By signing below I pledge that I have not communicated with anyone about this exam other than the instructor.

Signature: _____

- 1. Let W and Z be continuous random variables with joint density p(w, z), conditional density p(z|w) and marginal density p(w).
 - (a) Show that E[f(W)g(Z)|W = w] = f(w)E[g(Z)|W = w].
 - (b) Show that $\mathbf{E}[Z] = \mathbf{E}[\mathbf{E}[Z|W]].$
 - (c) Show that $\operatorname{Var}[Z] = \operatorname{Var}[\operatorname{E}[Z|W]] + \operatorname{E}[\operatorname{Var}[Z|W]].$

- 2. Let X be a real-valued random variable and let a be a number.
 - (a) Show that $\Pr(|X a| \ge \epsilon) \le \mathbb{E}[(X a)^2]/\epsilon^2$.
 - (b) Show that $E[(X a)^2] = Var[X] + (E[X] a)^2$.
 - (c) Let $\hat{\theta}$ be an estimator of θ . Show that $\Pr(|\hat{\theta} \theta| \ge \epsilon) \le (\operatorname{Var}[\hat{\theta}] + \operatorname{Bias}[\hat{\theta}]^2)/\epsilon^2$.
 - (d) Now suppose for each natural number $n \in \mathbb{N}$, $\hat{\theta}_n$ is an estimator of θ . Find conditions on $\operatorname{Var}[\hat{\theta}_n]$ and $\operatorname{Bias}[\hat{\theta}_n]$ so that $\hat{\theta}_n$ is consistent for θ .

- 3. Let $(X_1, Y_1), \ldots, (X_n, Y_n) \sim \text{i.i.d.}$, where each (X_i, Y_i) are positive random variables with $\mathbb{E}[Y_i|X_i] = \operatorname{Var}[Y_i|X_i] = \theta X_i$, and $\mathbb{E}[|X_i|^r] < \infty$ for all values of r.
 - (a) Let $\hat{\theta} = \frac{1}{n} \sum Y_i / X_i$. Find the expectation and variance of $\hat{\theta}$.
 - (b) Show that $\hat{\theta}$ is a consistent estimator of θ .
 - (c) Show that $\hat{\theta}$ is CAN and find its asymptotic variance, that is, the value V such that $\sqrt{n}(\hat{\theta} \theta) \xrightarrow{d} N(0, V)$. State any theorems that you use.

- 4. Now consider the same setup as in the previous problem but assume that the conditional distribution of Y_i given X_i is $Poisson(\theta X_i)$.
 - (a) Write out the likelihood and log-likelihood for θ , and find the MLE $\hat{\theta}_{MLE}$.
 - (b) Compute the expectation and variance of $\hat{\theta}_{MLE}$.
 - (c) Make an argument that the variance of the MLE should converge to zero as $n \to \infty$ (you don't have to prove this), and thus that the MLE is consistent for estimating θ (without appealing to any general results about MLEs).
 - (d) Find the value V_{MLE} such that $\sqrt{n}(\hat{\theta}_{MLE} \theta) \xrightarrow{d} N(0, V_{MLE})$ and compare it to the asymptotic variance V of the estimator obtained in the previous problem, $\hat{\theta} = \frac{1}{n} \sum Y_i / X_i$.

- 5. Write a 1-2 page essay on your favorite result or concept from the course.
 - (a) Describe the concept and explain why you think it is useful or interesting.
 - (b) State mathematically what the concept is, and provide an interpretation.
 - (c) Give a specific example in which the concept is used.
 - (d) Explain how the concept is connected to other concepts from the course.