Multiple regression example: Ride share forecasting

Peter Hoff

STAT 423

Applied Regression and Analysis of Variance

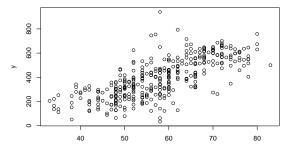
University of Washington

Forecast tomorrow's trip total:

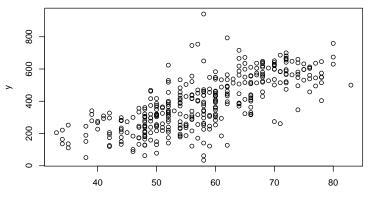
```
x<-weather$Mean_Temperature_F[-nrow(weather)]
y<-weather$ttrips[-1]</pre>
```

cor(x,y)

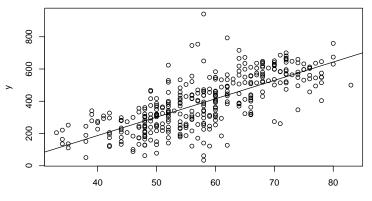
[1] 0.7239651



```
fit<-lm(y~x)</pre>
summarv(fit)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
      Min 10 Median 30 Max
##
## -358.59 -74.64 8.42 71.70 548.41
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -268.4622 33.5743 -7.996 1.75e-14 ***
         11.3975 0.5708 19.968 < 2e-16 ***
## x
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 113.6 on 362 degrees of freedom
## Multiple R-squared: 0.5241, Adjusted R-squared: 0.5228
## F-statistic: 398.7 on 1 and 362 DF, p-value: < 2.2e-16
```



х



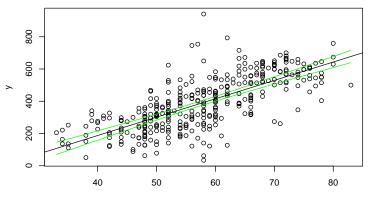
х

Prediction bands:

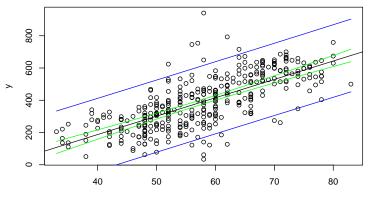
```
n<-length(x)
sigma<-sqrt( sum(fit$res^2)/(n-2) )
xbar<-mean(x)
SXX<-sum( (x-xbar)^2 )</pre>
```

```
xseq<-seq(min(x),max(x),by=1)
fit_x<-fit$coef[1] + fit$coef[2]*xseq
se_fit<- sigma*sqrt( 1/n + (xseq-xbar)^2/SXX )
se_prd<- sigma*sqrt( 1/n + (xseq-xbar)^2/SXX + 1 )</pre>
```

Q: Explain the difference between se_fit and se_prd.



х



х

Explained variation

Problem:

- $\hat{\sigma}^2$ is too big;
- $\hat{\sigma}^2$ measures variation in y not explained by x;
- maybe x isn't explaining much of the variation in y.

Explained variation

Problem:

- $\hat{\sigma}^2$ is too big;
- $\hat{\sigma}^2$ measures variation in y not explained by x;
- maybe x isn't explaining much of the variation in y.

$$SSY = \sum (y_i - ar{y})^2 =$$
 total variation in y $RSS = \sum (y_i - [\hat{eta}_0 + \hat{eta}_1 x_i])^2 =$ variation in y unexplained by x

(**Exercise:** Show that $SSY \ge RSS$.)

Explained variation

Problem:

- $\hat{\sigma}^2$ is too big;
- $\hat{\sigma}^2$ measures variation in y not explained by x;
- maybe x isn't explaining much of the variation in y.

$$SSY = \sum (y_i - ar{y})^2 =$$
 total variation in y
 $RSS = \sum (y_i - [\hat{eta}_0 + \hat{eta}_1 x_i])^2 =$ variation in y unexplained by x

(**Exercise:** Show that $SSY \ge RSS$.)

$$SSReg = SSY - RSS = \text{variation in } y \text{ explained by } x$$
$$R^2 = SSReg/SSY$$
$$= (SSY - RSS)/SSY$$
$$= 1 - RSS/SSY = \text{fraction of variation in } y \text{ explained by } x$$

 R^2 is often called the *coefficient of determination*.

1- $sum(fit\res^2)/sum((y-mean(y))^2)$

[1] 0.5241255

summary(fit)\$r.squared

[1] 0.5241255

Are there other variables that might help explain tomorrow's trip total?

1- sum(fit\$res^2)/sum((y-mean(y))^2)

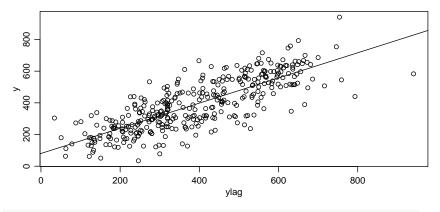
[1] 0.5241255

summary(fit)\$r.squared

[1] 0.5241255

Are there other variables that might help explain tomorrow's trip total?

```
cor(x,y)
## [1] 0.7239651
ylag<-weather$ttrips[ -nrow(weather) ]
cor(ylag,y)
## [1] 0.7947798</pre>
```



fit1<-lm(y~x)</pre>

fit2<-lm(y~ylag)</pre>

summary(fit1)\$r.squared

[1] 0.5241255

summary(fit2)\$r.squared

[1] 0.6316749

Combining variables:

- x explains 52% of the variation in y
- ylag explains 63% of the variation in y

How much variation can be explained by both of them combined?

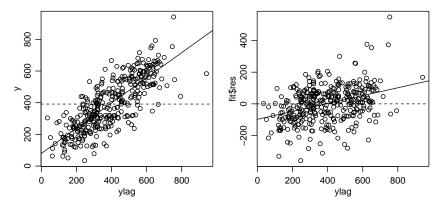
Combining variables:

- x explains 52% of the variation in y
- ylag explains 63% of the variation in y

How much variation can be explained by both of them combined?

```
fit3<-lm(y ~ x + ylag )
summary(fit3)$r.squared
## [1] 0.6676053</pre>
```

Added variable plots



cor(y, ylag)

[1] 0.7947798

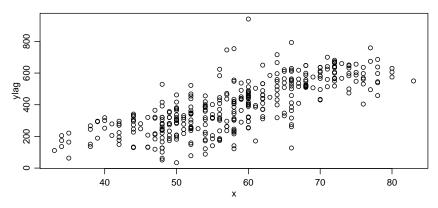
cor(y, fit1\$res)

[1] 0.6898366

Correlated predictors:

cor(x,ylag)

[1] 0.7543267



Intuitively, if ylag and x were perfectly correlated, then the improvement in fit would be zero.

Prediction error improvement:

Recall in simple linear regression,

$$se(y^* - \hat{y}^*) = \hat{\sigma}\sqrt{1 + 1/n + (x^* - \bar{x})^2/SSX}.$$

If *n* is large, this will be dominated by $\hat{\sigma}$.

```
sqrt( sum(fit1$res^2)/(n-2) )
## [1] 113.5972
sqrt( sum(fit3$res^2)/(n-3) )
## [1] 95.07119
4*( sqrt( sum(fit1$res^2)/(n-2) ) - sqrt( sum(fit3$res^2)/(n-3) ) )
## [1] 74.10384
```

Adding more variables:

colnames(X)

[1] "Max_Temperature_F" ## [3] "Min_TemperatureF" ## ## [5] "MeanDew_Point_F" ## [7] "Max_Humidity" ## [9] "Min_Humidity" ## [11] "Mean_Sea_Level_Pressure_In" ## [13] "Mean_Visibility_Miles" [15] "Max_Wind_Speed_MPH" ## ## [17] "Max_Gust_Speed_MPH" ## [19] "ylag"

"Mean_Temperature_F"
"Max_Dew_Point_F"
"Min_Dewpoint_F"
"Mean_Humidity"
"Max_Sea_Level_Pressure_In"
"Min_Sea_Level_Pressure_In"
"Min_Visibility_Miles"
"Mean_Wind_Speed_MPH"
"Precipitation_In"

Models we've tried:

```
Xa<-X[ ,c("Mean_Temperature_F") ]
summary(lm(y~Xa))$sigma
## [1] 113.5972
sqrt( mse_cv1(y,Xa) )
## [1] 113.8067</pre>
```

```
Xa<-X[ ,c("Mean_Temperature_F","ylag") ]
summary(lm(y~Xa))$sigma
## [1] 95.07119
sqrt( mse_cv1(y,Xa) )
## [1] 95.5772</pre>
```

All the variables:

```
summary(lm(y~X))$sigma
```

```
## [1] 90.21607
```

```
sqrt( mse_cv1(y,X) )
```

[1] 93.08514

```
bigfit<-lm(y~X)</pre>
```

round(summary(bigfit)\$coef , 3)

767 0.000
0.000
529 0.127
693 0.091
497 0.135
746 0.456
754 0.452
367 0.172
572 0.117
136 0.892
169 0.031
662 0.008
024 0.003
967 0.000
878 0.381
166 0.031
489 0.625
642 0.521
070 0.285
483 0.014
176 0.000

Reduced model:

```
Xr<-X[ , summary(bigfit)$coef[-1,4] < .1 ]</pre>
```

```
summary(lm(y~Xr))$sigma
```

```
## [1] 91.24097
```

```
sqrt( mse_cv1(y,Xr) )
```

[1] 92.52029