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Diabetes example:

y = diabetes progression

x1 = age

x2 = sex

...

dim(X)

## [1] 442 64

colnames(X)

## [1] "age" "sex" "bmi" "map" "tc" "ldl" "hdl"
## [8] "tch" "ltg" "glu" "age^2" "bmi^2" "map^2" "tc^2"
## [15] "ldl^2" "hdl^2" "tch^2" "ltg^2" "glu^2" "age:sex" "age:bmi"
## [22] "age:map" "age:tc" "age:ldl" "age:hdl" "age:tch" "age:ltg" "age:glu"
## [29] "sex:bmi" "sex:map" "sex:tc" "sex:ldl" "sex:hdl" "sex:tch" "sex:ltg"
## [36] "sex:glu" "bmi:map" "bmi:tc" "bmi:ldl" "bmi:hdl" "bmi:tch" "bmi:ltg"
## [43] "bmi:glu" "map:tc" "map:ldl" "map:hdl" "map:tch" "map:ltg" "map:glu"
## [50] "tc:ldl" "tc:hdl" "tc:tch" "tc:ltg" "tc:glu" "ldl:hdl" "ldl:tch"
## [57] "ldl:ltg" "ldl:glu" "hdl:tch" "hdl:ltg" "hdl:glu" "tch:ltg" "tch:glu"
## [64] "ltg:glu"

2/53



Training and test sets

nte<-100

ntr<-length(y)-nte

yte<-y[1:nte]

Xte<-X[1:nte,]

ytr<-y[ -(1:nte) ]

Xtr<-X[ -(1:nte),]
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cxy<-apply( Xtr, 2, function(x){ cor(x,ytr) } )
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rcor<-order( abs(cxy), decreasing=TRUE)

RSS<-sum(ytr^2)

PSS<-sum(yte^2)

for(j in 1:ncol(Xtr))

{
beta<-lm(ytr~ -1 + Xtr[,rcor[1:j]])$coef

RSS<-c(RSS, sum( (ytr-Xtr[,rcor[1:j],drop=FALSE]%*%beta)^2 ) )

PSS<-c(PSS, sum( (yte-Xte[,rcor[1:j],drop=FALSE]%*%beta)^2 ) )

}
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Observations

RSS decreases with each additional predictor

PSS may decrease or increase with each additional predictor

RSS/ntr is a good estimate of PSS/nte when few predictors.

RSS/ntr is not a good estimate of PSS/nte when many predictors.

How should we choose which predictors to include?
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Regression models

The task of choosing predictors is called the model selection problem

In the context of linear regression, a model consists of

I an outcome variable y , or a outcome data vector y;

I a set of explanatory variables x1, . . . , xp, or a design matrix X.

Example: “A regression model for y with age, sex, bmi as predictors”

{y , age, sex , bmi}
y, X[,1:3]

yi = β0 + β1 × agei + β2 × sexi + β3 × bmii + εi

Example: “A regression model for y with all other vars as predictors”

{y , age, sex , . . . , ltg : glu}
y, X

yi = β0 + β1 × agei + β2 × sexi + · · ·+ β64 × ltg:glui + εi
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Model comparison

Given a set of models, how should we compare them?

I RSS?

I p-values?

I PSS using test and training sets?

I cross validation?

I other criteria?
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Model comparison

Which models should we compare?

Q: Given x1, . . . , xp, how many main-effects models are there?

A:

I Each variable may either be in or out of the model;

I There are 2p models to consider.

For the diabetes data, p = 64 and so the number of models is

264 ≈ 1.8× 1019.

We won’t be able to fit and compare all possible models if p is large.
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Model selection

Selecting a model requires two things:

I A procedure for deciding which models to compare;

I A criteria with which to compare models.

If p is small, we may be able to compare all possible models.

If p is large, we may use a stepwise procedure:

I add or remove predictors from a model based on comparison criteria;

I this “searches” through the space of models, making moves that
improve criteria.
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PSS

E[PSS] = nσ2 + pσ2 + ||(I− P)µ||2

I p represents estimation variability;

I ||(I− P)µ||2 represents bias.

Generally speaking, as p goes up

I estimation variability goes up;

I bias goes down.
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Illustration: polynomial regression
x<-seq(-1,1,by=.2 )

X<-cbind(1 , x, x^2, x^3, x^4, x^5)

beta<-c(.1,-.2,-.2,.4,0,0)

mu<-X%*%beta

The true mean function is a 3rd degree polynomial in x .
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X1<-X[,1:2]

P1<-X1%*%solve(t(X1)%*%X1)%*%t(X1)

c(P1%*% mu)

## [1] -0.06480 -0.04784 -0.03088 -0.01392 0.00304 0.02000 0.03696
## [8] 0.05392 0.07088 0.08784 0.10480

c( (I-P1)%*%mu )

## [1] -0.23520 -0.02496 0.09248 0.13632 0.12576 0.08000 0.01824
## [8] -0.04032 -0.07648 -0.07104 -0.00480
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X2<-X[,1:3]

P2<-X2%*%solve(t(X2)%*%X2)%*%t(X2)

c(P2%*% mu)

## [1] -0.18480 -0.09584 -0.02288 0.03408 0.07504 0.10000 0.10896
## [8] 0.10192 0.07888 0.03984 -0.01520

round( c( (I-P2)%*%mu ), 5)

## [1] -0.11520 0.02304 0.08448 0.08832 0.05376 0.00000 -0.05376
## [8] -0.08832 -0.08448 -0.02304 0.11520
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X3<-X[,1:4]

P3<-X3%*%solve(t(X3)%*%X3)%*%t(X3)

c(P3%*% mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round(c( (I-P3)%*%mu ),5)

## [1] 0 0 0 0 0 0 0 0 0 0 0
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X4<-X[,1:5]

P4<-X4%*%solve(t(X4)%*%X4)%*%t(X4)

c(P4%*% mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round( c( (I-P4)%*%mu ), 5)

## [1] 0 0 0 0 0 0 0 0 0 0 0
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X5<-X[,1:6]

P5<-X5%*%solve(t(X5)%*%X5)%*%t(X5)

c(P5%*% mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round( c( (I-P5)%*%mu ), 5)

## [1] 0 0 0 0 0 0 0 0 0 0 0
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Simulation study

B1<-B2<-B3<-B4<-B5<-NULL

for(s in 1:50)

{
y<-rnorm(length(x),mu,sigma)

B1<-rbind(B1,lm(y~-1+X1)$coef )

B2<-rbind(B2,lm(y~-1+X2)$coef )

B3<-rbind(B3,lm(y~-1+X3)$coef )

B4<-rbind(B4,lm(y~-1+X4)$coef )

B5<-rbind(B5,lm(y~-1+X5)$coef )

}
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Observations

I If you include too few variables, bias will be high.

I If you include too many variables, estimation variability will be high.

I The best model for prediction balances bias and variance.

I The best model for prediction might not be the correct model.

The best model for prediction depends on knowledge of bias and variance.

In general, we don’t know either of these (don’t know µ or σ2).

Various summary statistics attempt to estimate E[PSS].

I Cp;

I PRESS;

I AIC, BIC;

I Prediction error on test datasets.
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Cp

E[PSS] = nσ2 + pσ2 + ||(I− P)µ||2

E[RSS] = nσ2 − pσ2 + ||(I− P)µ||2

E[PSS] = E[RSS] + 2pσ2

Q: What about σ2 ?

A: Let σ̃2 be the variance estimate from the largest model considered.

I Even if that model is too big, σ̃2 is unbiased for σ2.

I If the model is still too small, σ̃2 is biased upward.

Cp:

I Evaluate each considered model with Cp = RSS + 2pσ̃2

I E[Cp] = E[PSS].
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I If the model is still too small, σ̃2 is biased upward.

Cp:

I Evaluate each considered model with Cp = RSS + 2pσ̃2

I E[Cp] = E[PSS].
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Model comparison with Cp

Cp = RSS + 2pσ̃2

Cp(M1) = RSS + 2p1σ̃
2 = Cp statistic for model 1.

Cp(M2) = RSS + 2p2σ̃
2 = Cp statistic for model 2.

Prefer M1 to M2 if Cp(M1) < Cp(M2).
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Model comparison with Cp

Note: Often Cp is defined as

Cp(Mj) = RSSj/σ̃
2 + 2pj − n

This doesn’t change the ordering of model preferences.

Caution:
The minimizer of the unbiased estimators of E[PSS] is not
an unbiased estimator of the minimizing E[PSS]. In general,

E[min
M

Cp(M)] ≤ min
M

E[PSS]

So minM Cp(M) is generally too optimistic in terms of prediction error.
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AIC and Cp

Akaike information criterion: A general estimate of prediction error.

For a general statistical model p(y|θM), the AIC is

AIC (M) = −2 log p(y|θ̂M) + 2pM

where θ̂M is the MLE of θM and pM is the dimension of θM .

For a linear regression model, this becomes

AIC (M) = n(1 + log 2π/n) + n logRSSM + 2pM

This is similar to Cp:

I Both balance fit and complexity.

I Choice based on Cp and AIC are asymptotically equivalent.

I Cp and AIC generally select models that are
I larger than the true model;
I good at minimizing prediction error.
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AIC and BIC

AIC (M) = n logRSSM + 2× pM

BIC (M) = n logRSSM + log(n)× pM

BIC more heavily penalizes complexity as the sample size grows.

I BIC will (asymptotically) select the correct model (if in model space)

I AIC will (asymptotically) select the best model for prediction.
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Example: Diabetes progression

AIC<-BIC<-RSS<-PSS<-NULL

for(j in 1:ncol(Xtr))

{
fit<- lm( y ~ -1 + X[,rcor[1:j]] )

RSS<-c(RSS, sum(fit$res^2) )

AIC<-c(AIC, AIC(fit) )

BIC<-c(BIC, BIC(fit) )

fit_tr<-lm( ytr ~ Xtr[,rcor[1:j]] )

PSS<-c(PSS, sum( (yte-cbind(1,Xte[,rcor[1:j],drop=FALSE])%*%fit_tr$coef)^2 ) )

}

s2hat<-summary(fit)$sigma^2

CP<-RSS + 2*s2hat*(1:64)
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Comparison
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which.min(CP)

## [1] 13

which.min(AIC)

## [1] 13

which.min(BIC)

## [1] 3

which.min(PSS)

## [1] 13
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round(summary( lm( y ~ -1+ X[,rcor[1:13]] ))$coef,3)

## Estimate Std. Error t value Pr(>|t|)

## X[, rcor[1:13]]bmi 0.313 0.047 6.732 0.000

## X[, rcor[1:13]]ltg 0.510 0.107 4.764 0.000

## X[, rcor[1:13]]map 0.162 0.041 3.933 0.000

## X[, rcor[1:13]]tch 0.044 0.100 0.440 0.660

## X[, rcor[1:13]]glu 0.016 0.041 0.387 0.699

## X[, rcor[1:13]]hdl 0.098 0.132 0.742 0.459

## X[, rcor[1:13]]bmi^2 0.047 0.042 1.111 0.267

## X[, rcor[1:13]]tc -0.529 0.259 -2.043 0.042

## X[, rcor[1:13]]map^2 0.012 0.039 0.298 0.766

## X[, rcor[1:13]]ldl 0.377 0.212 1.781 0.076

## X[, rcor[1:13]]age 0.001 0.037 0.020 0.984

## X[, rcor[1:13]]bmi:map 0.069 0.042 1.655 0.099

## X[, rcor[1:13]]glu^2 0.087 0.035 2.499 0.013

round(summary( lm( y ~ -1 + X[,rcor[1:3]] ))$coef,3)

## Estimate Std. Error t value Pr(>|t|)

## X[, rcor[1:3]]bmi 0.373 0.040 9.335 0

## X[, rcor[1:3]]ltg 0.336 0.040 8.426 0

## X[, rcor[1:3]]map 0.162 0.039 4.170 0

42/53



Comparison to backwards selection

fit_bs<-step(lm(y~X[,1]+X[,2]+X[,3]+X[,4]+X[,5]+X[,6] +X[,7] + X[,8] + X[,9] +

X[,10]+X[,11]+X[,12]+X[,13]+X[,14]+X[,15]+X[,16]+X[,17]+X[,18]+X[,19]+

X[,20]+X[,21]+X[,22]+X[,23]+X[,24]+X[,25]+X[,26]+X[,27]+X[,28]+X[,29]+

X[,30]+X[,31]+X[,32]+X[,33]+X[,34]+X[,35]+X[,36]+X[,37]+X[,38]+X[,39]+

X[,40]+X[,41]+X[,42]+X[,43]+X[,44]+X[,45]+X[,46]+X[,47]+X[,48]+X[,49]+

X[,50]+X[,51]+X[,52]+X[,53]+X[,54]+X[,55]+X[,56]+X[,57]+X[,58]+X[,59]+

X[,60]+X[,61]+X[,62]+X[,63]+X[,64] ) , direction="backward", trace=0)

AIC(fit_bs)

## [1] 929.7878

AIC(lm( y ~ -1+ X[,rcor[1:13]] ) )

## [1] 957.5259
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summary(fit_bs)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.829230e-17 0.03195039 -5.725221e-16 1.000000e+00
## X[, 2] -1.645210e-01 0.03666673 -4.486928e+00 9.363808e-06
## X[, 3] 3.064222e-01 0.04054688 7.557233e+00 2.648130e-13
## X[, 4] 2.118805e-01 0.03885998 5.452408e+00 8.537035e-08
## X[, 5] -5.297840e-01 0.12121620 -4.370571e+00 1.567216e-05
## X[, 6] 4.222447e-01 0.11423267 3.696357e+00 2.479796e-04
## X[, 9] 6.008533e-01 0.05733979 1.047882e+01 5.863357e-23
## X[, 11] 5.158435e-02 0.03647666 1.414174e+00 1.580587e-01
## X[, 14] 3.821722e+00 1.81889793 2.101120e+00 3.623155e-02
## X[, 15] 2.429713e+00 1.36095686 1.785297e+00 7.494154e-02
## X[, 16] 6.506550e-01 0.33770999 1.926668e+00 5.470188e-02
## X[, 18] 9.191220e-01 0.32170474 2.857036e+00 4.490711e-03
## X[, 19] 1.207572e-01 0.03999570 3.019255e+00 2.690002e-03
## X[, 20] 1.119235e-01 0.03807215 2.939774e+00 3.467639e-03
## X[, 23] -6.293280e-02 0.04445406 -1.415682e+00 1.576170e-01
## X[, 25] 6.827735e-02 0.04217416 1.618938e+00 1.062185e-01
## X[, 27] 1.129612e-01 0.05013625 2.253084e+00 2.477409e-02
## X[, 30] 5.197597e-02 0.03575293 1.453754e+00 1.467685e-01
## X[, 37] 1.058287e-01 0.03675174 2.879557e+00 4.188009e-03
## X[, 49] -7.404143e-02 0.04415067 -1.677017e+00 9.429031e-02
## X[, 50] -5.959216e+00 2.99470385 -1.989918e+00 4.725411e-02
## X[, 51] -1.820864e+00 0.89611593 -2.031951e+00 4.279353e-02
## X[, 53] -2.771258e+00 1.14225981 -2.426119e+00 1.568555e-02
## X[, 55] 1.439655e+00 0.75084949 1.917369e+00 5.587565e-02
## X[, 57] 2.136519e+00 0.90533586 2.359918e+00 1.873990e-02
## X[, 60] 9.691256e-01 0.40717554 2.380118e+00 1.775682e-02
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Training and test sets

One strategy for estimating PSS is with training and test sets:

I Randomly divide the data into {ytr ,Xtr} {yte ,Xte};
I Obtain β̂ from {ytr ,Xtr};
I Compare yte to Xteβ̂:

E[PSS ] ≈ ||yte − Xteβ̂||2

Q: Why not use ||ytr − Xtr β̂||2 ?

A: This is just RSS, which will underestimate prediction error

I β̂ matches the signal and noise in ytr ;

I A complex model will do great at matching the noise;

I We want to see how well it does at matching the signal.

Note: The book calls these construction and validation sets.
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Training and test sets

Use of a single training and test set can be problematic:

I If you select a model M, the estimates from the full data might
substantially different than those from the training data.

I The best model using the full data might be different than the best
model based on training/test sets of half the size.

I An estimate of E[PSS ] from a half-size dataset might not be very
good.
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Cross validation

Consider instead the following:

I Divide the dataset into {y1,X1} {y2,X2};
I Obtain β̂1 from {y1,X1}, β̂2 from {y2,X2}
I Compare y1 to X1β̂2 and y2 to X2β̂1.

E[PSS ] ≈ ||y1 − X1β̂2||2 + ||y2 − X2β̂1||2

This is called two-fold cross validation.

Intuitively, this should provide a better approximation to E[PSS ].
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K -fold cross validation

Consider instead the following:

I Divide the dataset into {y1,X1}, . . . , {yK ,XK};
I Obtain β̂−k from {yj ,Xj : j 6= k},
I Compare yk to Xk

ˆβ−k

E[PSS ] ≈
∑
k

||yk − Xk β̂−k ||2

This is called K -fold cross validation.
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“Leave out one” cross validation

Consider instead the following:

I Let y−i ,X−i denote the dataset with the ith case removed;

I Obtain β̂−i from y−i ,X−i

I Compare yi to xTi β̂−i

E[PSS ] ≈
∑
i

(yi − xTi β̂−i )
2 = PRESS

This procedure is called n-fold cross validation.

This seems ideal:

I The model is selected based on fits using n − 1 observations;

I The parameter estimates from y−i ,X−i should be pretty close.

Problem? It seems you would need to fit the model n times!
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Matrix magic

Let H = X(XTX)−1XT be the “hat” matrix.

Previously we called this matrix “P” for “projection.”

Hy = X(XTX)−1XTy

= X[(XTX)−1XTy]

= Xβ̂ = ŷ

Let hii = Hii = xTi (XTX)−1xi . Then

PRESS =
∑

( ε̂i
1−hii

)2,

where ε̂i is the ith residual using the all the data.
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Let hii = Hii = xTi (XTX)−1xi . Then

PRESS =
∑

( ε̂i
1−hii

)2,

where ε̂i is the ith residual using the all the data.

50/53



Diabetes example

H<-X%*% solve( t(X)%*%X ) %*%t(X)

diag(H)[1:5]

## 1 2 3 4 5

## 0.06397911 0.11228880 0.12754413 0.09562653 0.04944736

influence(fit)$hat[1:5]

## 1 2 3 4 5

## 0.06397911 0.11228880 0.12754413 0.09562653 0.04944736
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PRESS for diabetes example

PRESS<-NULL

for(j in 1:ncol(Xtr))

{
fit<- lm( y ~ -1 + X[,rcor[1:j]] )

h<-influence(fit)$hat

PRESS<-c(PRESS, sum( (fit$res/(1-h))^2 ) )

}

PRESS[1:15]

## [1] 290.4278 240.4526 232.4235 233.2080 234.1532 229.1721 227.0113

## [8] 226.8352 226.6060 226.4541 227.5069 227.2611 224.8457 225.8457

## [15] 226.7070
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which.min(PRESS)

## [1] 13
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