
rho<-.0

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 0.02628723

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.005394464 0.225787641

lm(y~x2)$coef

## (Intercept) x2
## 0.1439477 0.7598974

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1226683 0.1429228 0.8582832 3.950921e-01
## x1 0.2043111 0.1699043 1.2025070 2.351904e-01
## x2 0.7549346 0.1569981 4.8085576 1.602073e-05



ρ = .5
rho<-.5

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 0.4885865

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.02100348 0.59792914

lm(y~x2)$coef

## (Intercept) x2
## 0.1504062 0.8473659

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1226683 0.1429228 0.8582832 0.3950921151
## x1 0.2014621 0.1946620 1.0349332 0.3059959623
## x2 0.7556979 0.1812858 4.1685440 0.0001305312



ρ = .95
rho<-.95

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 0.9431838

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.08552234 0.92361371

lm(y~x2)$coef

## (Intercept) x2
## 0.1332862 0.9414229

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1226683 0.1429228 0.8582832 0.3950921
## x1 0.1892981 0.5111654 0.3703264 0.7128030
## x2 0.7658032 0.5027964 1.5230881 0.1344374



ρ = 1

rho<-1

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 1

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.1219017 0.9544515

lm(y~x2)$coef

## (Intercept) x2
## 0.1219017 0.9544515

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1219017 0.1393534 0.8747666 3.860570e-01
## x1 0.9544515 0.1680688 5.6789325 7.726316e-07



Results

As correlation increased,

I estimated conditional effects stayed about the same;

I standard errors increased, t-values decreased, p-values increased;

I estimated marginal effects increased.

This latter phenomenon is called omitted variable bias.

At ρ = 1,

I the design matrix X is rank deficient;

I the model is overparameterized.

R and many other packages simply drop one of the redundant variables.



Omitted variable bias

True model: y = X1α1 + X2α2 + e

Fitted model: y = X1β1 + e

Omitted variable bias:

E[β̂1|X1,X2] = (XT
1 X1)−1XT

1 E[y|X1,X2]

= (XT
1 X1)−1XT

1 (X1α1 + X2α2)

= α1 + (XT
1 X1)−1XT

1 X2α2

The “bias” is the term (XT
1 X1)−1XT

1 X2α2

However, this is just the difference between the

I true conditional effect α1, and the

I expectation of the estimated marginal effect β̂1.



Omitted variable bias:

bias = (XT
1 X1)−1XT

1 X2α2

If X2 is “fixed”:
The bias is zero only if XT

1 X2 = 0.

If X2 is “random”:
The bias (on average across X2) is zero only if E[XT

1 X2|X1] = 0.

This corresponds to what we have discussed before

I α̂1 = β̂1 if x1 and x2 have zero sample correlation.

I α1 = β1 if the conditional expectation of x2 is not linearly dependent
on x1.



Visualizing marginal and conditional effects

E[y |x1, x2] = α0 + α1x1 + α2x2
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Case 1: x2 independent of x1

Suppose x2|x1 ∼ binary(1/3)

What is E[y |x1]?

E[y |x1] = E[α0 + α1x1 + α2x2|x1]

= α0 + α1x1 + α2E[x2|x1]

= α0 + α1x1 + α2/3

= (α0 + α2/3) + α1x1

≡ β0 + β1x1

E[y |x1, x2] and E[y |x1] are both linear in x1.

(This is because E[x2|x1] is linear in x1).

The marginal effect of x1 is the same its conditional effect.

(This is because E[x2|x1] does not depend on x1).



E[y |x1, x2] = α0 + α1x1 + α2x2
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E[y |x1] = (α0 + α2/3) + α1x1
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Case 2: x2 linearly dependent on x1

Suppose x2|x1 ∼ binary(γ0 + γ1x1)

What is E[y |x1]?

E[y |x1] = E[α0 + α1x1 + α2x2|x1]

= α0 + α1x1 + α2E[x2|x1]

= α0 + α1x1 + α2γ0 + α2γ1x1

= (α0 + α2γ0) + (α1 + α2γ1)x1

≡ β0 + β1x1

E[y |x1, x2] and E[y |x1] are both linear in x1.

(This is because E[x2|x1] is linear in x1).

The marginal effect of x1 is not the same its conditional effect.

(This is because E[x2|x1] depends on x1).



E[y |x1, x2] = α0 + α1x1 + α2x2
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E[y |x1] = (α0 + γ0) + (α1 + γ1α2)x1
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Extreme case:

I large positive effect of x2
I large negative correlation between x1, x2
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Extreme case:

I large positive effect of x2
I large negative correlation between x1, x2
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Extreme case:

I large positive effect of x2
I large negative correlation between x1, x2
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Case 3: x2 nonlinearly dependent on x1

Suppose x2|x1 ∼ binary(p(x1) = exp(γ0+γ1x1)
1+exp(γ0+γ1x1)

)

What is E[y |x1]?

E[y |x1] = E[α0 + α1x1 + α2x2|x1]

= α0 + α1x1 + α2E[x2|x1]

= α0 + α1x1 + α2p(x1)

E[y |x1, x2] linear in x1, E[y |x1] nonlinear in x1.

(This is because E[x2|x1] is nonlinear in x1).

The “marginal effect” of x1 is not the same its conditional effect.

(This is because E[x2|x1] depends on x1).



0 1 2 3 4 5 6

0
1

2
3

4
5

6

x1

y

x2 = 0
x2 = 1

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●



0 1 2 3 4 5 6

0
1

2
3

4
5

6

x1

y

x2 = 0
x2 = 1

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●



0 1 2 3 4 5 6

0
1

2
3

4
5

6

x1

y

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●



Marginal versus conditional effects

x1, x2 correlated ⇒ marginal, conditional effects are generally different.

Q: Which effects are of most scientific interest?

A: It depends on the situation.



Lurking variable

Consider a study of a sample of flu patients:

I Some patients choose to buy an expensive new drug, others don’t.

I Illness severity is recorded for all patients in the study.

Let

I x1 indicate whether or not a patient takes the drug;

I y denote disease severity.

Suppose a linear regression shows a significant decrease in severity among
those taking the drug.

Would you take the drug if you were sick?



Lurking variable

Suppose

I there were no effect of taking the drug on disease;

I wealthier people were more likely to take the drug;

I wealthier people had better overall healthcare.

In other words,

I the conditional effect of x1 on y given x2 is zero;

I x1 and x2 are correlated;

I the conditional effect of x2 on y given x1 is nonzero.

I the marginal effect of x1 on y is nonzero.

Are marginal or conditional effects of the drug more relevant?

Which would help you decide whether or not to take the drug?



Graphical model

Drug example:

x1

y

x2

x1 has no causal effect

x1 has no conditional effect

x1 has a marginal effect



Indirect effects

Consider a study of an exercise program on blood pressure.

I Subjects randomly assigned to an exercise program or control.

I Blood pressure and other variables measured at the end of the study.

Let

I x1 indicate being on the exercise program or not;

I x2 denote change in BMI;

I y denote change in blood pressure.



Indirect effects

α̂1 : OLS estimate from y ∼ x1 + x2

β̂1 : OLS estimate from y ∼ x1

Suppose α̂1 is smaller, less significant than β̂1.

Why might this be?

Which effect is more relevant for assessing effect of the exercise regimen?



Graphical model

Exercise example:

x1

y

x2

x1 has an indirect causal effect

x1 may have a direct causal effect

marginal effect of x1 ≈ direct + indirect causal effect

conditional effect of x1 ≈ direct causal effect

conditional effect < marginal effect ≈ total causal effect



Changes to significance

The “statistical significance” of θ generally refers to its t-statistic,

t(θ) =
θ̂

SE (θ̂)
,

and things derived from it (p-values, tests).

These things evaluate evidence that θ = 0 versus θ 6= 0.

If x1 and x2 are correlated in the sample, then

I α̂1 and β̂1 are generally different;

I it should not be a surprise that t(α1) 6= t(β1).

If x1 and x2 are uncorrelated in the sample, then α̂1 = β̂1.

Q: Can t(α1) 6= t(β1)?
Q: Can adding x2 to the model affect the significance of x1?



Suppose we have data y, x1, x2, where

I x1 and x2 are centered,

I x1 and x2 have zero sample correlation.

Let t(α1) be the t-stat for x1 from lm( y ~ x1 + x2 ).

Let t(β1) be the t-stat for x1 from lm(y ~ x1).

α̂1 = β̂1. What about the t-statistics?



You should be able to show that in this case,

t(α1) =
xT1 y√

σ̂2
c/SX1X1

, t(β1) =
xT1 y√

σ̂2
m/SX1X1

where

I σ̂2
c is the variance estimate from the conditional model;

I σ̂2
m is the variance estimate from the marginal model.

Roughly speaking (ignoring the dof of the t-distribution),

I σ̂2
c < σ̂2

m ⇒ adding x2 increases the significance of x1;

I σ̂2
c > σ̂2

m ⇒ adding x2 decreases the significance of x1.



Case 1:

If

I x1 and x2 are uncorrelated in the sample, and

I x2 has a nonzero effect (is correlated with y),

then typically σ̂2
c < σ2

m and significance of x1 is increased by adding x2.

Why?

I Since x2 is correlated with y , adding it reduces RSS.

I Lower RSS means lower variance estimate.

This holds as long as the improvement is sufficiently large.



Numerical example
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Numerical example

cat( cor(x1,y) , cor(x2,y) , cor(x1,x2) )

## 0.2202513 0.4320678 -0.03908718

summary(lm(y~x1))$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.1476833 0.2177266 -0.6782971 0.5008405

## x1 0.4107883 0.2625917 1.5643615 0.1243024

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.2337934 0.1978165 -1.181870 0.243202642

## x1 0.4429633 0.2368806 1.869985 0.067721601

## x2 0.7063892 0.2032777 3.474995 0.001109098
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summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5883570 0.4242843 1.386705 1.701286e-01
## x1 0.3453634 0.1066730 3.237590 1.875951e-03
## x2 3.0870588 0.3109921 9.926487 8.638400e-15

sum(lm(y~x1+x2)$res^2)

## [1] 94.32418

sum(lm(y~x1+x2)$res^2)/(n-3)

## [1] 1.407824

summary(lm(y~x1))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.887218 0.6297176 2.996927 0.003804579
## x1 0.240653 0.1656194 1.453048 0.150809728

sum(lm(y~x1)$res^2)

## [1] 233.0443

sum(lm(y~x1)$res^2)/(n-2)

## [1] 3.427122



Decreasing significance

If x1 and x2 are correlated, then adding x2 can definitely decrease the
significance of x1.

If x1 and x2 are not correlated, then it is more unusual for this to happen.

I adding variables always decreases RSS ;

I adding variables will decrease σ̂2 unless the decrease in RSS is
outweighed by the decrease in dof.



Simulation example

n<-50 ; p<-20

X<-matrix(rnorm(n*p),n,p)

y<-X[,1]/2 + rnorm(n)

summary(lm(y~X[,1]))$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.01859293 0.1391084 -0.1336578 0.89423196

## X[, 1] 0.45433113 0.1677734 2.7080051 0.00935132



summary(lm(y~X))$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.01242748 0.1771138 0.07016664 0.94454266

## X1 0.61180114 0.2618203 2.33672153 0.02656961

## X2 -0.25285253 0.1933493 -1.30774987 0.20123083

## X3 -0.18650060 0.2100119 -0.88804788 0.38182162

## X4 0.26432270 0.2101902 1.25754048 0.21859090

## X5 0.08152787 0.1642565 0.49634497 0.62339243

## X6 0.19944125 0.2028733 0.98308286 0.33369784

## X7 -0.02258492 0.2167142 -0.10421520 0.91771600

## X8 -0.02127171 0.1811366 -0.11743465 0.90732521

## X9 -0.03738690 0.1553097 -0.24072489 0.81146210

## X10 0.16309520 0.1723195 0.94647001 0.35172913

## X11 0.33881042 0.2128480 1.59179553 0.12227392

## X12 0.03595129 0.1940826 0.18523712 0.85433252

## X13 0.08023394 0.1836761 0.43682301 0.66547511

## X14 0.31933321 0.1674199 1.90737879 0.06641988

## X15 0.07463418 0.1565567 0.47672309 0.63713201

## X16 -0.08415989 0.1850508 -0.45479355 0.65264411

## X17 -0.06178351 0.1535279 -0.40242541 0.69032200

## X18 0.05473411 0.2144753 0.25520006 0.80036984

## X19 0.08365743 0.1728615 0.48395633 0.63205152

## X20 -0.09365810 0.1775308 -0.52755975 0.60181831



fit1<-lm(y~X[,1]) ; fitfull<-lm(y~X)

sum(fit1$res^2)

## [1] 45.76116

n-length(fit1$coef)

## [1] 48

summary(fit1)$sigma

## [1] 0.9764003

sum(fitfull$res^2)

## [1] 31.02169

n-length(fitfull$coef)

## [1] 29

summary(fitfull)$sigma

## [1] 1.03427



Diabetes example:

y = diabetes progression

x1 = age

x1 = sex

...

dim(X)

## [1] 442 64

colnames(X)

## [1] "age" "sex" "bmi" "map" "tc" "ldl" "hdl"
## [8] "tch" "ltg" "glu" "age^2" "bmi^2" "map^2" "tc^2"
## [15] "ldl^2" "hdl^2" "tch^2" "ltg^2" "glu^2" "age:sex" "age:bmi"
## [22] "age:map" "age:tc" "age:ldl" "age:hdl" "age:tch" "age:ltg" "age:glu"
## [29] "sex:bmi" "sex:map" "sex:tc" "sex:ldl" "sex:hdl" "sex:tch" "sex:ltg"
## [36] "sex:glu" "bmi:map" "bmi:tc" "bmi:ldl" "bmi:hdl" "bmi:tch" "bmi:ltg"
## [43] "bmi:glu" "map:tc" "map:ldl" "map:hdl" "map:tch" "map:ltg" "map:glu"
## [50] "tc:ldl" "tc:hdl" "tc:tch" "tc:ltg" "tc:glu" "ldl:hdl" "ldl:tch"
## [57] "ldl:ltg" "ldl:glu" "hdl:tch" "hdl:ltg" "hdl:glu" "tch:ltg" "tch:glu"
## [64] "ltg:glu"



cxy<-apply( X, 2, function(x){ cor(x,y) } )
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fit_full<-lm(y ~ -1+ X)

summary(fit_full)$sigma

## [1] 0.6895559

summary(fit_full)$coef[1:25,]

## Estimate Std. Error t value Pr(>|t|)
## Xage 0.031329759 0.04041242 0.77525078 4.386762e-01
## Xsex -0.165133830 0.04026257 -4.10142300 5.030866e-05
## Xbmi 0.284579388 0.05218759 5.45300911 8.962419e-08
## Xmap 0.211824072 0.04469026 4.73982583 3.033978e-06
## Xtc -2.223376362 37.36674517 -0.05950147 9.525841e-01
## Xldl 1.870518158 32.84111892 0.05695659 9.546099e-01
## Xhdl 0.681333527 13.96347853 0.04879397 9.611093e-01
## Xtch 0.046287516 0.17013560 0.27206250 7.857225e-01
## Xltg 1.129254674 12.28457112 0.09192463 9.268066e-01
## Xglu 0.038762059 0.04342631 0.89259391 3.726426e-01
## Xage^2 0.041811619 0.04285347 0.97568807 3.298430e-01
## Xbmi^2 0.028320011 0.05137777 0.55121142 5.818144e-01
## Xmap^2 -0.005225396 0.04419948 -0.11822300 9.059538e-01
## Xtc^2 4.118988206 4.35455182 0.94590405 3.448018e-01
## Xldl^2 2.213266400 3.28551687 0.67364329 5.009498e-01
## Xhdl^2 1.069716832 0.98117020 1.09024594 2.762993e-01
## Xtch^2 0.477700198 0.37441687 1.27585115 2.027916e-01
## Xltg^2 0.896617287 1.06724113 0.84012625 4.013687e-01
## Xglu^2 0.070507611 0.05806088 1.21437378 2.253631e-01
## Xage:sex 0.091835722 0.04528227 2.02807226 4.325373e-02
## Xage:bmi -0.011150367 0.04911505 -0.22702545 8.205267e-01
## Xage:map 0.011447848 0.04706844 0.24321705 8.079692e-01
## Xage:tc -0.098144364 0.38067330 -0.25781783 7.966878e-01
## Xage:ldl -0.041560719 0.30505697 -0.13623920 8.917047e-01
## Xage:hdl 0.129247282 0.17310087 0.74665878 4.557337e-01



summary(fit_full)$coef[26:64,]

## Estimate Std. Error t value Pr(>|t|)
## Xage:tch 0.11424678 0.12974552 0.8805450 0.37912361
## Xage:ltg 0.07700475 0.13803294 0.5578722 0.57726187
## Xage:glu 0.03865170 0.04958159 0.7795575 0.43613916
## Xsex:bmi 0.03990987 0.04805484 0.8305067 0.40677662
## Xsex:map 0.05464750 0.04610680 1.1852373 0.23666821
## Xsex:tc 0.26782601 0.36438795 0.7350024 0.46279379
## Xsex:ldl -0.21793287 0.28927994 -0.7533632 0.45170064
## Xsex:hdl -0.07704431 0.16894070 -0.4560435 0.64862060
## Xsex:tch -0.08105418 0.12319658 -0.6579256 0.51098641
## Xsex:ltg -0.07350118 0.13971585 -0.5260762 0.59914380
## Xsex:glu 0.02826389 0.04543242 0.6221084 0.53424563
## Xbmi:map 0.09556772 0.05326008 1.7943593 0.07355479
## Xbmi:tc -0.18656796 0.41202295 -0.4528096 0.65094561
## Xbmi:ldl 0.14919508 0.34607751 0.4311031 0.66663916
## Xbmi:hdl 0.07532162 0.20349410 0.3701415 0.71148434
## Xbmi:tch -0.02065841 0.14239485 -0.1450783 0.88472635
## Xbmi:ltg 0.07083188 0.15790951 0.4485599 0.65400617
## Xbmi:glu 0.01443987 0.05615752 0.2571315 0.79721716
## Xmap:tc 0.29543999 0.42086498 0.7019828 0.48312188
## Xmap:ldl -0.20182155 0.35427608 -0.5696731 0.56923783
## Xmap:hdl -0.11569484 0.19097491 -0.6058117 0.54500336
## Xmap:tch -0.03600725 0.12251026 -0.2939121 0.76898639
## Xmap:ltg -0.09561435 0.16776624 -0.5699260 0.56906643
## Xmap:glu -0.08244557 0.05632833 -1.4636608 0.14411772
## Xtc:ldl -5.75296183 7.26125971 -0.7922815 0.42869348
## Xtc:hdl -2.42874540 2.35431164 -1.0316159 0.30291167
## Xtc:tch -1.36255310 1.08682047 -1.2537058 0.21072379
## Xtc:ltg -2.34808672 8.12170784 -0.2891124 0.77265383
## Xtc:glu -0.10889430 0.36731837 -0.2964575 0.76704351
## Xldl:hdl 1.63231706 1.95295045 0.8358210 0.40378360
## Xldl:tch 0.74543351 0.90710843 0.8217689 0.41172644
## Xldl:ltg 1.71326552 6.76097806 0.2534050 0.80009304
## Xldl:glu 0.05288987 0.31157988 0.1697474 0.86529962
## Xhdl:tch 0.73405803 0.61824852 1.1873187 0.23584752
## Xhdl:ltg 0.90666333 2.84362230 0.3188410 0.75002321
## Xhdl:glu 0.13437135 0.18305453 0.7340509 0.46337277
## Xtch:ltg 0.24077569 0.38533814 0.6248426 0.53245134
## Xtch:glu 0.14558369 0.14500300 1.0040047 0.31601863
## Xltg:glu 0.05159177 0.16330044 0.3159316 0.75222880



Backwards selection

Xred<-X

while( any( summary(lm(y~-1+Xred))$coef[,4]>.05 ))

{
fit_red<-lm(y~-1+Xred)

pval<-summary(fit_red)$coef[,4]

Xred<-Xred[, -which.max(pval) ]

}

colnames(Xred)

## [1] "sex" "bmi" "map" "tc" "ldl" "ltg" "ltg^2"

## [8] "glu^2" "age:sex" "bmi:map" "tc:ltg" "ldl:ltg" "hdl:ltg"

Warning! p-values, CIs from such a procedure do not have their usual
properties.



summary(fit_full)$sigma

## [1] 0.6895559

summary(fit_red)$sigma

## [1] 0.6752136

summary(fit_red)$coef

## Estimate Std. Error t value Pr(>|t|)

## Xredsex -0.15025922 0.03602612 -4.170841 3.674216e-05

## Xredbmi 0.30788650 0.03971589 7.752225 6.617185e-14

## Xredmap 0.19982453 0.03777414 5.289982 1.954453e-07

## Xredtc -0.44478073 0.10561232 -4.211448 3.093842e-05

## Xredldl 0.32682618 0.09923618 3.293417 1.071763e-03

## Xredltg 0.57383796 0.05414551 10.598072 1.817738e-23

## Xredltg^2 0.30734819 0.10590616 2.902081 3.897918e-03

## Xredglu^2 0.08226810 0.03331794 2.469183 1.393070e-02

## Xredage:sex 0.13100570 0.03296684 3.973863 8.294843e-05

## Xredbmi:map 0.08698595 0.03372885 2.578978 1.024140e-02

## Xredtc:ltg -0.45085520 0.15780773 -2.856991 4.484764e-03

## Xredldl:ltg 0.37996802 0.12363217 3.073375 2.251513e-03

## Xredhdl:ltg 0.16662767 0.06322931 2.635292 8.711021e-03



sum(fit_full$res^2)

## [1] 179.7342

length(y)-length(fit_full$coef)

## [1] 378

sum(fit_red$res^2)

## [1] 195.5869

length(y)-length(fit_red$coef)

## [1] 429


