Marginal and conditional effects

Peter Hoff

STAT 423

Applied Regression and Analysis of Variance

University of Washington

Possibilities

If the marginal effect is $+,\!significant,$ the conditional effect may be

- + and significant
- + and nonsignificant
- and significant
- and nonsignificant

If the marginal effect is +,nonsignificant, the conditional effect may be

- + and significant
- + and nonsignificant
- and significant
- and nonsignificant

In other words, neither the sign nor significance of the effects need match.

Marginal and conditional effects

Marginal effect of x₁:

- Model: $y = \beta_{01} + \beta_1 x_1 + \epsilon$
- Effect: $\hat{\beta}_1 = SX_1Y/SX_1X_1$

Marginal effect of x₂:

- Model: $y = \beta_{02} + \beta_2 x_2 + \epsilon$
- Effect: $\hat{\beta}_2 = SX_2Y/SX_2X_2$

Conditional effects:

- Model: $y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \epsilon$
- Effect: $\hat{\alpha}_1 = \left[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \right]_{[2]}$

How are $\hat{\beta}_1$ and $\hat{\alpha}_1$ related?

Last time, we showed that if \mathbf{x}_1 and \mathbf{x}_2 are centered, then

$$\hat{\beta}_1 = \mathbf{x}_1^T \mathbf{y} / \mathbf{x}_1^T \mathbf{x}_1$$

$$\hat{\alpha}_1 = \left((\mathbf{x}_2^T \mathbf{x}_2) \mathbf{x}_1^T \mathbf{y} - (\mathbf{x}_1^T \mathbf{x}_2) \mathbf{x}_2^T \mathbf{y} \right) / w , \text{ where}$$

$$w = \mathbf{x}_1^T \mathbf{x}_1 \mathbf{x}_2^T \mathbf{x}_2 - (\mathbf{x}_1^T \mathbf{x}_2)^2.$$

We can rewrite this as

$$\hat{\alpha}_{1} = \frac{\mathbf{x}_{1}^{T}\mathbf{y}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}} \times \frac{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}} - \frac{\mathbf{x}_{2}^{T}\mathbf{y}}{\mathbf{x}_{2}^{T}\mathbf{x}_{2}} \times \frac{\mathbf{x}_{2}^{T}\mathbf{x}_{2}\mathbf{x}_{1}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}}$$
$$= \hat{\beta}_{1} \times \frac{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}} - \hat{\beta}_{2} \times \frac{\mathbf{x}_{2}^{T}\mathbf{x}_{2}\mathbf{x}_{1}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}}$$

$$\hat{\alpha}_{1} = \hat{\beta}_{1} \times \frac{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}} - \hat{\beta}_{2} \times \frac{\mathbf{x}_{2}^{T}\mathbf{x}_{2}\mathbf{x}_{1}^{T}\mathbf{x}_{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{1}\mathbf{x}_{2}^{T}\mathbf{x}_{2} - (\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}}$$

Q: How does $\mathbf{x}_1^T \mathbf{x}_2$ affect the relationship between $\hat{\alpha}_1$ and $\hat{\beta}_1$?

Result 1: If $\mathbf{x}_1^T \mathbf{x}_2 = 0$, $\hat{\alpha}_1 = \hat{\beta}_1$.

Q: What if $\mathbf{x}_1^T \mathbf{x}_2 \neq 0$? **Result 2:** Let $\mathbf{x}_1^T \mathbf{x}_1 = \mathbf{x}_2^T \mathbf{x}_2 = 1$, and let $\rho = \mathbf{x}_1^T \mathbf{x}_2 = \text{Cor}(\mathbf{x}_1, \mathbf{x}_2)$.

$$\hat{\alpha}_1 = \hat{\beta}_1 \frac{1}{1-\rho^2} - \hat{\beta}_2 \frac{\rho}{1-\rho^2}$$

For ρ close to 1, this is a large linear combination of $\hat{\beta}_1, \hat{\beta}_2$. What do you think this does to the variance of $\hat{\alpha}_1$?

Numerical example

True model:

$$y = .25x_1 + .75x_2 + \epsilon$$

Collinearity:

$$x_2 = \rho \times x_1 + \sqrt{(1 - \rho^2)} \times z$$

Then if $Var[x_1] = Var[z]$, $Cor[x_1, x_2] = \rho$.

$\rho = 0$

rho<-.0
x2<-rho*x1 + sqrt(1-rho^2)*z
cor(x1,x2)
[1] 0.02628723</pre>

v<- .25*x1 + .75*x2 + e

lm(y~x1)\$coef

```
## (Intercept) x1
## 0.005394464 0.225787641
```

lm(y~x2)\$coef

(Intercept) x2 ## 0.1439477 0.7598974

```
summary(lm(y~x1+x2))$coef
```

 ##
 Estimate
 Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 0.1226683
 0.1429228
 0.8582832
 3.950921e-01

 ## x1
 0.2043111
 0.1699043
 1.2025070
 2.351904e-01

 ## x2
 0.7549346
 0.1569981
 4.8085576
 1.602073e-05

$\rho = .5$

rho<-.5
x2<-rho*x1 + sqrt(1-rho^2)*z
cor(x1,x2)
[1] 0.4885865</pre>

v<- .25*x1 + .75*x2 + e

lm(y~x1)\$coef

(Intercept) x1 ## 0.02100348 0.59792914

lm(y~x2)\$coef

(Intercept) x2 ## 0.1504062 0.8473659

```
summary(lm(y~x1+x2))$coef
```

 ##
 Estimate
 Std.
 Error
 t value
 Pr(>|t|)

 ## (Intercept)
 0.1226683
 0.1429228
 0.8582832
 0.3950921151

 ## x1
 0.2014621
 0.1946620
 1.0349332
 0.3059595623

 ## x2
 0.7556979
 0.1812858
 4.1685440
 0.0001305312

$\rho = .95$

rho<-.95 x2<-rho*x1 + sqrt(1-rho^2)*z cor(x1,x2)## [1] 0.9431838 v<- .25*x1 + .75*x2 + e lm(v~x1)\$coef ## (Intercept) x1 ## 0.08552234 0.92361371 lm(y~x2)\$coef ## (Intercept) x2 ## 0.1332862 0.9414229 summary(lm(y~x1+x2))\$coef ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.1226683 0.1429228 0.8582832 0.3950921 ## x1 0.1892981 0.5111654 0.3703264 0.7128030 ## x2 0.7658032 0.5027964 1.5230881 0.1344374

$\rho = 1$

```
rho<-1
x2<-rho*x1 + sqrt(1-rho^2)*z
cor(x1,x2)
## [1] 1
y<- .25*x1 + .75*x2 + e
lm(y~x1)$coef
## (Intercept) x1
## 0.1219017 0.9544515
lm(y~x2)$coef
## (Intercept) x2
## 0.1219017 0.9544515
summary(lm(y~x1+x2))$coef
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1219017 0.1393534 0.8747666 3.860570e-01
## x1
             0.9544515 0.1680688 5.6789325 7.726316e-07
```

Results

As correlation increased,

- estimated conditional effects stayed about the same;
- standard errors increased, t-values decreased, p-values increased;
- estimated marginal effects increased.

This latter phenomenon is called **omitted variable bias**.

At $\rho = 1$,

- the design matrix X is rank deficient;
- the model is **overparameterized**.

R and many other packages simply drop one of the redundant variables.

Omitted variable bias

True model: $\mathbf{y} = \mathbf{X}_1 \alpha_1 + \mathbf{X}_2 \alpha_2 + \mathbf{e}$ Fitted model: $\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{e}$

Omitted variable bias:

$$\begin{split} \mathsf{E}[\hat{\boldsymbol{\beta}}_1|\mathbf{X}_1,\mathbf{X}_2] &= (\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T\mathsf{E}[\mathbf{y}|\mathbf{X}_1,\mathbf{X}_2] \\ &= (\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T(\mathbf{X}_1\boldsymbol{\alpha}_1 + \mathbf{X}_2\boldsymbol{\alpha}_2) \\ &= \boldsymbol{\alpha}_1 + (\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T\mathbf{X}_2\boldsymbol{\alpha}_2 \end{split}$$

The "bias" is the term $(\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T\mathbf{X}_2\alpha_2$

However, this is just the difference between the

- true conditional effect α_1 , and the
- expectation of the estimated marginal effect $\hat{\beta}_1$.

Omitted variable bias:

$$\mathsf{bias} = (\boldsymbol{\mathsf{X}}_1^T\boldsymbol{\mathsf{X}}_1)^{-1}\boldsymbol{\mathsf{X}}_1^T\boldsymbol{\mathsf{X}}_2\alpha_2$$

If \mathbf{X}_2 is "fixed": The bias is zero only if $\mathbf{X}_1^T \mathbf{X}_2 = 0$.

If X_2 is "random": The bias (on average across X_2) is zero only if $E[X_1^T X_2 | X_1] = 0$.

This corresponds to what we have discussed before

- $\hat{\alpha}_1 = \hat{\beta}_1$ if \mathbf{x}_1 and \mathbf{x}_2 have zero sample correlation.

Visualizing marginal and conditional effects

$$\mathsf{E}[y|x_1, x_2] = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2$$

X1

Case 1: x_2 independent of x_1

```
Suppose x_2|x_1 \sim \text{binary}(1/3)
What is E[y|x_1]?
```

$$E[y|x_1] = E[\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2|x_1]$$

= $\alpha_0 + \alpha_1 x_1 + \alpha_2 E[x_2|x_1]$
= $\alpha_0 + \alpha_1 x_1 + \alpha_2/3$
= $(\alpha_0 + \alpha_2/3) + \alpha_1 x_1$
= $\beta_0 + \beta_1 x_1$

 $E[y|x_1, x_2]$ and $E[y|x_1]$ are *both* linear in x_1 . (This is because $E[x_2|x_1]$ is linear in x_1).

The marginal effect of x_1 is the same its conditional effect. (This is because $E[x_2|x_1]$ does not depend on x_1).

$$\mathsf{E}[y|x_1, x_2] = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2$$

$$\mathsf{E}[y|x_1] = (\alpha_0 + \alpha_2/3) + \alpha_1 x_1$$

 \mathbf{X}_1

Case 2: x_2 linearly dependent on x_1

```
Suppose x_2|x_1 \sim \text{binary}(\gamma_0 + \gamma_1 x_1)
What is E[y|x_1]?
```

$$E[y|x_1] = E[\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2|x_1]$$

= $\alpha_0 + \alpha_1 x_1 + \alpha_2 E[x_2|x_1]$
= $\alpha_0 + \alpha_1 x_1 + \alpha_2 \gamma_0 + \alpha_2 \gamma_1 x_1$
= $(\alpha_0 + \alpha_2 \gamma_0) + (\alpha_1 + \alpha_2 \gamma_1) x_1$
= $\beta_0 + \beta_1 x_1$

 $E[y|x_1, x_2]$ and $E[y|x_1]$ are *both* linear in x_1 . (This is because $E[x_2|x_1]$ is linear in x_1).

The marginal effect of x_1 is *not* the same its conditional effect. (This is because $E[x_2|x_1]$ depends on x_1).

$$\mathsf{E}[y|x_1, x_2] = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2$$

$$\mathsf{E}[y|x_1] = (\alpha_0 + \gamma_0) + (\alpha_1 + \gamma_1 \alpha_2)x_1$$

Extreme case:

- ► large positive effect of *x*₂
- large negative correlation between x_1 , x_2

X1

Extreme case:

- ► large positive effect of *x*₂
- large negative correlation between x_1 , x_2

Extreme case:

- ► large positive effect of *x*₂
- large negative correlation between x_1 , x_2

X1

Case 3: x_2 nonlinearly dependent on x_1

Suppose
$$x_2|x_1 \sim \text{binary}(p(x_1) = \frac{\exp(\gamma_0 + \gamma_1 x_1)}{1 + \exp(\gamma_0 + \gamma_1 x_1)})$$

What is $E[y|x_1]$?

$$\mathsf{E}[y|x_1] = \mathsf{E}[\alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 | x_1]$$
$$= \alpha_0 + \alpha_1 x_1 + \alpha_2 \mathsf{E}[x_2 | x_1]$$
$$= \alpha_0 + \alpha_1 x_1 + \alpha_2 \mathsf{p}(x_1)$$

 $E[y|x_1, x_2]$ linear in x_1 , $E[y|x_1]$ nonlinear in x_1 . (This is because $E[x_2|x_1]$ is nonlinear in x_1).

The "marginal effect" of x_1 is *not* the same its conditional effect. (This is because $E[x_2|x_1]$ depends on x_1).

Marginal versus conditional effects

- x_1, x_2 correlated \Rightarrow marginal, conditional effects are generally different.
- Q: Which effects are of most scientific interest?
- A: It depends on the situation.

Lurking variable

Consider a study of a sample of flu patients:

- Some patients choose to buy an expensive new drug, others don't.
- Illness severity is recorded for all patients in the study.

Let

- x₁ indicate whether or not a patient takes the drug;
- y denote disease severity.

Suppose a linear regression shows a significant decrease in severity among those taking the drug.

Would you take the drug if you were sick?

Lurking variable

Suppose

- there were no effect of taking the drug on disease;
- wealthier people were more likely to take the drug;
- wealthier people had better overall healthcare.

In other words,

- ▶ the *conditional effect* of *x*₁ on *y* given *x*₂ is zero;
- x_1 and x_2 are correlated;
- the *conditional effect* of x_2 on y given x_1 is nonzero.
- the marginal effect of x_1 on y is nonzero.

Are marginal or conditional effects of the drug more relevant? Which would help you decide whether or not to take the drug? Graphical model

Drug example:

 x_1 has no *causal* effect

 x_1 has no *conditional* effect x_1 has a *marginal* effect

Indirect effects

Consider a study of an exercise program on blood pressure.

- Subjects randomly assigned to an exercise program or control.
- Blood pressure and other variables measured at the end of the study.

Let

- x₁ indicate being on the exercise program or not;
- x₂ denote change in BMI;
- > y denote change in blood pressure.

Indirect effects

- \hat{lpha}_1 : OLS estimate from $y \sim x_1 + x_2$
- \hat{eta}_1 : OLS estimate from $y \sim x_1$

Suppose $\hat{\alpha}_1$ is smaller, less significant than $\hat{\beta}_1$.

Why might this be?

Which effect is more relevant for assessing effect of the exercise regimen?

Graphical model

Exercise example:

- x_1 has an indirect causal effect
- x_1 may have a direct causal effect

marginal effect of $x_1 \approx \text{direct} + \text{indirect causal effect}$ conditional effect of $x_1 \approx \text{direct causal effect}$ conditional effect $< \text{marginal effect} \approx \text{total causal effect}$

Changes to significance

The "statistical significance" of θ generally refers to its *t*-statistic,

$$t(heta) = rac{\hat{ heta}}{SE(\hat{ heta})},$$

and things derived from it (p-values, tests).

These things evaluate evidence that $\theta = 0$ versus $\theta \neq 0$.

If \boldsymbol{x}_1 and \boldsymbol{x}_2 are correlated in the sample, then

- $\hat{\alpha}_1$ and $\hat{\beta}_1$ are generally different;
- it should not be a surprise that $t(\alpha_1) \neq t(\beta_1)$.

If \mathbf{x}_1 and \mathbf{x}_2 are uncorrelated in the sample, then $\hat{\alpha}_1 = \hat{\beta}_1$.

Q: Can $t(\alpha_1) \neq t(\beta_1)$? **Q:** Can adding x_2 to the model affect the significance of x_1 ? Suppose we have data \mathbf{y} , \mathbf{x}_1 , \mathbf{x}_2 , where

- ▶ **x**₁ and **x**₂ are centered,
- ▶ **x**₁ and **x**₂ have zero sample correlation.

Let $t(\alpha_1)$ be the *t*-stat for x_1 from lm(y ~ x1 + x2). Let $t(\beta_1)$ be the *t*-stat for x_1 from lm(y ~ x1).

 $\hat{\alpha}_1 = \hat{\beta}_1$. What about the *t*-statistics?

You should be able to show that in this case,

$$t(\alpha_1) = \frac{\mathbf{x}_1^T \mathbf{y}}{\sqrt{\hat{\sigma}_c^2 / S X_1 X_1}} \quad , \quad t(\beta_1) = \frac{\mathbf{x}_1^T \mathbf{y}}{\sqrt{\hat{\sigma}_m^2 / S X_1 X_1}}$$

where

> ô²_c is the variance estimate from the conditional model;
 > ô²_m is the variance estimate from the marginal model.

Roughly speaking (ignoring the dof of the *t*-distribution),

- $\hat{\sigma}_c^2 < \hat{\sigma}_m^2 \Rightarrow$ adding x_2 increases the significance of x_1 ;
- $\hat{\sigma}_c^2 > \hat{\sigma}_m^2 \Rightarrow$ adding x_2 decreases the significance of x_1 .

Case 1:

lf

- x₁ and x₂ are uncorrelated in the sample, and
- ▶ **x**₂ has a nonzero effect (is correlated with **y**),

then typically $\hat{\sigma}_c^2 < \sigma_m^2$ and significance of x_1 is increased by adding x_2 .

Why?

- Since x₂ is correlated with y, adding it reduces RSS.
- Lower RSS means lower variance estimate.

This holds as long as the improvement is sufficiently large.

Numerical example

Numerical example

```
cat( cor(x1,y) , cor(x2,y) , cor(x1,x2) )
```

0.2202513 0.4320678 -0.03908718

summary(lm(y~x1))\$coef

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -0.1476833
 0.2177266
 -0.6782971
 0.5008405

 ## x1
 0.4107883
 0.2625917
 1.5643615
 0.1243024

```
summary(lm(y~x1+x2))$coef
```

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -0.2337934
 0.1978165
 -1.181870
 0.243202642

 ## x1
 0.4429633
 0.2368806
 1.869985
 0.067721601

 ## x2
 0.7063892
 0.2032777
 3.474995
 0.001109098


```
summary(lm(y~x1+x2))$coef
```

 ##
 Estimate Std. Error t value
 Pr(>|t|)

 ## (Intercept)
 0.5883570
 0.4242843
 1.386705
 1.701286e-01

 ## x1
 0.3453634
 0.1066730
 3.237590
 1.875951e-03

 ## x2
 3.0870588
 0.3109921
 9.926487
 8.638400e-15

```
sum(lm(y~x1+x2)$res^2)
```

[1] 94.32418

```
sum(lm(y~x1+x2)$res^2)/(n-3)
```

[1] 1.407824

```
summary(lm(y<sup>x</sup>x1))$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.887218 0.6297176 2.996927 0.003804579
## x1 0.240653 0.1656194 1.453048 0.150809728
sum(lm(y<sup>x</sup>x1)$res<sup>2</sup>)
## [1] 233.0443
sum(lm(y<sup>x</sup>x1)$res<sup>2</sup>)/(n-2)
```

[1] 3.427122

If x_1 and x_2 are *correlated*, then adding x_2 can definitely decrease the significance of x_1 .

If x_1 and x_2 are *not correlated*, then it is more unusual for this to happen.

- adding variables always decreases RSS;
- ▶ adding variables will decrease $\hat{\sigma}^2$ unless the decrease in RSS is outweighed by the decrease in dof.

Simulation example

n<-50 ; p<-20

```
X<-matrix(rnorm(n*p),n,p)
```

y<-X[,1]/2 + rnorm(n)

```
summary(lm(y~X[,1]))$coef
```

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 -0.01859293
 0.1391084
 -0.1336578
 0.89423196

 ## X[, 1]
 0.45433113
 0.1677734
 2.7080051
 0.00935132

summary(lm(y~X))\$coef

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	0.01242748	0.1771138	0.07016664	0.94454266
##	X1	0.61180114	0.2618203	2.33672153	0.02656961
##	X2	-0.25285253	0.1933493	-1.30774987	0.20123083
##	XЗ	-0.18650060	0.2100119	-0.88804788	0.38182162
##	X4	0.26432270	0.2101902	1.25754048	0.21859090
##	Х5	0.08152787	0.1642565	0.49634497	0.62339243
##	X6	0.19944125	0.2028733	0.98308286	0.33369784
##	Х7	-0.02258492	0.2167142	-0.10421520	0.91771600
##	X8	-0.02127171	0.1811366	-0.11743465	0.90732521
##	Х9	-0.03738690	0.1553097	-0.24072489	0.81146210
##	X10	0.16309520	0.1723195	0.94647001	0.35172913
##	X11	0.33881042	0.2128480	1.59179553	0.12227392
##	X12	0.03595129	0.1940826	0.18523712	0.85433252
##	X13	0.08023394	0.1836761	0.43682301	0.66547511
##	X14	0.31933321	0.1674199	1.90737879	0.06641988
##	X15	0.07463418	0.1565567	0.47672309	0.63713201
##	X16	-0.08415989	0.1850508	-0.45479355	0.65264411
##	X17	-0.06178351	0.1535279	-0.40242541	0.69032200
##	X18	0.05473411	0.2144753	0.25520006	0.80036984
##	X19	0.08365743	0.1728615	0.48395633	0.63205152
##	X20	-0.09365810	0.1775308	-0.52755975	0.60181831

```
fit1<-lm(y~X[,1]) ; fitfull<-lm(y~X)</pre>
```

sum(fit1\$res^2)

[1] 45.76116

n-length(fit1\$coef)

[1] 48

summary(fit1)\$sigma

[1] 0.9764003

sum(fitfull\$res^2)

[1] 31.02169

n-length(fitfull\$coef)

[1] 29

summary(fitfull)\$sigma

[1] 1.03427

Diabetes example:

"tc" "ldl" ## [1] "age" "sex" "bmi" "map" "tc" "ldl" "hdl" [8] "tch" "ltg" "glu" "age^2" "bmi^2" "map^2" "tc^2" ## ## [15] "ldl^2" "hdl^2" "tch^2" "ltg^2" "glu^2" "age:sex" "age:bmi" ## [22] "age:map" "age:tc" "age:ldl" "age:hdl" "age:tch" "age:ltg" "age:glu" ## [29] "sex:bmi" "sex:map" "sex:tc" "sex:ldl" "sex:hdl" "sex:tch" "sex:ltg" ## [36] "sex:glu" "bmi:map" "bmi:tc" "bmi:ldl" "bmi:hdl" "bmi:tch" "bmi:ltg" ## [43] "bmi:glu" "map:tc" "map:ldl" "map:hdl" "map:tch" "map:ltg" "map:glu" ## [50] "tc:ldl" "tc:hdl" "tc:tch" "tc:ltg" "tc:glu" "ldl:hdl" "ldl:tch" "ldl:ltg" "ldl:glu" "hdl:tch" "hdl:ltg" "hdl:glu" "tch:ltg" "tch:glu" ## [57] ## [64] "ltg:glu"

colnames(X)

[1] 442 64

dim(X)

y = diabetes progression $x_1 = age$

 $x_1 = \text{sex}$

.

fit_full<-lm(y ~ -1+ X)</pre>

summary(fit_full)\$sigma

[1] 0.6895559

summary(fit_full)\$coef[1:25,]

##		Estimate	Std. Error	t value	Pr(> t)
##	Xage	0.031329759	0.04041242	0.77525078	4.386762e-01
##	Xsex	-0.165133830	0.04026257	-4.10142300	5.030866e-05
##	Xbmi	0.284579388	0.05218759	5.45300911	8.962419e-08
##	Xmap	0.211824072	0.04469026	4.73982583	3.033978e-06
##	Xtc	-2.223376362	37.36674517	-0.05950147	9.525841e-01
##	Xldl	1.870518158	32.84111892	0.05695659	9.546099e-01
##	Xhdl	0.681333527	13.96347853	0.04879397	9.611093e-01
##	Xtch	0.046287516	0.17013560	0.27206250	7.857225e-01
##	Xltg	1.129254674	12.28457112	0.09192463	9.268066e-01
##	Xglu	0.038762059	0.04342631	0.89259391	3.726426e-01
##	Xage ²	0.041811619	0.04285347	0.97568807	3.298430e-01
##	Xbmi^2	0.028320011	0.05137777	0.55121142	5.818144e-01
##	Xmap^2	-0.005225396	0.04419948	-0.11822300	9.059538e-01
##	Xtc^2	4.118988206	4.35455182	0.94590405	3.448018e-01
##	Xldl^2	2.213266400	3.28551687	0.67364329	5.009498e-01
##	Xhdl^2	1.069716832	0.98117020	1.09024594	2.762993e-01
##	Xtch^2	0.477700198	0.37441687	1.27585115	2.027916e-01
##	Xltg^2	0.896617287	1.06724113	0.84012625	4.013687e-01
##	Xglu^2	0.070507611	0.05806088	1.21437378	2.253631e-01
##	Xage:sex	0.091835722	0.04528227	2.02807226	4.325373e-02
##	Xage:bmi	-0.011150367	0.04911505	-0.22702545	8.205267e-01
##	Xage:map	0.011447848	0.04706844	0.24321705	8.079692e-01
##	Xage:tc	-0.098144364	0.38067330	-0.25781783	7.966878e-01
44.44	¥	0 044500740	0 00505007	0 4000000	0 047047 04

##		Estimate	Std. Error	t value	Pr(> t)
##	Xage:tch	0.11424678	0.12974552	0.8805450	0.37912361
##	Xage:ltg	0.07700475	0.13803294	0.5578722	0.57726187
##	Xage:glu	0.03865170	0.04958159	0.7795575	0.43613916
##	Xsex:bmi	0.03990987	0.04805484	0.8305067	0.40677662
##	Xsex:map	0.05464750	0.04610680	1.1852373	0.23666821
##	Xsex:tc	0.26782601	0.36438795	0.7350024	0.46279379
##	Xsex:1d1	-0.21793287	0.28927994	-0.7533632	0.45170064
##	Xsex:hdl	-0.07704431	0.16894070	-0.4560435	0.64862060
##	Xsex:tch	-0.08105418	0.12319658	-0.6579256	0.51098641
##	Xsex:ltg	-0.07350118	0.13971585	-0.5260762	0.59914380
##	Xsex:glu	0.02826389	0.04543242	0.6221084	0.53424563
##	Xbmi:map	0.09556772	0.05326008	1.7943593	0.07355479
##	Xbmi:tc	-0.18656796	0.41202295	-0.4528096	0.65094561
##	Xbmi:ldl	0.14919508	0.34607751	0.4311031	0.66663916
##	Xbmi:hdl	0.07532162	0.20349410	0.3701415	0.71148434
##	Xbmi:tch	-0.02065841	0.14239485	-0.1450783	0.88472635
##	Xbmi:ltg	0.07083188	0.15790951	0.4485599	0.65400617
##	Xbmi:glu	0.01443987	0.05615752	0.2571315	0.79721716
##	Xmap:tc	0.29543999	0.42086498	0.7019828	0.48312188
##	Xmap:ldl	-0.20182155	0.35427608	-0.5696731	0.56923783
##	Xmap:hdl	-0.11569484	0.19097491	-0.6058117	0.54500336
##	Xmap:tch	-0.03600725	0.12251026	-0.2939121	0.76898639
##	Xmap:ltg	-0.09561435	0.16776624	-0.5699260	0.56906643
##	Xmap:glu	-0.08244557	0.05632833	-1.4636608	0.14411772
##	Xtc:ldl	-5.75296183	7.26125971	-0.7922815	0.42869348
##	Xtc:hdl	-2.42874540	2.35431164	-1.0316159	0.30291167
##	Xtc:tch	-1.36255310	1.08682047	-1.2537058	0.21072379
##	Xtc:ltg	-2.34808672	8.12170784	-0.2891124	0.77265383
##	Xtc:glu	-0.10889430	0.36731837	-0.2964575	0.76704351
##	Xldl:hdl	1.63231706	1.95295045	0.8358210	0.40378360

Backwards selection

```
Xred<-X
while( any( summary(lm(y~-1+Xred))$coef[,4]>.05 ))
{
  fit_red<-lm(y~-1+Xred)
  pval<-summary(fit_red)$coef[,4]
  Xred<-Xred[, -which.max(pval) ]
}</pre>
```

colnames(Xred)
[1] "sex" "bmi" "map" "tc" "ldl" "ltg" "ltg^2"
[8] "glu^2" "age:sex" "bmi:map" "tc:ltg" "ldl:ltg" "hdl:ltg"

Warning! *p*-values, CIs from such a procedure do not have their usual properties.

summary(fit_full)\$sigma

[1] 0.6895559

summary(fit_red)\$sigma

[1] 0.6752136

```
summary(fit_red)$coef
```

##		Estimate	Std. Error	t value	Pr(> t)
##	Xredsex	-0.15025922	0.03602612	-4.170841	3.674216e-05
##	Xredbmi	0.30788650	0.03971589	7.752225	6.617185e-14
##	Xredmap	0.19982453	0.03777414	5.289982	1.954453e-07
##	Xredtc	-0.44478073	0.10561232	-4.211448	3.093842e-05
##	Xredldl	0.32682618	0.09923618	3.293417	1.071763e-03
##	Xredltg	0.57383796	0.05414551	10.598072	1.817738e-23
##	Xredltg ²	0.30734819	0.10590616	2.902081	3.897918e-03
##	Xredglu^2	0.08226810	0.03331794	2.469183	1.393070e-02
##	Xredage:sex	0.13100570	0.03296684	3.973863	8.294843e-05
##	Xredbmi:map	0.08698595	0.03372885	2.578978	1.024140e-02
##	Xredtc:ltg	-0.45085520	0.15780773	-2.856991	4.484764e-03
##	Xredldl:ltg	0.37996802	0.12363217	3.073375	2.251513e-03
##	Xredhdl:ltg	0.16662767	0.06322931	2.635292	8.711021e-03

sum(fit_full\$res^2)

[1] 179.7342

length(y)-length(fit_full\$coef)

[1] 378

sum(fit_red\$res^2)

[1] 195.5869

length(y)-length(fit_red\$coef)

[1] 429