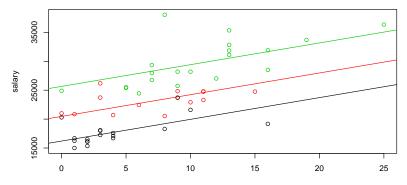
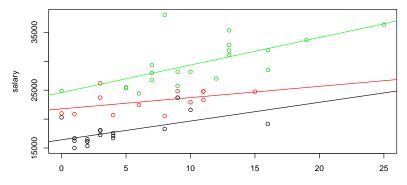
Nested model comparison


Peter Hoff

STAT 423

Applied Regression and Analysis of Variance


University of Washington

Main effects model

year

Interaction model

year

fit_int<-lm(salary ~ year + rank + year:rank,data=salary)</pre>

```
summary(fit_int)$coef
```

##	Estimate	Std. Error	t value	Pr(> t)
<pre>## (Intercept)</pre>	16416.5723	816.0186	20.1178895	1.967510e-24
## year	324.5027	141.9312	2.2863379	2.688729e-02
## rankAssoc	5354.2430	1492.5574	3.5872945	8.063338e-04
## rankProf	8176.4105	1418.1287	5.7656336	6.493300e-07
<pre>## year:rankAssoc</pre>	-129.7345	205.7747	-0.6304686	5.315079e-01
## year:rankProf	151.1750	171.7437	0.8802364	3.833070e-01

Q: How can we test for interactions?

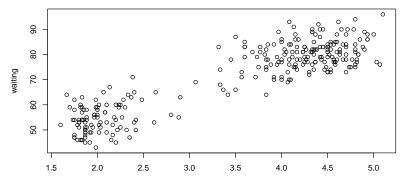
Multiparameter hypotheses

$$\mathsf{E}[\mathsf{salary}|x_y, x_a, x_p] = \beta_0 + \beta_y x_y + \beta_a x_a + \beta_p x_p + \beta_{\mathsf{a:y}} x_y x_a + \beta_{\mathsf{p:y}} x_y x_p$$

Test of interaction:

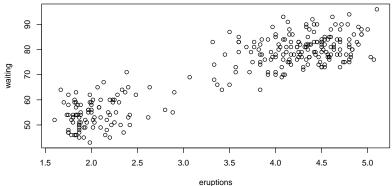
 $\begin{array}{l} H_{0}: \ \left(\beta_{a:y}, \beta_{p:y}\right) = (0,0) \\ H_{1}: \ \left(\beta_{a:y}, \beta_{p:y}\right) \neq (0,0) \end{array}$

Multiparameter hypotheses

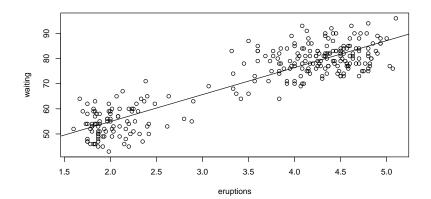

$$\mathsf{E}[\mathsf{salary}|x_y, x_a, x_p] = \beta_0 + \beta_y x_y + \beta_a x_a + \beta_p x_p + \beta_{\mathsf{a:y}} x_y x_a + \beta_{\mathsf{p:y}} x_y x_p$$

Test of interaction:

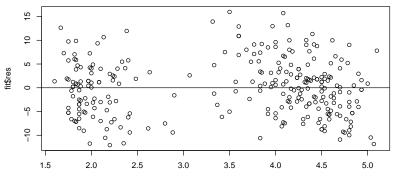
 $\begin{array}{l} H_{0}: \ \left(\beta_{a:y}, \beta_{p:y}\right) = (0,0) \\ H_{1}: \ \left(\beta_{a:y}, \beta_{p:y}\right) \neq (0,0) \end{array}$


Q: How can we test two parameters simultaneously?

Old Faithful eruption data


eruptions

Old Faithful eruption data



fit<-lm(waiting~eruptions,data=faithful)</pre>

Old Faithful eruption data

fit<-lm(waiting~eruptions,data=faithful)</pre>

faithful\$eruptions

y = waiting

y = waiting x = eruptions

- y = waiting
- x =eruptions

Consider the following model:

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

This model is *nonlinear* in x: it is a polynomial.

- y = waiting
- x =eruptions

Consider the following model:

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- This model is *nonlinear* in x: it is a polynomial.
- This model is *linear* in β: the mean is a linear combination of β-coefficients.

- y = waiting
- x =eruptions

Consider the following model:

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- This model is *nonlinear* in x: it is a polynomial.
- This model is *linear* in β: the mean is a linear combination of β-coefficients.

- y = waiting
- x =eruptions

Consider the following model:

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- This model is *nonlinear* in x: it is a polynomial.
- This model is *linear* in β: the mean is a linear combination of β-coefficients.

We can define $\mathbf{x} = (x_0, x_1, x_2, x_3) = (1, x, x^2, x^3).$

- y = waiting
- x =eruptions

Consider the following model:

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- This model is *nonlinear* in x: it is a polynomial.
- This model is *linear* in β: the mean is a linear combination of β-coefficients.

We can define $\mathbf{x} = (x_0, x_1, x_2, x_3) = (1, x, x^2, x^3).$

Then the mean is in linear-model form: $E[y|x] = \beta^T x$.

fit3<-lm(waiting ~ eruptions + I(eruptions^2) + I(eruptions^3) ,data=faithful)
fit3b<-lm(waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)
fit3c<-lm(waiting ~ poly(eruptions,3),data=faithful)</pre>

fit3<-lm(waiting ~ eruptions + I(eruptions^2) + I(eruptions^3) ,data=faithful)
fit3b<-lm(waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)
fit3c<-lm(waiting ~ poly(eruptions,3),data=faithful)</pre>

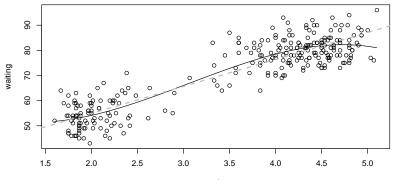
sum(fit3\$res^2)
[1] 8656.627
sum(fit3b\$res^2)
[1] 8656.627
sum(fit3c\$res^2)
[1] 8656.627

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	71.822814	17.9066644	4.010954	7.848652e-05
##	eruptions	-32.640220	17.6875966	-1.845373	6.608630e-02
##	I(eruptions ²)	15.212251	5.4134533	2.810083	5.318008e-03
##	I(eruptions ³)	-1.658674	0.5269041	-3.147962	1.829923e-03

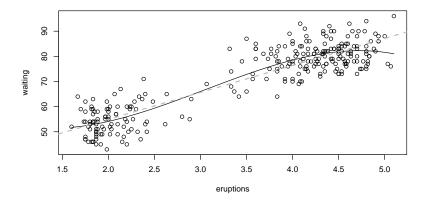
```
summary(fit3b)$coef
```

```
## Estimate Std. Error t value
## (Intercept) 71.822814 17.9066644 4.010954
## poly(eruptions, 3, raw = TRUE)1 -32.640220 17.6875966 -1.845373
## poly(eruptions, 3, raw = TRUE)2 15.212251 5.4134533 2.810083
## poly(eruptions, 3, raw = TRUE)3 -1.658674 0.5269041 -3.147962
## Pr(>|t|)
## (Intercept) 7.848652e-05
## poly(eruptions, 3, raw = TRUE)1 6.608630e-02
## poly(eruptions, 3, raw = TRUE)2 5.318008e-03
## poly(eruptions, 3, raw = TRUE)3 1.829923e-03
```

summary(fit3c)\$coef


 ##
 Estimate
 Std. Error
 t
 value
 Pr(>|t|)

 ## (Intercept)
 70.89706
 0.3446057
 205.733831
 5.316699e-297


 ## poly(eruptions, 3)1
 201.60209
 5.6833834
 35.472339
 3.103641e-103

 ## poly(eruptions, 3)2
 -21.60253
 5.6833834
 -3.800998
 1.784403e-04

 ## poly(eruptions, 3)3
 -17.89108
 5.6833834
 -3.147962
 1.82923e-03

eruptions

Discuss: Model fit, prediction and extrapolation.

Testing linearity in x

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Test of linearity in *x*:

- $H_0: (\beta_2, \beta_3) = (0, 0)$
- $H_1: (\beta_2, \beta_3) \neq (0, 0)$

Testing linearity in x

$$\mathsf{E}[y|x] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Test of linearity in *x*:

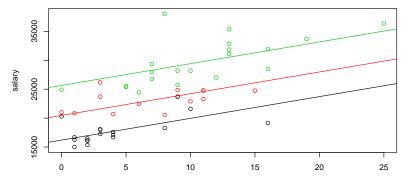
- $H_0: (\beta_2, \beta_3) = (0, 0)$
- $H_1: (\beta_2, \beta_3) \neq (0, 0)$

Q: How can we test two parameters simultaneously?

ANOVA for faithful data

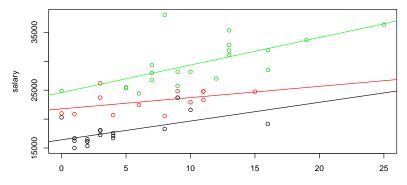
```
fit1<-lm(waiting~eruptions,data=faithful)
fit3<-lm( waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)</pre>
```

```
anova(fit,fit3)
## Analysis of Variance Table
##
## Model 1: waiting ~ eruptions
## Model 2: waiting ~ poly(eruptions, 3, raw = TRUE)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 270 9443.4
## 2 268 8656.6 2 786.76 12.179 8.662e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


ANOVA for faithful data

```
fit1<-lm(waiting~eruptions,data=faithful)
fit3<-lm( waiting ~ poly(eruptions,3,raw=TRUE),data=faithful)</pre>
```

```
anova(fit,fit3)
## Analysis of Variance Table
##
## Model 1: waiting ~ eruptions
## Model 2: waiting ~ poly(eruptions, 3, raw = TRUE)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 270 9443.4
## 2 268 8656.6 2 786.76 12.179 8.662e-06 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


The hypothesis H_0 of linearity in eruptions is strongly rejected.

Main effects model for salary data

year

Interaction model for salary data

year

summary(lm(salary~year+rank+year:rank,data=salary))

```
##
## Call:
## lm(formula = salary ~ year + rank + year:rank, data = salary)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3687.8 -1123.6 -392.1 720.9 9646.6
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 16416.6 816.0 20.118 < 2e-16 ***
## year
               324.5 141.9 2.286 0.026887 *
## rankAssoc 5354.2 1492.6 3.587 0.000806 ***
## rankProf 8176.4 1418.1 5.766 6.49e-07 ***
## year:rankAssoc -129.7 205.8 -0.630 0.531508
## year:rankProf 151.2 171.7 0.880 0.383307
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2386 on 46 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8375
## F-statistic: 53.56 on 5 and 46 DF, p-value: < 2.2e-16
```

ANOVA for salary data

```
fit<-lm(salary~year+rank,data=salary)
fitint<-lm(salary~year+rank+year:rank,data=salary)</pre>
```

```
anova(fit,fitint)
## Analysis of Variance Table
##
## Model 1: salary ~ year + rank
## Model 2: salary ~ year + rank + year:rank
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 48 276992734
## 2 46 261777280 2 15215454 1.3368 0.2727
```

The hypothesis H_0 of a constant year effect is not rejected.

F-statistic

The F-statistic calculated by the anova command is defined as follows:

- ▶ RSS_f , ν_f = residual sum of squares and dof for "full" (larger) model;
- ▶ RSS_r , ν_r = residual sum of squares and dof for "reduced" submodel.

$$F = \frac{(RSS_r - RSS_f)/(\nu_r - \nu_f)}{RSS_f/\nu_f} = \frac{\Delta RSS/\Delta\nu}{\hat{\sigma}_f^2}$$

Interpretation

- ΔRSS = improvement in model fit going from reduced to full
- $\Delta \nu =$ change in number of parameters going from reduced to full

F-statistic

The F-statistic calculated by the anova command is defined as follows:

- ▶ RSS_f , ν_f = residual sum of squares and dof for "full" (larger) model;
- RSS_r , ν_r = residual sum of squares and dof for "reduced" submodel.

$$F = \frac{(RSS_r - RSS_f)/(\nu_r - \nu_f)}{RSS_f/\nu_f} = \frac{\Delta RSS/\Delta\nu}{\hat{\sigma}_f^2}$$

Interpretation

- ΔRSS = improvement in model fit going from reduced to full
- $\Delta \nu =$ change in number of parameters going from reduced to full

The *F*-statistic is large, and the reduced model is rejected, if the improvement in fit per parameter added is large compared to the estimated error variance.

F-statistic

The F-statistic calculated by the anova command is defined as follows:

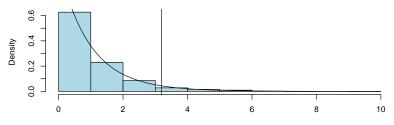
- ▶ RSS_f , ν_f = residual sum of squares and dof for "full" (larger) model;
- RSS_r , ν_r = residual sum of squares and dof for "reduced" submodel.

$$F = \frac{(RSS_r - RSS_f)/(\nu_r - \nu_f)}{RSS_f/\nu_f} = \frac{\Delta RSS/\Delta\nu}{\hat{\sigma}_f^2}$$

Interpretation

- ΔRSS = improvement in model fit going from reduced to full
- $\Delta \nu =$ change in number of parameters going from reduced to full

The *F*-statistic is large, and the reduced model is rejected, if the improvement in fit per parameter added is large compared to the estimated error variance.


We will derive the null distribution for F on the board.

Simulation study

```
n<-50
x1<-rnorm(n) ; x2<-cbind( rbinom(n,1,.5) , rbinom(n,1,.5) )</pre>
b0<-1 ; b1<-.4 ; b2<-0 ; b3<-0
y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)
fit<-lm( y~x1+x2)
anova(fit)
## Analysis of Variance Table
##
## Response: y
       Df Sum Sq Mean Sq F value Pr(>F)
##
## x1 1 8.534 8.5343 7.2259 0.009972 **
## x2 2 0.109 0.0545 0.0461 0.954965
## Residuals 46 54.329 1.1811
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit)[2,4]
```

[1] 0.04612703

```
F.sim<-NULL
for(i in 1:2000)
{
    y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)
    fit<-lm( y~x1+x2)
    F.sim<-c(F.sim, anova(fit)[2,4])
}</pre>
```


F.sim

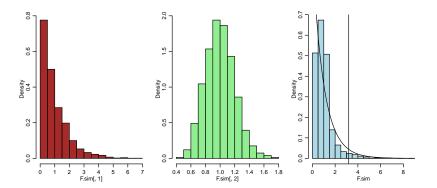
Importance of DOF

Under H_0 ,

- $E[RSS_0 RSS_1/\Delta p] = \sigma^2$
- $E[RSS_1/(n-p)] = \sigma^2$

so it seems that under H_0 , $F \approx 1$.

Importance of DOF


Under H_0 ,

- $E[RSS_0 RSS_1/\Delta p] = \sigma^2$
- $E[RSS_1/(n-p)] = \sigma^2$

so it seems that under H_0 , $F \approx 1$.

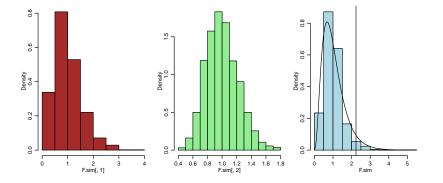
Why would we only reject in this case if F_{obs} is much larger than 1?

```
F.sim<-NULL
for(i in 1:2000)
{
    y<-b0 + b1*x1 + b2*x2[,1] + b3*x2[,2] + rnorm(n)
    afit<-anova(lm( y~x1+x2))
    F.sim<-rbind(F.sim, c( afit[2,3],afit[3,3],afit[2,4] ) )
}</pre>
```


Importance of DOF

If Δp is small, then $RSS_0 - RSS_1/\Delta p$ is highly variable around σ^2 .

If Δp is large, then $RSS_0 - RSS_1/\Delta p$ is less variable around σ^2 .


If Δp is large, then $RSS_0 - RSS_1/\Delta p$ is less variable around σ^2 . Critical value is closer to 1.

If Δp is large, then $RSS_0 - RSS_1/\Delta p$ is less variable around σ^2 . Critical value is closer to 1.

Remember: For $n \gg \Delta p$, the critical value of the *F*-test is highly dependent on the numerator dof.

```
p2<-8
x2<-matrix(rbinom(n*(p2-1),1,.5),n,p2-1)
```

```
F.sim<-NULL
for(i in 1:2000)
{
    y<-b0 + b1*x1 + rnorm(n)
    afit<-anova(lm( y~x1+x2))
    F.sim<-rbind(F.sim, c( afit[2,3],afit[3,3],afit[2,4] ) )
}</pre>
```


Reconsider a model for salary: salary \sim year + sex

T and $\ensuremath{\mathsf{F}}$

Reconsider a model for salary: salary \sim year + sex Q: How can we evaluate the effect of sex?

T and $\ensuremath{\mathsf{F}}$

Reconsider a model for salary: salary \sim year + sex

Q: How can we evaluate the effect of sex?

- \blacktriangleright fit salary \sim year
- \blacktriangleright fit salary \sim year + sex
- compare models with F-test

T and $\ensuremath{\mathsf{F}}$

Reconsider a model for salary: salary \sim year + sex

Q: How can we evaluate the effect of sex?

- \blacktriangleright fit salary \sim year
- \blacktriangleright fit salary \sim year + sex
- compare models with F-test
- \blacktriangleright fit salary \sim year + sex
- do a t-test on the coefficient for sex

T and F

Reconsider a model for salary: salary \sim year + sex

Q: How can we evaluate the effect of sex?

- \blacktriangleright fit salary \sim year
- \blacktriangleright fit salary \sim year + sex
- compare models with F-test
- \blacktriangleright fit salary \sim year + sex
- do a t-test on the coefficient for sex

Could we get two different results?

T and F

summary(lm(salary ~ year + sex,data=salary))\$coef

 ##
 Estimate Std. Error
 t value
 Pr(>|t|)

 ## (Intercept)
 18065.4054
 1247.7738
 14.4781095
 2.500540e-19

 ## year
 759.0138
 118.3363
 6.4140410
 5.366076e-08

 ## sexFemale
 201.4668
 1455.1450
 0.1384514
 8.904511e-01

```
fit0<-lm(salary ~ year,data=salary)
fit1<-lm(salary ~ year + sex,data=salary)
anova( fit0, fit1)
## Analysis of Variance Table
##
## Model 1: salary ~ year
## Model 2: salary ~ year + sex
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 50 909048951
## 2 49 908693470 1 355481 0.0192 0.8905
```

.1384514^2

[1] 0.01916879