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Main effects model
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Interaction model
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fit_int<-lm( salary ~ year + rank + year:rank,data=salary)

summary(fit_int)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16416.5723 816.0186 20.1178895 1.967510e-24

## year 324.5027 141.9312 2.2863379 2.688729e-02

## rankAssoc 5354.2430 1492.5574 3.5872945 8.063338e-04

## rankProf 8176.4105 1418.1287 5.7656336 6.493300e-07

## year:rankAssoc -129.7345 205.7747 -0.6304686 5.315079e-01

## year:rankProf 151.1750 171.7437 0.8802364 3.833070e-01

Q: How can we test for interactions?



Multiparameter hypotheses

E[salary|xy , xa, xp] = β0 + βyxy + βaxa + βpxp + βa:yxyxa + βp:yxyxp

Test of interaction:

H0: (βa:y , βp:y ) = (0, 0)

H1: (βa:y , βp:y ) 6= (0, 0)

Q: How can we test two parameters simultaneously?
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Old Faithful eruption data
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Old Faithful eruption data
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Old Faithful eruption data
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plot(fit$res~faithful$eruptions) ; abline(h=0)
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Polynomial regression

y = waiting

x = eruptions

Consider the following model:

E[y |x ] = β0 + β1x + β2x
2 + β3x

3

I This model is nonlinear in x :
it is a polynomial.

I This model is linear in β:
the mean is a linear combination of β-coefficients.

We can define x = (x0, x1, x2, x3) = (1, x , x2, x3).

Then the mean is in linear-model form: E[y |x ] = βTx.
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Polynomial regression

fit3<-lm( waiting ~ eruptions + I(eruptions^2) + I(eruptions^3) ,data=faithful)

fit3b<-lm( waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)

fit3c<-lm( waiting ~ poly(eruptions,3),data=faithful)

sum( fit3$res^2)

## [1] 8656.627

sum( fit3b$res^2)

## [1] 8656.627

sum( fit3c$res^2)

## [1] 8656.627
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summary(fit3)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.822814 17.9066644 4.010954 7.848652e-05
## eruptions -32.640220 17.6875966 -1.845373 6.608630e-02
## I(eruptions^2) 15.212251 5.4134533 2.810083 5.318008e-03
## I(eruptions^3) -1.658674 0.5269041 -3.147962 1.829923e-03

summary(fit3b)$coef

## Estimate Std. Error t value
## (Intercept) 71.822814 17.9066644 4.010954
## poly(eruptions, 3, raw = TRUE)1 -32.640220 17.6875966 -1.845373
## poly(eruptions, 3, raw = TRUE)2 15.212251 5.4134533 2.810083
## poly(eruptions, 3, raw = TRUE)3 -1.658674 0.5269041 -3.147962
## Pr(>|t|)
## (Intercept) 7.848652e-05
## poly(eruptions, 3, raw = TRUE)1 6.608630e-02
## poly(eruptions, 3, raw = TRUE)2 5.318008e-03
## poly(eruptions, 3, raw = TRUE)3 1.829923e-03

summary(fit3c)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 70.89706 0.3446057 205.733831 5.316699e-297
## poly(eruptions, 3)1 201.60290 5.6833834 35.472339 3.103641e-103
## poly(eruptions, 3)2 -21.60253 5.6833834 -3.800998 1.784403e-04
## poly(eruptions, 3)3 -17.89108 5.6833834 -3.147962 1.829923e-03
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Discuss: Model fit, prediction and extrapolation.
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Discuss: Model fit, prediction and extrapolation.



Testing linearity in x

E[y |x ] = β0 + β1x + β2x
2 + β3x

3

Test of linearity in x:

I H0: (β2, β3) = (0, 0)

I H1: (β2, β3) 6= (0, 0)

Q: How can we test two parameters simultaneously?
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ANOVA for faithful data

fit1<-lm(waiting~eruptions,data=faithful)

fit3<-lm( waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)

anova(fit,fit3)

## Analysis of Variance Table

##

## Model 1: waiting ~ eruptions

## Model 2: waiting ~ poly(eruptions, 3, raw = TRUE)

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 270 9443.4

## 2 268 8656.6 2 786.76 12.179 8.662e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The hypothesis H0 of linearity in eruptions is strongly rejected.
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Main effects model for salary data
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Interaction model for salary data
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summary(lm(salary~year+rank+year:rank,data=salary))

##

## Call:

## lm(formula = salary ~ year + rank + year:rank, data = salary)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3687.8 -1123.6 -392.1 720.9 9646.6

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16416.6 816.0 20.118 < 2e-16 ***

## year 324.5 141.9 2.286 0.026887 *

## rankAssoc 5354.2 1492.6 3.587 0.000806 ***

## rankProf 8176.4 1418.1 5.766 6.49e-07 ***

## year:rankAssoc -129.7 205.8 -0.630 0.531508

## year:rankProf 151.2 171.7 0.880 0.383307

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2386 on 46 degrees of freedom

## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8375

## F-statistic: 53.56 on 5 and 46 DF, p-value: < 2.2e-16



ANOVA for salary data

fit<-lm(salary~year+rank,data=salary)

fitint<-lm(salary~year+rank+year:rank,data=salary)

anova(fit,fitint)

## Analysis of Variance Table

##

## Model 1: salary ~ year + rank

## Model 2: salary ~ year + rank + year:rank

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 48 276992734

## 2 46 261777280 2 15215454 1.3368 0.2727

The hypothesis H0 of a constant year effect is not rejected.



F -statistic

The F -statistic calculated by the anova command is defined as follows:

I RSSf , νf = residual sum of squares and dof for “full” (larger) model;

I RSSr , νr = residual sum of squares and dof for “reduced” submodel.

F =
(RSSr − RSSf )/(νr − νf )

RSSf /νf
=

∆RSS/∆ν

σ̂2
f

Interpretation

I ∆RSS = improvement in model fit going from reduced to full

I ∆ν = change in number of parameters going from reduced to full

The F -statistic is large, and the reduced model is rejected, if

the improvement in fit per parameter added is large compared
to the estimated error variance.

We will derive the null distribution for F on the board.
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Simulation study

n<-50

x1<-rnorm(n) ; x2<-cbind( rbinom(n,1,.5) , rbinom(n,1,.5) )

b0<-1 ; b1<-.4 ; b2<-0 ; b3<-0

y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)

fit<-lm( y~x1+x2)

anova(fit)

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## x1 1 8.534 8.5343 7.2259 0.009972 **

## x2 2 0.109 0.0545 0.0461 0.954965

## Residuals 46 54.329 1.1811

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fit)[2,4]

## [1] 0.04612703



F.sim<-NULL

for(i in 1:2000)

{
y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)

fit<-lm( y~x1+x2)

F.sim<-c(F.sim, anova(fit)[2,4])

}

F.sim
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Importance of DOF

Under H0,

I E[RSS0 − RSS1/∆p] = σ2

I E[RSS1/(n − p)] = σ2

so it seems that under H0, F ≈ 1.

Why would we only reject in this case if Fobs is much larger than 1?
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F.sim<-NULL

for(i in 1:2000)
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y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)
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Importance of DOF

If ∆p is small, then RSS0 − RSS1/∆p is highly variable around σ2.

Critical value can be quite large.

If ∆p is large, then RSS0 − RSS1/∆p is less variable around σ2.

Critical value is closer to 1.

Remember: For n� ∆p, the critical value of the F -test is highly
dependent on the numerator dof.
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p2<-8

x2<-matrix(rbinom(n*(p2-1),1,.5),n,p2-1)

F.sim<-NULL

for(i in 1:2000)

{
y<-b0 + b1*x1 + rnorm(n)

afit<-anova(lm( y~x1+x2))

F.sim<-rbind(F.sim, c( afit[2,3],afit[3,3],afit[2,4] ) )

}
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T and F

Reconsider a model for salary: salary ∼ year + sex

Q: How can we evaluate the effect of sex?

I fit salary ∼ year

I fit salary ∼ year + sex

I compare models with F -test

I fit salary ∼ year + sex

I do a t-test on the coefficient for sex

Could we get two different results?
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T and F

summary( lm(salary ~ year + sex,data=salary) )$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 18065.4054 1247.7738 14.4781095 2.500540e-19

## year 759.0138 118.3363 6.4140410 5.366076e-08

## sexFemale 201.4668 1455.1450 0.1384514 8.904511e-01

fit0<-lm(salary ~ year,data=salary)

fit1<-lm(salary ~ year + sex,data=salary)

anova( fit0, fit1)

## Analysis of Variance Table

##

## Model 1: salary ~ year

## Model 2: salary ~ year + sex

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 50 909048951

## 2 49 908693470 1 355481 0.0192 0.8905

.1384514^2

## [1] 0.01916879


