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Diabetes example:
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dim(X)

## [1] 442 64

colnames (X)

##
##
##
##
##
##
##
##
##
##

[11

[8l
[15]
[22]
[29]
[36]
[43]
[50]
[67]
[64]

age
"tch"
"1d1-2"
"age:map"
"sex:bmi"
"sex:glu"
"bmi:glu"
"tc:1dl"
"1dl:1tg"
"ltg:glu"

ngex"

"ltg"
"hd1"2"

"age:tc"
"sex:map
"bmi :map
"map:tc"
"tc:hdl"
"1dl:glu"

y = diabetes progression

X1 — age

Xp = sex

"bmi"
nglu"
"tch~2"
"age:1d1"
"sex:tc"
"bmi:tc"
"map:1d1"
"tc:tch"
"hdl:tch"

"map"

"age”2"
"ltg~2"
"age:hdl"
"sex:1dl"
"bmi:1d1l"
"map:hdl"
"tc:ltg"
"hdl:1tg"

g
"bmi~2"
"glu~2"
"age:tch"
"sex:hdl"
"bmi:hdl"
"map:tch"
"tc:glu"
"hdl:glu"

"1d1
"map
"age
"age

"sex:

"bmi

"map:

"1d1l

"tch:

"
~ou

:sex"
:1ltg"
tch"
:tch"
1ltg"
:hdl"
1ltg"

"hdl"

ngchon

"age:
"age:
"sex:
"bmi :
"map:
"1dl:
"tch:

bmi"
glu"
ltg"
ltg"
glu"
tch"
glu"



Training and test sets

nte<-100
ntr<-length(y)-nte

yte<-y[1:nte]
Xte<-X[1:nte,]

ytr<-y[ -(1:nte) ]
Xtr<-X[ -(1:nte),]
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cxy<-apply( Xtr, 2, function(x){ cor(x,ytr) } )
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sort(cxy)
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rcor<-order( abs(cxy), decreasing=TRUE)

RSS<-sum(ytr~2)
PSS<-sum(yte~2)

for(j in 1:ncol(Xtr))
beta<-Im(ytr~ -1 + Xtr[,rcor[1:j]])$coef
RSS<-c(RSS, sum( (ytr-Xtr[,rcor([1:j],drop=FALSE]%*%beta)~2 ) )

PSS<-c (PSS, sum( (yte-Xtel[,rcor[1:j],drop=FALSE]%*)beta)~2 ) )
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Observations

RSS decreases with each additional predictor
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Observations
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RSS decreases with each additional predictor

PSS may decrease or increase with each additional predictor

RSS/ntr is a good estimate of PSS/nte when few predictors.

RSS/ntr is not a good estimate of PSS/nte when many predictors.

How should we choose which predictors to include?



Regression models

The task of choosing predictors is called the model selection problem
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The task of choosing predictors is called the model selection problem

In the context of linear regression, a model consists of
> an outcome variable y, or a outcome data vector y;
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Regression models

The task of choosing predictors is called the model selection problem
In the context of linear regression, a model consists of

> an outcome variable y, or a outcome data vector y;

> a set of explanatory variables x, ..., xp, or a design matrix X.
Example: “A regression model for y with age, sex, bmi as predictors”
{y, age, sex, bmi}

Y, X3
yi = Bo + B1 X age; + [ X sex; + B3 X bmi; 4 ¢;
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Regression models

The task of choosing predictors is called the model selection problem
In the context of linear regression, a model consists of

» an outcome variable y, or a outcome data vector vy;

> a set of explanatory variables x, ..., xp, or a design matrix X.

Example: “A regression model for y with age, sex, bmi as predictors”
{y, age, sex, bmi}
y: X[,1:3]
yi = Po+ B1 x age; + B2 X sex; + P3 x bmi; + €;

Example: “A regression model for y with all other vars as predictors”
{y, age,sex, ..., ltg : glu}
y, X
Yi = Po+ P1 x age; + P2 X sex; + - - - + Bea X ltgiglu; + ¢;
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Model comparison

Given a set of models, how should we compare them?
» RSS?

p-values?

>
» PSS using test and training sets?
> cross validation?

>

other criteria?
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Model comparison

Which models should we compare?
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Q: Given xy, ..., Xp, how many main-effects models are there?
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Which models should we compare?

Q: Given xy, ..., Xp, how many main-effects models are there?

A:
» Each variable may either be in or out of the model;

» There are 2P models to consider.
For the diabetes data, p = 64 and so the number of models is

204 ~ 1.8 x 10%°.



Model comparison
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Which models should we compare?

Q: Given xy, ..., Xp, how many main-effects models are there?

A:
» Each variable may either be in or out of the model;

» There are 2P models to consider.
For the diabetes data, p = 64 and so the number of models is

204 ~ 1.8 x 10%°.

We won't be able to fit and compare all possible models if p is large.



Model selection

Selecting a model requires two things:

> A procedure for deciding which models to compare;

» A criteria with which to compare models.
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Model selection

Selecting a model requires two things:

> A procedure for deciding which models to compare;

» A criteria with which to compare models.

If p is small, we may be able to compare all possible models.

If p is large, we may use a stepwise procedure:
» add or remove predictors from a model based on comparison criteria;

> this “searches” through the space of models, making moves that
improve criteria.
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PSS

E[PSS] = no? + po® + ||(1 = P)ull®

> p represents estimation variability;

> ||(1 — P)ul|? represents bias.
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PSS

E[PSS] = no? + po® + ||(1 = P)ull®

> p represents estimation variability;

> ||(1 — P)ul|? represents bias.

Generally speaking, as p goes up
> estimation variability goes up;

> bias goes down.
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lllustration: polynomial regression
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x<-seq(-1,1,by=.2 )

X<-cbind(1 , x, x72, x°3, x74, x°5)
beta<-c(.1,-.2,-.2,.4,0,0)
mu<-X%*%beta

The true mean function is a 3rd degree polynomial in x.
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X1<-X[,1:2]
P1<-X1%*%solve (t (X1)%*%X1) %*%t (X1)

c(P1%*) mu)

## [1] -0.06480 -0.04784 -0.03088 -0.01392
## [8] 0.05392 0.07088 0.08784 0.10480

c( (I-P1)%*%mu )

## [1] -0.23520 -0.02496 0.09248 0.13632
## [8] -0.04032 -0.07648 -0.07104 -0.00480

0.00304 0.02000 0.03696

0.12576 0.08000 0.01824

00 01
1

Elylx]
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0.0

0.5
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X2<-X[,1:3]
P2<-X2%x*%solve (t (X2) %*%X2) %*%t (X2)

¢ (P2%x mu)

## [1] -0.18480 -0.09584 -0.02288 0.03408
## [8] 0.10192 0.07888 0.03984 -0.01520

round( c( (I-P2)%*¥%mu ), 5)

## [1] -0.11520 0.02304 0.08448 0.08832
## [8] -0.08832 -0.08448 -0.02304 0.11520

0.07504 0.10000 0.10896

0.05376 0.00000 -0.05376

00 01
1

Elylx]

-1.0 -05

0.0

0.5
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X3<-X[,1:4]
P3<-X3Y%x*%solve (t (X3) %*%X3) %*%t (X3)
¢ (P3%x*7, mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round(c( (I-P3)%*¥mu ),5)

## [11 00000000000

ElyX]
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1
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1

0.3

-1.0 -05 0.0 0.5 1.0



X4<-X[,1:5]
P4<-X4Y%*%hsolve (t (X4) %*%X4) fxht (X4)
c(P4%*% mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round( c( (I-P4)%*)mu ), 5)

## [11 00000000000

ElyX]
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|
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0.3

-1.0 -0.5 0.0 0.5
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X5<-X[,1:6]
P5<-X5%x*%solve (t (X5) %*%X5) %x%t (X5)
¢ (P5%*7, mu)

## [1] -0.3000 -0.0728 0.0616 0.1224 0.1288 0.1000 0.0552 0.0136
## [9] -0.0056 0.0168 0.1000

round( c( (I-P5)%*¥%mu ), 5)

## [11 00000000000
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Simulation study
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B1<-B2<-B3<-B4<-B5<-NULL
for(s in 1:50)

{

y<-rnorm(length(x) ,mu,sigma)

Bi<-rbind (B1,1lm(y~-1+X1)$coef
B2<-rbind (B2, 1lm(y~-1+X2) $coef
B3<-rbind (B3, 1lm(y~-1+X3) $coef
B4<-rbind (B4, 1m(y~-1+X4) $coef
B5<-rbind (B5,1lm(y~-1+X5) $coef

o
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Observations

If you include too few variables, bias will be high.
If you include too many variables, estimation variability will be high.

The best model for prediction balances bias and variance.

vV v . vvY

The best model for prediction might not be the correct model.
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Observations

> If you include too few variables, bias will be high.

» If you include too many variables, estimation variability will be high.
» The best model for prediction balances bias and variance.
>

The best model for prediction might not be the correct model.

The best model for prediction depends on knowledge of bias and variance.
In general, we don't know either of these (don't know g or o2).
Various summary statistics attempt to estimate E[PSS].

> CP;
» PRESS;
» AIC, BIC;
» Prediction error on test datasets.
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E[PSS] = no®+ po® + ||(1 — P)u|?
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E[PSS] = no®+ po® + ||(1 — P)u|?
E[RSS] = no® — po® +[|(1— P)pl?
E[PSS] = E[RSS] + 2po?

Q: What about 02 ?

A: Let 52 be the variance estimate from the largest model considered.
» Even if that model is too big, 52 is unbiased for o2.

> If the model is still too small, 52 is biased upward.
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E[PSS] = no®+ po® + ||(1 — P)u|?
E[RSS] = no® — po® +[|(1— P)pl?
E[PSS] = E[RSS] + 2po?

Q: What about 02 ?

A: Let 52 be the variance estimate from the largest model considered.
» Even if that model is too big, 52 is unbiased for o2.

> If the model is still too small, 52 is biased upward.

Co:
» Evaluate each considered model with C, = RSS + 2p52
» E[C,] = E[PSS].

34/53



Model comparison with C,

C, = RSS +2p5°

Cp(M1) = RSS + 2p152 = C, statistic for model 1.
Cp(M>) = RSS 4 2p262 = C, statistic for model 2.
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Model comparison with C,

C, = RSS +2p5°
Cp(M1) = RSS + 2p152 = C, statistic for model 1.

Cp(M>) = RSS 4 2p262 = C, statistic for model 2.
Prefer My to M if Cp(My) < Cp(Ma).
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Model comparison with C,

Note: Often C, is defined as
Co(M;) = RSS;/5% + 2p; — n

This doesn’t change the ordering of model preferences.
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Model comparison with C,
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Note: Often C, is defined as
Co(M;) = RSS;/5% + 2p; — n

This doesn’t change the ordering of model preferences.

Caution:
The minimizer of the unbiased estimators of E[PSS] is not
an unbiased estimator of the minimizing E[PSS]. In general,

E[min Co(M)] < min E[PSS]

So miny C,(M) is generally too optimistic in terms of prediction error.



AIC and C,

Akaike information criterion: A general estimate of prediction error.
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AIC and C,

Akaike information criterion: A general estimate of prediction error.
For a general statistical model p(y|fu), the AIC is
AIC(M) = —2log p(y|Om) + 2pwm

where éM is the MLE of 0, and py is the dimension of 6.

For a linear regression model, this becomes

AIC(M) = n(1 + log 27 /n) + nlog RSSy + 2pm

This is similar to C,:
» Both balance fit and complexity.
> Choice based on C, and A/C are asymptotically equivalent.
» C, and AIC generally select models that are

> larger than the true model;
» good at minimizing prediction error.
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AIC and BIC

AIC(M) = nlog RSSpm + 2 X pum
BIC(M) = nlog RSSym + log(n) x pm

38/53



AIC and BIC

AIC(M) = nlog RSSm + 2 X pum
BIC(M) = nlog RSSm + log(n) x pm

BIC more heavily penalizes complexity as the sample size grows.
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AIC and BIC

AIC(M) = nlog RSSm + 2 X pum
BIC(M) = nlog RSSm + log(n) x pm

BIC more heavily penalizes complexity as the sample size grows.

» BIC will (asymptotically) select the correct model (if in model space)
» AIC will (asymptotically) select the best model for prediction.
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Example: Diabetes progression

AIC<-BIC<-RSS<-PSS<-NULL

for(j in 1:ncol(Xtr))

! fit<- Im( y ~ -1 + X[,rcor[1:3j1] )
RSS<-c(RSS, sum(fit$res~2) )
AIC<-c(AIC, AIC(fit) )
BIC<-c(BIC, BIC(fit) )

fit_tr<-1m( ytr ~ Xtr[,rcor[1:j]] )
PSS<-c (PSS, sum( (yte-cbind(1l,Xte[,rcor[1:j],drop=FALSE])%*}fit_tr$coef) 2 )

}

s2hat<-summary(fit)$sigma2

CP<-RSS + 2xs2hat*(1:64)
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Comparison

o — cP
< ] — AC
— BIC
— PSS
o
—
(2]
o
o)
@
T T T T
0 10 20 30

model
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which.min(CP)

## [1] 13

which.min(AIC)

## [1] 13

which.min(BIC)

## [1] 3

which.min(PSS)

## [1] 13
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round (summary( 1m( y ~ -1+ X[,rcor[1:13]] ))$coef,3)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

X[,
XL,
X[)
X[,
XL,
X[,
XL,
X[,
XL,
X[)
X[,
XL,
X[,

rcor[1:
rcor[1:
rcor([1:
rcor[1:
rcor[1:
rcor[1:
rcor([1:
rcor[1:
rcor[1:
rcor[1:
rcor[1:
rcor([1:
rcor[1:

1311 bmi
13]1]11tg
13]1map
13]1tch
13]]1glu
13]1hd1l
13]]1bmi
13]]tc

13]1map
1311141
13]1]age
1311 bmi
13]11glu

Estimate Std. Error t value

0.313
0.510
0.162
0.044
0.016
0.098
0.047
-0.529
.012
377
.001
.069
.087

~2

~2

:map
"2

O O O oo

0.
.107
.041
.100
.041
.132
.042
.259 -
.039
.212
.037
.042
.035

[elielelNeNelNeNe oo o NeNe]

047

6.
.764
.933
.440
.387
.742
.111
.043
.298
.781
.020
.655
.499

N = O OO Wb

N = O O

732

round (summary( 1m( y ~ -1 + X[,rcor[1:3]] ))$coef,3)

##

## X[, rcor[1:3]]bmi
## X[, rcor[1:3]1]11tg
## X[, rcor[1:3]]map

Pr(>ltl)

Estimate Std. Error t value Pr(>|tl)

0.373
0.336
0.162

0.040
0.040
0.039

9.335
8.426
4.170

0
0
0

0.
.000
.000
.660
.699
.459
. 267
.042
.766
.076
.984
.099
.013

[elielelNeNelNeNeNoNeNoNe o]

000



Comparison to backwards selection

fit_bs<-step(lm(y~X[,1]1+X[,2]1+X[,31+X[,41+X[,6]1+X[,6] +X[,7] + X[,8] + X[,9] +
X[,10]+X[,11]+X[,12]+X[,13]+X[,14]1+X[,15]+X[,16]+X[,17]1+X[,18]+X[,19]+
X[,20]1+X[,21]1+X[,22]1+X[,23]1+X[,24]1+X[,25]+X[,26]1+X[,27]1+X[,28]1+X[,29]+
X[,30]+X[,31]1+X[,32]+X[,33]+X[,34]1+X[,35]+X[,36]+X[,37]+X[,38]+X[,39]+
X[,401+X[,411+X[,42]1+X[,43]+X[,44]1+X[,45]+X[,46]1+X[,47]1+X[,48]1+X[,49]+
X[,50]1+X[,51]1+X[,52]+X[,563]+X[,54]1+X[,55]+X[,56]1+X[,57]1+X[,568]+X[,59]+
X[,60]1+X[,61]+X[,62]+X[,63]+X[,64] ) , direction="backward", trace=0)

AIC(fit_bs)
## [1] 929.7878
AIC(Im( y ~ -1+ X[,rcor[1:1311 ) )

## [1] 957.5259

43/53



44/53

summary (fit_bs)$coef

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(Intercept) -1

X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,
X[,

2]

3]

4]

5]

6]

9]

11]
14]
15]
16]
18]
19]
20]
23]
25]
27]
30]
371
49]
50]
51]
53]
55]
571
601

=il

N

H OOFR OO OONWOO OO

L R |
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Training and test sets

One strategy for estimating PSS is with training and test sets:
» Randomly divide the data into {ys, Xer} {Yte, Xte };
» Obtain 3 from {y., Xy };
» Compare y;e to Xtef'}:

E[PSS] ~ [yte — X[
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Q: Why not use ||ys — Xe 3|2 ?

A: This is just RSS, which will underestimate prediction error
» 3 matches the signal and noise in yy;
> A complex model will do great at matching the noise;

» We want to see how well it does at matching the signal.
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Training and test sets

One strategy for estimating PSS is with training and test sets:
» Randomly divide the data into {ys, Xer} {Yte, Xte };
» Obtain 3 from {y., Xy };
» Compare y;e to Xtef'}:

E[PSS] ~ [yte — X[

Q: Why not use ||ys — Xe 3|2 ?

A: This is just RSS, which will underestimate prediction error
» 3 matches the signal and noise in yy;
> A complex model will do great at matching the noise;

» We want to see how well it does at matching the signal.

Note: The book calls these construction and validation sets.
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Training and test sets

Use of a single training and test set can be problematic:

» If you select a model M, the estimates from the full data might
substantially different than those from the training data.

» The best model using the full data might be different than the best
model based on training/test sets of half the size.

> An estimate of E[PSS] from a half-size dataset might not be very
good.
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Cross validation

Consider instead the following:
» Divide the dataset into {y1, X1} {y2, X2};
> Obtain B3; from {y1, X1}, B, from {y»,Xo}
» Compare y; to XlﬁA2 and y; to Xzﬁl.
E[PSS] = [ly1 — X183 + [ly2 — X2/3 [
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Cross validation

Consider instead the following:
» Divide the dataset into {y1, X1} {y2, X2};
> Obtain B3; from {y1, X1}, B, from {y»,Xo}
» Compare y; to XlﬁA2 and y; to Xzﬁl.
E[PSS] ~ [lyr — X1Bs]* + |ly2 — X234 [
This is called two-fold cross validation.

Intuitively, this should provide a better approximation to E[PSS].
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K-fold cross validation

Consider instead the following:
» Divide the dataset into {y1,X1},...,{yx, Xx};
> Obtain B_, from {y;, X, : j # k},
» Compare yi to XkBA_k

E[PSS] ~ > [lyk — XkB_ilI?
k
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“Leave out one" cross validation

Consider instead the following:
» Let y_;, X_; denote the dataset with the ith case removed;
» Obtain ,@7,- fromy_;, X_;
» Compare y; to x] B_;

E[PSS] ~ Y _(vi — x/ B_;)* = PRESS

i
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This seems ideal:
» The model is selected based on fits using n — 1 observations;

» The parameter estimates from y_;, X_; should be pretty close.
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“Leave out one" cross validation

Consider instead the following:
» Let y_;, X_; denote the dataset with the ith case removed;
» Obtain ,@7,- fromy_;, X_;
» Compare y; to x] B_;
E[PSS] ~ Y _(vi — x/ B_;)* = PRESS
This procedure is called n-fold cross validation.
This seems ideal:
» The model is selected based on fits using n — 1 observations;

» The parameter estimates from y_;, X_; should be pretty close.

Problem? It seems you would need to fit the model n times!
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Matrix magic

Let H= X(XTX)"1XT be the “hat” matrix.
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Matrix magic
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Matrix magic

Let H= X(XTX)"1XT be the “hat” matrix.

Previously we called this matrix “P" for “projection.”

Hy = X(X"X) !XTy
= X[(X7X)"*XTy]
=XB=y

Let h; = H; = X,-T(XTX)_IX,'. Then

PRESS = Z(lffhﬁ){

where €; is the ith residual using the all the data.
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Diabetes example

H<-X%*% solve( t(X)%*%X ) %%t (X)
diag(H) [1:5]

## 1 2 3 4 5
## 0.06397911 0.11228880 0.12754413 0.09562653 0.04944736

influence(fit)$hat [1:5]

## 1 2 3 4 5
## 0.06397911 0.11228880 0.12754413 0.09562653 0.04944736
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PRESS for diabetes example

PRESS<-NULL
for(j in 1:ncol(Xtr))
{
fit<- Im( y ~ -1 + X[,rcor[1:3j1] )

h<-influence(fit)$hat

PRESS<-c (PRESS, sum( (fit$res/(1-h))"2 ) )

PRESS[1:15]
## [1] 290.4278 240.4526 232.4235 233.2080 234.1532 229.1721 227.0113

## [8] 226.8352 226.6060 226.4541 227.5069 227.2611 224.8457 225.8457
## [15] 226.7070
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model

which.min (PRESS)

## [1] 13
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