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Possibilities

If the marginal effect is +,significant, the conditional effect may be

I + and significant

I + and nonsignificant

I - and significant

I - and nonsignificant

If the marginal effect is +,nonsignificant, the conditional effect may be

I + and significant

I + and nonsignificant

I - and significant

I - and nonsignificant

In other words, neither the sign nor significance of the effects need match.
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Marginal and conditional effects

Marginal effect of x1:

I Model: y = β01 + β1x1 + ε

I Effect: β̂1 = SX1Y /SX1X1

Marginal effect of x2:

I Model: y = β02 + β2x2 + ε

I Effect: β̂2 = SX2Y /SX2X2

Conditional effects:

I Model: y = α0 + α1x1 + α2x2 + ε

I Effect: α̂1 =
[
(XTX)−1XTy

]
[2]

How are β̂1 and α̂1 related?
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Last time, we showed that if x1 and x2 are centered, then

β̂1 = xT1 y/xT1 x1

α̂1 =
(
(xT2 x2)xT1 y − (xT1 x2)xT2 y

)
/w , where

w = xT1 x1xT2 x2 − (xT1 x2)2.

We can rewrite this as

α̂1 =
xT1 y

xT1 x1
× xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− xT2 y

xT2 x2
× xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2

= β̂1 ×
xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− β̂2 × xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2
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α̂1 = β̂1 ×
xT1 x1xT2 x2

xT1 x1xT2 x2 − (xT1 x2)2
− β̂2 × xT2 x2xT1 x2

xT1 x1xT2 x2 − (xT1 x2)2

Q: How does xT1 x2 affect the relationship between α̂1 and β̂1?

Result 1: If xT1 x2 = 0, α̂1 = β̂1.

Q: What if xT1 x2 6= 0 ?

Result 2: Let xT1 x1 = xT2 x2 = 1, and let ρ = xT1 x2 = Cor(x1, x2).

α̂1 = β̂1
1

1− ρ2
− β̂2

ρ

1− ρ2

For ρ close to 1, this is a large linear combination of β̂1, β̂2.

What do you think this does to the variance of α̂1?
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Numerical example

True model:
y = .25x1 + .75x2 + ε

Collinearity:
x2 = ρ× x1 +

√
(1− ρ2)× z

Then if Var[x1] = Var[z ], Cor[x1, x2] = ρ.
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ρ = 0
rho<-.0

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 0.02628723

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.005394464 0.225787641

lm(y~x2)$coef

## (Intercept) x2
## 0.1439477 0.7598974

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1226683 0.1429228 0.8582832 3.950921e-01
## x1 0.2043111 0.1699043 1.2025070 2.351904e-01
## x2 0.7549346 0.1569981 4.8085576 1.602073e-05
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## x2 0.7556979 0.1812858 4.1685440 0.0001305312
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ρ = .95
rho<-.95

x2<-rho*x1 + sqrt(1-rho^2)*z

cor(x1,x2)

## [1] 0.9431838

y<- .25*x1 + .75*x2 + e

lm(y~x1)$coef

## (Intercept) x1
## 0.08552234 0.92361371
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## (Intercept) x2
## 0.1332862 0.9414229

summary(lm(y~x1+x2))$coef

## Estimate Std. Error t value Pr(>|t|)
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## x1 0.1892981 0.5111654 0.3703264 0.7128030
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Results

As correlation increased,

I estimated conditional effects stayed about the same;

I standard errors increased, t-values decreased, p-values increased;

I estimated marginal effects increased.

This latter phenomonenon is called omitted variable bias.

At ρ = 1,

I the design matrix X is rank deficient;

I the model is overparameterized.

R and many other packages simply drop one of the redundant variables.
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Omitted variable bias

True model: y = X1β + X2γ + e

Fitted model: y = X1β + e

Omitted variable bias:

E[β̂1|X1,X2] = (XT
1 X1)−1XT

1 E[y|X1,X2]

= (XT
1 X1)−1XT

1 (X1β + X2γ)

= β1 + (XT
1 X1)−1XT

1 X2γ

If X2 is “fixed”:
The bias is zero only if XT

1 X2 = 0.

If X2 is “random”:
The bias (on average across X2) is zero only if E[XT

1 X2|X1] = 0.
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Marginal versus conditional effects

x1, x2 correlated ⇒ marginal, conditional effects are generally different.

Q: Which effects are of most scientific interest?

A: It depends on the situation.
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Lurking variable

Consider a study of a sample of flu patients:

I Some patients choose to buy an expensive new drug, others don’t.

I Illness severity is recorded for all patients in the study.

Let

I x1 indicate whether or not a patient takes the drug;

I y denote disease severity.

Suppose a linear regression shows a significant decrease in severity among
those taking the drug.

Would you take the drug if you were sick?
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Lurking variable

Suppose

I there were no effect of taking the drug on disease;

I wealthier people were more likely to take the drug;

I wealthier people had better overall healthcare.

In other words,

I the conditional effect of x1 on y given x2 is zero;

I x1 and x2 are correlated;

I the conditional effect of x2 on y given x1 is nonzero.

I the marginal effect of x1 on y is nonzero.

Are marginal or conditional effects of the drug more relevant?

Which would help you decide whether or not to take the drug?
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Indirect effects

Consider a study of an exercise program on blood pressure.

I Subjects randomly assigned to an exercise program or control.

I Blood pressure and other variables measured at the end of the study.

Let

I x1 indicate being on the exercise program or not;

I x2 denote change in BMI;

I y denote change in blood pressure.
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Indirect effects

α̂1 : OLS estimate from y ∼ x1 + x2

β̂1 : OLS estimate from y ∼ x1

Suppose α̂1 is smaller, less significant than β̂1.

Why might this be?

Which effect is more relavent for assessing effect of the exercise regimen?
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Graphical models

Drug example:

x1

y

x2

x1 has no causal effect

x1 has no conditional effect

x1 has a marginal effect



Graphical models

Exercise example:

x1

y

x2

x1 has an indirect causal effect

x1 may have a direct causal effect

marginal effect of x1 ≈ direct + indirect causal effect

conditional effect of x1 ≈ direct causal effect

conditional effect < marginal effect ≈ total causal effect


